Abstract

Polarisation-vortex beams over a broad wavelength region are generated by nonlinear transformation of a radially-polarized mode in a specially-designed optical fiber. The beams are produced by stimulated Raman scattering from 20-ns 1064-nm laser pulses, and up to the 4th order Stokes shift is observed. Measurements of polarization-selected intensity profiles of individual Stokes components show that the generated light maintains the desired spatial intensity distribution and radial polarization of the pump mode. At the highest pump power, 300 W, the process creates a coherent vortex beam from 1064 nm to 1310 nm, which is a span of nearly 250 nm.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. S. Youngworth and T. G. Brown, “Focusing of high numerical aperture cylindrical-vector beams,” Opt. Express 7(2), 77–87 (2000).
    [CrossRef] [PubMed]
  2. Q. Zhan, “Cylindrical vector beams: from mathematical concepts to applications,” Adv. Opt. Photon. 1(1), 1–57 (2009).
    [CrossRef]
  3. Y. I. Salamin, “Electron acceleration from rest in vacuum by an axicon Gaussian laser beam,” Phys. Rev. A 73(4), 043402 (2006).
    [CrossRef]
  4. L. Novotny, M. R. Beversluis, K. S. Youngworth, and T. G. Brown, “Longitudinal field modes probed by single molecules,” Phys. Rev. Lett. 86(23), 5251–5254 (2001).
    [CrossRef] [PubMed]
  5. A. Vaziri, J.-W. Pan, T. Jennewein, G. Weihs, and A. Zeilinger, “Concentration of higher dimensional entanglement: qutrits of photon orbital angular momentum,” Phys. Rev. Lett. 91(22), 227902 (2003).
    [CrossRef] [PubMed]
  6. A. T. O’Neil, I. MacVicar, L. Allen, and M. J. Padgett, “Intrinsic and extrinsic nature of the orbital angular momentum of a light beam,” Phys. Rev. Lett. 88(5), 053601 (2002).
    [CrossRef] [PubMed]
  7. R. Dorn, S. Quabis, and G. Leuchs, “Sharper focus for a radially polarized light beam,” Phys. Rev. Lett. 91(23), 233901 (2003).
    [CrossRef] [PubMed]
  8. A. V. Nesterov and V. G. Niziev, “Laser beams with axially symmetric polarization,” J. Phys. D 33(15), 1817–1822 (2000).
    [CrossRef]
  9. G. Machavariani, Y. Lumer, I. Moshe, A. Meir, and S. Jackel, “Efficient extracavity generation of radially and azimuthally polarized beams,” Opt. Lett. 32(11), 1468–1470 (2007).
    [CrossRef] [PubMed]
  10. M. A. Ahmed, J. Schulz, A. Voss, O. Parriaux, J. C. Pommier, and T. Graf, “Radially polarized 3 kW beam from a CO2 laser with a intracavity resonant grating mirror,” Opt. Lett. 32(13), 1824–1826 (2007).
    [CrossRef] [PubMed]
  11. G. Volpe and D. Petrov, “Generation of cylindrical vector beams with few-mode fibers excited by Laguerre-Gaussian beams,” Opt. Commun. 237(1-3), 89–95 (2004).
    [CrossRef]
  12. S. Ramachandran, P. Kristensen, and M. F. Yan, “Generation and propagation of radially polarized beams in optical fibers,” Opt. Lett. 34(16), 2525–2527 (2009).
    [CrossRef] [PubMed]
  13. J. D. Jackson, Classical Electrodynamics, 3rd edition, (John Wiley & Sons, New York 1999)
  14. G. P. Agrawal, Nonlinear Fiber Optics, 4th edition, (Academic Press, San Diego 2007)

2009 (2)

2007 (2)

2006 (1)

Y. I. Salamin, “Electron acceleration from rest in vacuum by an axicon Gaussian laser beam,” Phys. Rev. A 73(4), 043402 (2006).
[CrossRef]

2004 (1)

G. Volpe and D. Petrov, “Generation of cylindrical vector beams with few-mode fibers excited by Laguerre-Gaussian beams,” Opt. Commun. 237(1-3), 89–95 (2004).
[CrossRef]

2003 (2)

R. Dorn, S. Quabis, and G. Leuchs, “Sharper focus for a radially polarized light beam,” Phys. Rev. Lett. 91(23), 233901 (2003).
[CrossRef] [PubMed]

A. Vaziri, J.-W. Pan, T. Jennewein, G. Weihs, and A. Zeilinger, “Concentration of higher dimensional entanglement: qutrits of photon orbital angular momentum,” Phys. Rev. Lett. 91(22), 227902 (2003).
[CrossRef] [PubMed]

2002 (1)

A. T. O’Neil, I. MacVicar, L. Allen, and M. J. Padgett, “Intrinsic and extrinsic nature of the orbital angular momentum of a light beam,” Phys. Rev. Lett. 88(5), 053601 (2002).
[CrossRef] [PubMed]

2001 (1)

L. Novotny, M. R. Beversluis, K. S. Youngworth, and T. G. Brown, “Longitudinal field modes probed by single molecules,” Phys. Rev. Lett. 86(23), 5251–5254 (2001).
[CrossRef] [PubMed]

2000 (2)

A. V. Nesterov and V. G. Niziev, “Laser beams with axially symmetric polarization,” J. Phys. D 33(15), 1817–1822 (2000).
[CrossRef]

K. S. Youngworth and T. G. Brown, “Focusing of high numerical aperture cylindrical-vector beams,” Opt. Express 7(2), 77–87 (2000).
[CrossRef] [PubMed]

Ahmed, M. A.

Allen, L.

A. T. O’Neil, I. MacVicar, L. Allen, and M. J. Padgett, “Intrinsic and extrinsic nature of the orbital angular momentum of a light beam,” Phys. Rev. Lett. 88(5), 053601 (2002).
[CrossRef] [PubMed]

Beversluis, M. R.

L. Novotny, M. R. Beversluis, K. S. Youngworth, and T. G. Brown, “Longitudinal field modes probed by single molecules,” Phys. Rev. Lett. 86(23), 5251–5254 (2001).
[CrossRef] [PubMed]

Brown, T. G.

L. Novotny, M. R. Beversluis, K. S. Youngworth, and T. G. Brown, “Longitudinal field modes probed by single molecules,” Phys. Rev. Lett. 86(23), 5251–5254 (2001).
[CrossRef] [PubMed]

K. S. Youngworth and T. G. Brown, “Focusing of high numerical aperture cylindrical-vector beams,” Opt. Express 7(2), 77–87 (2000).
[CrossRef] [PubMed]

Dorn, R.

R. Dorn, S. Quabis, and G. Leuchs, “Sharper focus for a radially polarized light beam,” Phys. Rev. Lett. 91(23), 233901 (2003).
[CrossRef] [PubMed]

Graf, T.

Jackel, S.

Jennewein, T.

A. Vaziri, J.-W. Pan, T. Jennewein, G. Weihs, and A. Zeilinger, “Concentration of higher dimensional entanglement: qutrits of photon orbital angular momentum,” Phys. Rev. Lett. 91(22), 227902 (2003).
[CrossRef] [PubMed]

Kristensen, P.

Leuchs, G.

R. Dorn, S. Quabis, and G. Leuchs, “Sharper focus for a radially polarized light beam,” Phys. Rev. Lett. 91(23), 233901 (2003).
[CrossRef] [PubMed]

Lumer, Y.

Machavariani, G.

MacVicar, I.

A. T. O’Neil, I. MacVicar, L. Allen, and M. J. Padgett, “Intrinsic and extrinsic nature of the orbital angular momentum of a light beam,” Phys. Rev. Lett. 88(5), 053601 (2002).
[CrossRef] [PubMed]

Meir, A.

Moshe, I.

Nesterov, A. V.

A. V. Nesterov and V. G. Niziev, “Laser beams with axially symmetric polarization,” J. Phys. D 33(15), 1817–1822 (2000).
[CrossRef]

Niziev, V. G.

A. V. Nesterov and V. G. Niziev, “Laser beams with axially symmetric polarization,” J. Phys. D 33(15), 1817–1822 (2000).
[CrossRef]

Novotny, L.

L. Novotny, M. R. Beversluis, K. S. Youngworth, and T. G. Brown, “Longitudinal field modes probed by single molecules,” Phys. Rev. Lett. 86(23), 5251–5254 (2001).
[CrossRef] [PubMed]

O’Neil, A. T.

A. T. O’Neil, I. MacVicar, L. Allen, and M. J. Padgett, “Intrinsic and extrinsic nature of the orbital angular momentum of a light beam,” Phys. Rev. Lett. 88(5), 053601 (2002).
[CrossRef] [PubMed]

Padgett, M. J.

A. T. O’Neil, I. MacVicar, L. Allen, and M. J. Padgett, “Intrinsic and extrinsic nature of the orbital angular momentum of a light beam,” Phys. Rev. Lett. 88(5), 053601 (2002).
[CrossRef] [PubMed]

Pan, J.-W.

A. Vaziri, J.-W. Pan, T. Jennewein, G. Weihs, and A. Zeilinger, “Concentration of higher dimensional entanglement: qutrits of photon orbital angular momentum,” Phys. Rev. Lett. 91(22), 227902 (2003).
[CrossRef] [PubMed]

Parriaux, O.

Petrov, D.

G. Volpe and D. Petrov, “Generation of cylindrical vector beams with few-mode fibers excited by Laguerre-Gaussian beams,” Opt. Commun. 237(1-3), 89–95 (2004).
[CrossRef]

Pommier, J. C.

Quabis, S.

R. Dorn, S. Quabis, and G. Leuchs, “Sharper focus for a radially polarized light beam,” Phys. Rev. Lett. 91(23), 233901 (2003).
[CrossRef] [PubMed]

Ramachandran, S.

Salamin, Y. I.

Y. I. Salamin, “Electron acceleration from rest in vacuum by an axicon Gaussian laser beam,” Phys. Rev. A 73(4), 043402 (2006).
[CrossRef]

Schulz, J.

Vaziri, A.

A. Vaziri, J.-W. Pan, T. Jennewein, G. Weihs, and A. Zeilinger, “Concentration of higher dimensional entanglement: qutrits of photon orbital angular momentum,” Phys. Rev. Lett. 91(22), 227902 (2003).
[CrossRef] [PubMed]

Volpe, G.

G. Volpe and D. Petrov, “Generation of cylindrical vector beams with few-mode fibers excited by Laguerre-Gaussian beams,” Opt. Commun. 237(1-3), 89–95 (2004).
[CrossRef]

Voss, A.

Weihs, G.

A. Vaziri, J.-W. Pan, T. Jennewein, G. Weihs, and A. Zeilinger, “Concentration of higher dimensional entanglement: qutrits of photon orbital angular momentum,” Phys. Rev. Lett. 91(22), 227902 (2003).
[CrossRef] [PubMed]

Yan, M. F.

Youngworth, K. S.

L. Novotny, M. R. Beversluis, K. S. Youngworth, and T. G. Brown, “Longitudinal field modes probed by single molecules,” Phys. Rev. Lett. 86(23), 5251–5254 (2001).
[CrossRef] [PubMed]

K. S. Youngworth and T. G. Brown, “Focusing of high numerical aperture cylindrical-vector beams,” Opt. Express 7(2), 77–87 (2000).
[CrossRef] [PubMed]

Zeilinger, A.

A. Vaziri, J.-W. Pan, T. Jennewein, G. Weihs, and A. Zeilinger, “Concentration of higher dimensional entanglement: qutrits of photon orbital angular momentum,” Phys. Rev. Lett. 91(22), 227902 (2003).
[CrossRef] [PubMed]

Zhan, Q.

Adv. Opt. Photon. (1)

J. Phys. D (1)

A. V. Nesterov and V. G. Niziev, “Laser beams with axially symmetric polarization,” J. Phys. D 33(15), 1817–1822 (2000).
[CrossRef]

Opt. Commun. (1)

G. Volpe and D. Petrov, “Generation of cylindrical vector beams with few-mode fibers excited by Laguerre-Gaussian beams,” Opt. Commun. 237(1-3), 89–95 (2004).
[CrossRef]

Opt. Express (1)

Opt. Lett. (3)

Phys. Rev. A (1)

Y. I. Salamin, “Electron acceleration from rest in vacuum by an axicon Gaussian laser beam,” Phys. Rev. A 73(4), 043402 (2006).
[CrossRef]

Phys. Rev. Lett. (4)

L. Novotny, M. R. Beversluis, K. S. Youngworth, and T. G. Brown, “Longitudinal field modes probed by single molecules,” Phys. Rev. Lett. 86(23), 5251–5254 (2001).
[CrossRef] [PubMed]

A. Vaziri, J.-W. Pan, T. Jennewein, G. Weihs, and A. Zeilinger, “Concentration of higher dimensional entanglement: qutrits of photon orbital angular momentum,” Phys. Rev. Lett. 91(22), 227902 (2003).
[CrossRef] [PubMed]

A. T. O’Neil, I. MacVicar, L. Allen, and M. J. Padgett, “Intrinsic and extrinsic nature of the orbital angular momentum of a light beam,” Phys. Rev. Lett. 88(5), 053601 (2002).
[CrossRef] [PubMed]

R. Dorn, S. Quabis, and G. Leuchs, “Sharper focus for a radially polarized light beam,” Phys. Rev. Lett. 91(23), 233901 (2003).
[CrossRef] [PubMed]

Other (2)

J. D. Jackson, Classical Electrodynamics, 3rd edition, (John Wiley & Sons, New York 1999)

G. P. Agrawal, Nonlinear Fiber Optics, 4th edition, (Academic Press, San Diego 2007)

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Characteristics of the vortex fiber used for the generation of radially-polarized beams. (a) The spatial intensity distribution of the radially polarized vortex mode TM01, with arrows showing the direction of polarization of this mode. (b) Index profile of the vortex fiber. (c) Comparison of the effective index difference between the radially-polarized mode TM01 and the other two vortex modes TE01 and HE21.

Fig. 2
Fig. 2

Experimental setup for the generation and characterization of the SRS vortex mode. Light at a wavelength of 1064 nm excites the polarization-vortex mode by means of a mechanical micro-bend grating and is sent through 100 m of the vortex fiber. A silicon CCD, an optical spectrum analyzer (OSA), and a power meter are used to characterize the radially polarized beams at 1064 nm, 1115 nm and 1175 nm, respectively.

Fig. 3
Fig. 3

Wavelength spectra at different power levels. Wavelength spectra measured with the OSA at peak-power levels of 95 W, 160 W, 200 W, and 300 W.

Fig. 4
Fig. 4

Collimated radially polarized mode at pump, 1 st -order Stokes shift and 2 nd -order Stokes shift. Wavelength spectra of the light transmitted through a bandpass filter selecting 1064 nm, 1115 nm and 1175 nm. The images of the modes are obtained with a silicon CCD. Separate images show the mode from the fiber after transmission through a polarizer, to confirm that the mode is radially polarized.

Metrics