Abstract

In this paper, we theoretically analyze and demonstrate that spectral efficiency of a conventional direct detection based optical OFDM system (DDO-OFDM) can be improved significantly using frequency interleaving of adjacent DDO-OFDM channels where OFDM signal band of one channel occupies the spectral gap of other channel and vice versa. We show that, at optimum operating condition, the proposed technique can effectively improve the spectral efficiency of the conventional DDO-OFDM system as much as 50%. We also show that such a frequency interleaved DDO-OFDM system, with a bit rate of 48 Gb/s within 25 GHz bandwidth, achieves sufficient power budget after transmission over 25 km single mode fiber to be used in next-generation time-division-multiplexed passive optical networks (TDM-PON). Moreover, by applying 64- quadrature amplitude modulation (QAM), the system can be further scaled up to 96 Gb/s with a power budget sufficient for 1:16 split TDM-PON.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. L. Jansen, I. Morita, T. C. W. Schenk, and H. Tanaka, “121.9-Gb/s PDM-OFDM transmission with 2-b/s/Hz spectral efficiency over 1000 km of SSMF,” J. Lightwave Technol. 27(3), 177–188 (2009).
    [CrossRef]
  2. Y. Ma, Q. Yang, Y. Tang, S. Chen, and W. Shieh, “1-Tb/s single-channel coherent optical OFDM transmission with orthogonal-band multiplexing and subwavelength bandwidth access,” J. Lightwave Technol. 28(4), 308–315 (2010).
    [CrossRef]
  3. A. Sano, E. Yamada, H. Masuda, E. Yamazaki, T. Kobayashi, E. Yoshida, Y. Miyamoto, R. Kudo, K. Ishihara, and Y. Takatori, “No-guard-interval coherent optical OFDM for 100-Gb/s long-haul WDM transmission,” J. Lightwave Technol. 27(16), 3705–3713 (2009).
    [CrossRef]
  4. W. Shieh, H. Bao, and Y. Tang, “Coherent optical OFDM: theory and design,” Opt. Express 16(2), 841–859 (2008).
    [CrossRef] [PubMed]
  5. A. J. Lowery and J. Armstrong, “Orthogonal-frequency-division multiplexing for dispersion compensation of long-haul optical systems,” Opt. Express 14(6), 2079–2084 (2006).
    [CrossRef] [PubMed]
  6. D. Qian, N. Cvijetic, J. Hu, and T. Wang, “108 Gb/s OFDMA-PON with polarization multiplexing and direct-detection,” J. Lightwave Technol. 28(4), 484–493 (2010).
    [CrossRef]
  7. D. Qian, N. Cvijetic, J. Hu, and T. Wang, “Optical OFDM transmission in metro/access networks,” in Optical Fiber Communication Conference, OSA Technical Digest (CD) (Optical Society of America, 2009), paper OMV1, http://www.opticsinfobase.org/abstract.cfm?URI=OFC-2009-OMV1 .
  8. D. Qian, N. Cvijetic, J. Hu, and T. Wang, “40-Gb/s MIMO-OFDM-PON using polarization multiplexing and direct-detection,” in Optical Fiber Communication Conference, OSA Technical Digest (CD) (Optical Society of America, 2009), paper OMV3, http://www.opticsinfobase.org/abstract.cfm?URI=OFC-2009-OMV3 .
  9. J. M. Tang and K. A. Shore, “30-gb/s signal transmission over 40-km directly modulated DFB-laser-based single-mode-fiber links without optical amplification and dispersion compensation,” J. Lightwave Technol. 24(6), 2318–2327 (2006).
    [CrossRef]
  10. B. J. C. Schmidt, A. J. Lowery, and J. Armstrong, “Experimental demonstrations of electronic dispersion compensation for long haul transmission using direct-detection optical OFDM,” J. Lightwave Technol. 26(1), 196–203 (2008).
    [CrossRef]
  11. W.-R. Peng, X. Wu, V. R. Arbab, K.-M. Feng, B. Shamee, L. C. Christen, J.-Y. Yang, A. E. Willner, and S. Chi, “Theoretical and experimental investigations of direct-detected RF-tone-assisted optical OFDM systems,” J. Lightwave Technol. 27(10), 1332–1339 (2009).
    [CrossRef]
  12. W.-R. Peng, B. Zhang, K.-M. Feng, X. Wu, A. E. Willner, and S. Chi, “Spectrally efficient direct-detected OFDM transmission incorporating a tunable frequency gap and an iterative detection techniques,” J. Lightwave Technol. 27(24), 5723–5735 (2009).
    [CrossRef]
  13. B. J. C. Schmidt, Z. Zan, L. B. Du, and A. J. Lowery, “100 Gbit/s transmission using single-band direct-detection Optical OFDM”, in proceedings of the conference on Optical Fiber Communication (Institute of Electrical and Electronics Engineers, New York, 2009), pp. 1–3, PDPC3.
  14. B. J. C. Schmidt, Z. Zan, L. B. Du, and A. J. Lowery, “120 Gbit/s Over 500-km Using Single-Band Polarization-Multiplexed Self-Coherent Optical OFDM,” J. Lightwave Technol. 28(4), 328–335 (2010).
    [CrossRef]
  15. A. Al Amin, H. Takahashi, I. Morita, and H. Tanaka, “100-Gb/s Direct-Detection OFDM Transmission on Independent Polarization Tributaries,” IEEE Photon. Technol. Lett. 22(77 Issue: 7), 468–470 (2010).
    [CrossRef]
  16. L. Xu, J. Hu, D. Qian, and T. Wang, “Coherent Optical OFDM Systems Using Self Optical Carrier Extraction,” in Optical Fiber Communication Conference and Exposition and The National Fiber Optic Engineers Conference, OSA Technical Digest (CD) (Optical Society of America, 2008), paper OMU4.
  17. L. Mehedy, M. Bakaul, and A. Nirmalathas, “Frequency interleaving towards spectrally efficient direct detection based optical OFDM systems,” in proceedings of the 15th OptoElectronics and Communications Conference (Institute of Electrical and Electronics Engineers, New York, 2010), pp. 476–477.
  18. L. Mehedy, M. Bakaul, and A. Nirmalathas, “Frequency Interleaved Directly Detected Optical OFDM for Next-Generation Optical Access Networks,” in Proc. IEEE International Topical Meeting on Microwave Photonics, Institute of Electrical and Electronics Engineers, New York (to be published).
  19. M. Bakaul, A. Nirmalathas, C. Lim, D. Novak, and R. Waterhouse, “Simplified multiplexing scheme for wavelength-interleaved DWDM millimeter-wave fiber-radio systems” in proceedings of the 31st European Conference and Exhibition on Optical Communication (Institute of Electrical and Electronics Engineers, New York, 2005), pp. 809- 810.
  20. S. Hara, and R. Prasad, Multicarrier techniques for 4G mobile communications (Artech House, Boston, MA, 2003).
  21. B. E. Little, S. T. Chu, H. A. Haus, J. Foresi, and J.-P. Laine, “Microring resonator channel dropping filters,” J. Lightwave Technol. 15(6), 998–1005 (1997).
    [CrossRef]
  22. P. Rabiei, W. H. Steier, Cheng Zhang, and L. R. Dalton, “Polymer micro-ring filters and modulators,” J. Lightwave Technol. 20(11), 1968–1975 (2002).
    [CrossRef]
  23. C. Marra, A. Nirmalathas, D. Novak, C. Lim, L. Reekie, J. A. Besley, C. Weeks, and N. Baker, “Wavelength-interleaved OADMs incorporating optimized multiple phase-shifted FBGs for fiber-radio systems,” J. Lightwave Technol. 21(1), 32–39 (2003).
    [CrossRef]
  24. R. Amatya, C. W. Holzwarth, H. I. Smith, and R. J. Ram, “Precision tunable silicon compatible microring filters,” IEEE Photon. Technol. Lett. 20(20), 1739–1741 (2008).
    [CrossRef]
  25. N. Keil, H. H. Yao, C. Zawadzki, J. Bauer, M. Bauer, C. Dreyer, and J. Schneider, “Athermal all-polymer arrayed-waveguide grating multiplexer,” Electron. Lett. 37(9), 579–580 (2001).
    [CrossRef]
  26. VPISystems Inc, VPItransmissionMaker, www.vpisytems.com
  27. L. Mehedy, M. Bakaul, and A. Nirmalathas, “115.2 Gb/s optical OFDM transmission with 4 bit/s/Hz spectral efficiency using IEEE 802.11a OFDM PHY,” in proceedings of the 14th OptoElectronics and Communications Conference (Institute of Electrical and Electronics Engineers, New York, 2009), pp. 1–2.
  28. IEEE Standards Association, “IEEE Std 802.11a-1999 (R2003) Part 11: Wireless LAN MAC and PHY specifications”, Clause 17, http://standards.ieee.org/getieee802/download/802.11a-1999.pdf , Date of Access: 04 August 2010.
  29. M. Bakaul, A. Nirmalathas, C. Lim, D. Novak, and R. Waterhouse, “Investigation of Performance Enhancement of WDM Optical Interfaces for Millimeter-Wave Fiber-Radio Networks,” IEEE Photon. Technol. Lett. 19(11), 843–845 (2007).
    [CrossRef]
  30. W.-R. Peng, “Analysis of Laser Phase Noise Effect in Direct- Detection Optical OFDM Transmission,” J. Lightwave Technol. 28(17), 2526–2536 (2010).
    [CrossRef]

2010

2009

2008

2007

M. Bakaul, A. Nirmalathas, C. Lim, D. Novak, and R. Waterhouse, “Investigation of Performance Enhancement of WDM Optical Interfaces for Millimeter-Wave Fiber-Radio Networks,” IEEE Photon. Technol. Lett. 19(11), 843–845 (2007).
[CrossRef]

2006

2003

2002

2001

N. Keil, H. H. Yao, C. Zawadzki, J. Bauer, M. Bauer, C. Dreyer, and J. Schneider, “Athermal all-polymer arrayed-waveguide grating multiplexer,” Electron. Lett. 37(9), 579–580 (2001).
[CrossRef]

1997

B. E. Little, S. T. Chu, H. A. Haus, J. Foresi, and J.-P. Laine, “Microring resonator channel dropping filters,” J. Lightwave Technol. 15(6), 998–1005 (1997).
[CrossRef]

Al Amin, A.

A. Al Amin, H. Takahashi, I. Morita, and H. Tanaka, “100-Gb/s Direct-Detection OFDM Transmission on Independent Polarization Tributaries,” IEEE Photon. Technol. Lett. 22(77 Issue: 7), 468–470 (2010).
[CrossRef]

Amatya, R.

R. Amatya, C. W. Holzwarth, H. I. Smith, and R. J. Ram, “Precision tunable silicon compatible microring filters,” IEEE Photon. Technol. Lett. 20(20), 1739–1741 (2008).
[CrossRef]

Arbab, V. R.

Armstrong, J.

Bakaul, M.

M. Bakaul, A. Nirmalathas, C. Lim, D. Novak, and R. Waterhouse, “Investigation of Performance Enhancement of WDM Optical Interfaces for Millimeter-Wave Fiber-Radio Networks,” IEEE Photon. Technol. Lett. 19(11), 843–845 (2007).
[CrossRef]

Baker, N.

Bao, H.

Bauer, J.

N. Keil, H. H. Yao, C. Zawadzki, J. Bauer, M. Bauer, C. Dreyer, and J. Schneider, “Athermal all-polymer arrayed-waveguide grating multiplexer,” Electron. Lett. 37(9), 579–580 (2001).
[CrossRef]

Bauer, M.

N. Keil, H. H. Yao, C. Zawadzki, J. Bauer, M. Bauer, C. Dreyer, and J. Schneider, “Athermal all-polymer arrayed-waveguide grating multiplexer,” Electron. Lett. 37(9), 579–580 (2001).
[CrossRef]

Besley, J. A.

Chen, S.

Cheng Zhang,

Chi, S.

Christen, L. C.

Chu, S. T.

B. E. Little, S. T. Chu, H. A. Haus, J. Foresi, and J.-P. Laine, “Microring resonator channel dropping filters,” J. Lightwave Technol. 15(6), 998–1005 (1997).
[CrossRef]

Cvijetic, N.

Dalton, L. R.

Dreyer, C.

N. Keil, H. H. Yao, C. Zawadzki, J. Bauer, M. Bauer, C. Dreyer, and J. Schneider, “Athermal all-polymer arrayed-waveguide grating multiplexer,” Electron. Lett. 37(9), 579–580 (2001).
[CrossRef]

Du, L. B.

Feng, K.-M.

Foresi, J.

B. E. Little, S. T. Chu, H. A. Haus, J. Foresi, and J.-P. Laine, “Microring resonator channel dropping filters,” J. Lightwave Technol. 15(6), 998–1005 (1997).
[CrossRef]

Haus, H. A.

B. E. Little, S. T. Chu, H. A. Haus, J. Foresi, and J.-P. Laine, “Microring resonator channel dropping filters,” J. Lightwave Technol. 15(6), 998–1005 (1997).
[CrossRef]

Holzwarth, C. W.

R. Amatya, C. W. Holzwarth, H. I. Smith, and R. J. Ram, “Precision tunable silicon compatible microring filters,” IEEE Photon. Technol. Lett. 20(20), 1739–1741 (2008).
[CrossRef]

Hu, J.

Ishihara, K.

Jansen, S. L.

Keil, N.

N. Keil, H. H. Yao, C. Zawadzki, J. Bauer, M. Bauer, C. Dreyer, and J. Schneider, “Athermal all-polymer arrayed-waveguide grating multiplexer,” Electron. Lett. 37(9), 579–580 (2001).
[CrossRef]

Kobayashi, T.

Kudo, R.

Laine, J.-P.

B. E. Little, S. T. Chu, H. A. Haus, J. Foresi, and J.-P. Laine, “Microring resonator channel dropping filters,” J. Lightwave Technol. 15(6), 998–1005 (1997).
[CrossRef]

Lim, C.

M. Bakaul, A. Nirmalathas, C. Lim, D. Novak, and R. Waterhouse, “Investigation of Performance Enhancement of WDM Optical Interfaces for Millimeter-Wave Fiber-Radio Networks,” IEEE Photon. Technol. Lett. 19(11), 843–845 (2007).
[CrossRef]

C. Marra, A. Nirmalathas, D. Novak, C. Lim, L. Reekie, J. A. Besley, C. Weeks, and N. Baker, “Wavelength-interleaved OADMs incorporating optimized multiple phase-shifted FBGs for fiber-radio systems,” J. Lightwave Technol. 21(1), 32–39 (2003).
[CrossRef]

Little, B. E.

B. E. Little, S. T. Chu, H. A. Haus, J. Foresi, and J.-P. Laine, “Microring resonator channel dropping filters,” J. Lightwave Technol. 15(6), 998–1005 (1997).
[CrossRef]

Lowery, A. J.

Ma, Y.

Marra, C.

Masuda, H.

Miyamoto, Y.

Morita, I.

A. Al Amin, H. Takahashi, I. Morita, and H. Tanaka, “100-Gb/s Direct-Detection OFDM Transmission on Independent Polarization Tributaries,” IEEE Photon. Technol. Lett. 22(77 Issue: 7), 468–470 (2010).
[CrossRef]

S. L. Jansen, I. Morita, T. C. W. Schenk, and H. Tanaka, “121.9-Gb/s PDM-OFDM transmission with 2-b/s/Hz spectral efficiency over 1000 km of SSMF,” J. Lightwave Technol. 27(3), 177–188 (2009).
[CrossRef]

Nirmalathas, A.

M. Bakaul, A. Nirmalathas, C. Lim, D. Novak, and R. Waterhouse, “Investigation of Performance Enhancement of WDM Optical Interfaces for Millimeter-Wave Fiber-Radio Networks,” IEEE Photon. Technol. Lett. 19(11), 843–845 (2007).
[CrossRef]

C. Marra, A. Nirmalathas, D. Novak, C. Lim, L. Reekie, J. A. Besley, C. Weeks, and N. Baker, “Wavelength-interleaved OADMs incorporating optimized multiple phase-shifted FBGs for fiber-radio systems,” J. Lightwave Technol. 21(1), 32–39 (2003).
[CrossRef]

Novak, D.

M. Bakaul, A. Nirmalathas, C. Lim, D. Novak, and R. Waterhouse, “Investigation of Performance Enhancement of WDM Optical Interfaces for Millimeter-Wave Fiber-Radio Networks,” IEEE Photon. Technol. Lett. 19(11), 843–845 (2007).
[CrossRef]

C. Marra, A. Nirmalathas, D. Novak, C. Lim, L. Reekie, J. A. Besley, C. Weeks, and N. Baker, “Wavelength-interleaved OADMs incorporating optimized multiple phase-shifted FBGs for fiber-radio systems,” J. Lightwave Technol. 21(1), 32–39 (2003).
[CrossRef]

Peng, W.-R.

Qian, D.

Rabiei, P.

Ram, R. J.

R. Amatya, C. W. Holzwarth, H. I. Smith, and R. J. Ram, “Precision tunable silicon compatible microring filters,” IEEE Photon. Technol. Lett. 20(20), 1739–1741 (2008).
[CrossRef]

Reekie, L.

Sano, A.

Schenk, T. C. W.

Schmidt, B. J. C.

Schneider, J.

N. Keil, H. H. Yao, C. Zawadzki, J. Bauer, M. Bauer, C. Dreyer, and J. Schneider, “Athermal all-polymer arrayed-waveguide grating multiplexer,” Electron. Lett. 37(9), 579–580 (2001).
[CrossRef]

Shamee, B.

Shieh, W.

Shore, K. A.

Smith, H. I.

R. Amatya, C. W. Holzwarth, H. I. Smith, and R. J. Ram, “Precision tunable silicon compatible microring filters,” IEEE Photon. Technol. Lett. 20(20), 1739–1741 (2008).
[CrossRef]

Steier, W. H.

Takahashi, H.

A. Al Amin, H. Takahashi, I. Morita, and H. Tanaka, “100-Gb/s Direct-Detection OFDM Transmission on Independent Polarization Tributaries,” IEEE Photon. Technol. Lett. 22(77 Issue: 7), 468–470 (2010).
[CrossRef]

Takatori, Y.

Tanaka, H.

A. Al Amin, H. Takahashi, I. Morita, and H. Tanaka, “100-Gb/s Direct-Detection OFDM Transmission on Independent Polarization Tributaries,” IEEE Photon. Technol. Lett. 22(77 Issue: 7), 468–470 (2010).
[CrossRef]

S. L. Jansen, I. Morita, T. C. W. Schenk, and H. Tanaka, “121.9-Gb/s PDM-OFDM transmission with 2-b/s/Hz spectral efficiency over 1000 km of SSMF,” J. Lightwave Technol. 27(3), 177–188 (2009).
[CrossRef]

Tang, J. M.

Tang, Y.

Wang, T.

Waterhouse, R.

M. Bakaul, A. Nirmalathas, C. Lim, D. Novak, and R. Waterhouse, “Investigation of Performance Enhancement of WDM Optical Interfaces for Millimeter-Wave Fiber-Radio Networks,” IEEE Photon. Technol. Lett. 19(11), 843–845 (2007).
[CrossRef]

Weeks, C.

Willner, A. E.

Wu, X.

Yamada, E.

Yamazaki, E.

Yang, J.-Y.

Yang, Q.

Yao, H. H.

N. Keil, H. H. Yao, C. Zawadzki, J. Bauer, M. Bauer, C. Dreyer, and J. Schneider, “Athermal all-polymer arrayed-waveguide grating multiplexer,” Electron. Lett. 37(9), 579–580 (2001).
[CrossRef]

Yoshida, E.

Zan, Z.

Zawadzki, C.

N. Keil, H. H. Yao, C. Zawadzki, J. Bauer, M. Bauer, C. Dreyer, and J. Schneider, “Athermal all-polymer arrayed-waveguide grating multiplexer,” Electron. Lett. 37(9), 579–580 (2001).
[CrossRef]

Zhang, B.

Electron. Lett.

N. Keil, H. H. Yao, C. Zawadzki, J. Bauer, M. Bauer, C. Dreyer, and J. Schneider, “Athermal all-polymer arrayed-waveguide grating multiplexer,” Electron. Lett. 37(9), 579–580 (2001).
[CrossRef]

IEEE Photon. Technol. Lett.

M. Bakaul, A. Nirmalathas, C. Lim, D. Novak, and R. Waterhouse, “Investigation of Performance Enhancement of WDM Optical Interfaces for Millimeter-Wave Fiber-Radio Networks,” IEEE Photon. Technol. Lett. 19(11), 843–845 (2007).
[CrossRef]

A. Al Amin, H. Takahashi, I. Morita, and H. Tanaka, “100-Gb/s Direct-Detection OFDM Transmission on Independent Polarization Tributaries,” IEEE Photon. Technol. Lett. 22(77 Issue: 7), 468–470 (2010).
[CrossRef]

R. Amatya, C. W. Holzwarth, H. I. Smith, and R. J. Ram, “Precision tunable silicon compatible microring filters,” IEEE Photon. Technol. Lett. 20(20), 1739–1741 (2008).
[CrossRef]

J. Lightwave Technol.

J. M. Tang and K. A. Shore, “30-gb/s signal transmission over 40-km directly modulated DFB-laser-based single-mode-fiber links without optical amplification and dispersion compensation,” J. Lightwave Technol. 24(6), 2318–2327 (2006).
[CrossRef]

B. J. C. Schmidt, A. J. Lowery, and J. Armstrong, “Experimental demonstrations of electronic dispersion compensation for long haul transmission using direct-detection optical OFDM,” J. Lightwave Technol. 26(1), 196–203 (2008).
[CrossRef]

S. L. Jansen, I. Morita, T. C. W. Schenk, and H. Tanaka, “121.9-Gb/s PDM-OFDM transmission with 2-b/s/Hz spectral efficiency over 1000 km of SSMF,” J. Lightwave Technol. 27(3), 177–188 (2009).
[CrossRef]

W.-R. Peng, X. Wu, V. R. Arbab, K.-M. Feng, B. Shamee, L. C. Christen, J.-Y. Yang, A. E. Willner, and S. Chi, “Theoretical and experimental investigations of direct-detected RF-tone-assisted optical OFDM systems,” J. Lightwave Technol. 27(10), 1332–1339 (2009).
[CrossRef]

A. Sano, E. Yamada, H. Masuda, E. Yamazaki, T. Kobayashi, E. Yoshida, Y. Miyamoto, R. Kudo, K. Ishihara, and Y. Takatori, “No-guard-interval coherent optical OFDM for 100-Gb/s long-haul WDM transmission,” J. Lightwave Technol. 27(16), 3705–3713 (2009).
[CrossRef]

W.-R. Peng, B. Zhang, K.-M. Feng, X. Wu, A. E. Willner, and S. Chi, “Spectrally efficient direct-detected OFDM transmission incorporating a tunable frequency gap and an iterative detection techniques,” J. Lightwave Technol. 27(24), 5723–5735 (2009).
[CrossRef]

Y. Ma, Q. Yang, Y. Tang, S. Chen, and W. Shieh, “1-Tb/s single-channel coherent optical OFDM transmission with orthogonal-band multiplexing and subwavelength bandwidth access,” J. Lightwave Technol. 28(4), 308–315 (2010).
[CrossRef]

B. J. C. Schmidt, Z. Zan, L. B. Du, and A. J. Lowery, “120 Gbit/s Over 500-km Using Single-Band Polarization-Multiplexed Self-Coherent Optical OFDM,” J. Lightwave Technol. 28(4), 328–335 (2010).
[CrossRef]

D. Qian, N. Cvijetic, J. Hu, and T. Wang, “108 Gb/s OFDMA-PON with polarization multiplexing and direct-detection,” J. Lightwave Technol. 28(4), 484–493 (2010).
[CrossRef]

W.-R. Peng, “Analysis of Laser Phase Noise Effect in Direct- Detection Optical OFDM Transmission,” J. Lightwave Technol. 28(17), 2526–2536 (2010).
[CrossRef]

B. E. Little, S. T. Chu, H. A. Haus, J. Foresi, and J.-P. Laine, “Microring resonator channel dropping filters,” J. Lightwave Technol. 15(6), 998–1005 (1997).
[CrossRef]

P. Rabiei, W. H. Steier, Cheng Zhang, and L. R. Dalton, “Polymer micro-ring filters and modulators,” J. Lightwave Technol. 20(11), 1968–1975 (2002).
[CrossRef]

C. Marra, A. Nirmalathas, D. Novak, C. Lim, L. Reekie, J. A. Besley, C. Weeks, and N. Baker, “Wavelength-interleaved OADMs incorporating optimized multiple phase-shifted FBGs for fiber-radio systems,” J. Lightwave Technol. 21(1), 32–39 (2003).
[CrossRef]

Opt. Express

Other

VPISystems Inc, VPItransmissionMaker, www.vpisytems.com

L. Mehedy, M. Bakaul, and A. Nirmalathas, “115.2 Gb/s optical OFDM transmission with 4 bit/s/Hz spectral efficiency using IEEE 802.11a OFDM PHY,” in proceedings of the 14th OptoElectronics and Communications Conference (Institute of Electrical and Electronics Engineers, New York, 2009), pp. 1–2.

IEEE Standards Association, “IEEE Std 802.11a-1999 (R2003) Part 11: Wireless LAN MAC and PHY specifications”, Clause 17, http://standards.ieee.org/getieee802/download/802.11a-1999.pdf , Date of Access: 04 August 2010.

B. J. C. Schmidt, Z. Zan, L. B. Du, and A. J. Lowery, “100 Gbit/s transmission using single-band direct-detection Optical OFDM”, in proceedings of the conference on Optical Fiber Communication (Institute of Electrical and Electronics Engineers, New York, 2009), pp. 1–3, PDPC3.

D. Qian, N. Cvijetic, J. Hu, and T. Wang, “Optical OFDM transmission in metro/access networks,” in Optical Fiber Communication Conference, OSA Technical Digest (CD) (Optical Society of America, 2009), paper OMV1, http://www.opticsinfobase.org/abstract.cfm?URI=OFC-2009-OMV1 .

D. Qian, N. Cvijetic, J. Hu, and T. Wang, “40-Gb/s MIMO-OFDM-PON using polarization multiplexing and direct-detection,” in Optical Fiber Communication Conference, OSA Technical Digest (CD) (Optical Society of America, 2009), paper OMV3, http://www.opticsinfobase.org/abstract.cfm?URI=OFC-2009-OMV3 .

L. Xu, J. Hu, D. Qian, and T. Wang, “Coherent Optical OFDM Systems Using Self Optical Carrier Extraction,” in Optical Fiber Communication Conference and Exposition and The National Fiber Optic Engineers Conference, OSA Technical Digest (CD) (Optical Society of America, 2008), paper OMU4.

L. Mehedy, M. Bakaul, and A. Nirmalathas, “Frequency interleaving towards spectrally efficient direct detection based optical OFDM systems,” in proceedings of the 15th OptoElectronics and Communications Conference (Institute of Electrical and Electronics Engineers, New York, 2010), pp. 476–477.

L. Mehedy, M. Bakaul, and A. Nirmalathas, “Frequency Interleaved Directly Detected Optical OFDM for Next-Generation Optical Access Networks,” in Proc. IEEE International Topical Meeting on Microwave Photonics, Institute of Electrical and Electronics Engineers, New York (to be published).

M. Bakaul, A. Nirmalathas, C. Lim, D. Novak, and R. Waterhouse, “Simplified multiplexing scheme for wavelength-interleaved DWDM millimeter-wave fiber-radio systems” in proceedings of the 31st European Conference and Exhibition on Optical Communication (Institute of Electrical and Electronics Engineers, New York, 2005), pp. 809- 810.

S. Hara, and R. Prasad, Multicarrier techniques for 4G mobile communications (Artech House, Boston, MA, 2003).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Frequency Interleaved directly detected O-OFDM system.

Fig. 2
Fig. 2

Interleaved DDO-OFDM systems (a) schematic optical spectra, (b) schematic RF spectra after direct detection.

Fig. 3
Fig. 3

(a) Bandwidth allocation in interleaved DDO-OFDM system, (b) Spectral efficiency improvement and guard bandwidth with respect to α.

Fig. 4
Fig. 4

Simulation setup of the interleaved DDO-OFDM system.

Fig. 5
Fig. 5

Optical spectra of the frequency interleaved DDO-OFDM system, (a) channel-1 before interleaving, (b) channel-2 before interleaving, (c) frequency interleaved DDO-OFDM system, (d) channel-1 after demultiplexing, (e) channel-2 after demultiplexing, (f) RF spectrum of channel-1 after direct detection.

Fig. 6
Fig. 6

(a) Performance of the frequency interleaved DDO-OFDM system over different lengths of SMF, (b) performance of channel-1 with and without the presence of channel-2.

Fig. 7
Fig. 7

(a) Frequency responses of different optical filters that are used in the simulations, (b) performance of channel-1 with different received optical powers and different types of optical filters.

Fig. 8
Fig. 8

Performance with Chebyshev type filters (a) EVM performance with different filter orders at different received optical powers, (b) corresponding receiver sensitivity plot with respect to different filter orders.

Fig. 9
Fig. 9

Performance of the frequency interleaved channel-1 (a) with different laser linewidths, (b) with different modulation formats over 25 km of SMF.

Equations (12)

Equations on this page are rendered with MathJax. Learn more.

s ( t ) = i = + k = 1 N S C c k i e j 2 π f k ( t i T s ) f ( t i T s )
s ( t 0 ) = k = 1 N S C c k e j 2 π f k t 0
s R F 1 ( t 0 ) = E R F 1 e j [ 2 π f R F 1 t 0 + φ R F 1 ( t 0 ) ] × k = 1 N S C c k e j 2 π f k t 0            = E R F 1 k = 1 N S C c k e j [ 2 π ( f k + f R F 1 ) t 0 + φ R F 1 ( t 0 ) ]
A 1 ( t 0 ) = exp j [ 2 π f 1 t 0 + 1 2 ( m 1 k = 1 N S C c k cos [ 2 π ( f k + f R F 1 ) t 0 + φ R F 1 ( t 0 ) ] + θ 1 ( t 0 ) ) + φ 1 ( t 0 ) ]
A 1 ( t 0 ) = exp j [ 2 π f 1 t 0 + θ 1 2 ( t 0 ) + φ 1 ( t 0 ) ] + m 1 4 k = 1 N S C c k ( exp j [ 2 π ( f 1 + f k + f R F 1 ) t 0 + φ R F 1 ( t 0 ) + θ 1 2 ( t 0 ) + φ 1 ( t 0 ) ] + exp j [ 2 π ( f 1 f k f R F 1 ) t 0 φ R F 1 ( t 0 ) + θ 1 2 ( t 0 ) + φ 1 ( t 0 ) ] )
A 1 ( t 0 ) = exp j [ 2 π f 1 t 0 + θ 1 2 ( t 0 ) + φ 1 ( t 0 ) ] + m 1 4 k = 1 N S C c k ( exp j [ 2 π ( f 1 + f k + f R F 1 ) t 0 + φ R F 1 ( t 0 ) + θ 1 2 ( t 0 ) + φ 1 ( t 0 ) ] )
A 2 ( t 0 ) = exp j [ 2 π f 2 t 0 + θ 2 2 ( t 0 ) + φ 2 ( t 0 ) ] + m 2 4 p = 1 N S C d p ( exp j [ 2 π ( f 2 f p f R F 2 ) t 0 φ R F 2 ( t 0 ) + θ 2 2 ( t 0 ) + φ 2 ( t 0 ) ] )
A 1 ( t 0 ) = A 1 _ c a r r i e r ( t 0 ) + A 1 _ d a t a ( t 0 ) ,   and   A 2 ( t 0 ) = A 2 _ c a r r i e r ( t 0 ) + A 2 _ d a t a ( t 0 )
v ( t 0 ) = R × [ A 1 ( t 0 ) + V A 2 ( t 0 ) ] × [ A * 1 ( t 0 ) + V A * 2 ( t 0 ) ]         = R [ ( A 1 _ c a r r i e r ( t 0 ) A 1 _ c a r r i e r * ( t 0 ) + A 1 _ c a r r i e r ( t 0 ) A 1 _ d a t a * ( t 0 ) + A 1 _ d a t a ( t 0 ) A 1 _ c a r r i e r * ( t 0 ) + A 1 _ d a t a ( t 0 ) A 1 _ d a t a * ( t 0 ) ) + V ( A 1 _ c a r r i e r ( t 0 ) A 2 _ c a r r i e r * ( t 0 ) + A 1 _ c a r r i e r ( t 0 ) A 2 _ d a t a * ( t 0 ) + A 1 _ d a t a ( t 0 ) A 2 _ c a r r i e r * ( t 0 ) + A 1 _ d a t a ( t 0 ) A 2 _ d a t a * ( t 0 ) + A 2 _ c a r r i e r ( t 0 ) A 1 _ c a r r i e r * ( t 0 ) + A 2 _ c a r r i e r ( t 0 ) A 1 _ d a t a * ( t 0 ) + A 2 _ d a t a ( t 0 ) A 1 _ c a r r i e r * ( t 0 ) + A 2 _ d a t a ( t 0 ) A 1 _ d a t a * ( t 0 ) ) + V 2 ( A 2 _ c a r r i e r ( t 0 ) A 2 _ c a r r i e r * ( t 0 ) + A 2 _ c a r r i e r ( t 0 ) A 2 _ d a t a * ( t 0 ) + A 2 _ d a t a ( t 0 ) A 2 _ c a r r i e r * ( t 0 ) + A 2 _ d a t a ( t 0 ) A 2 _ d a t a * ( t 0 ) ) ]
v ' ( t 0 ) = R [ A 1 _ d a t a ( t 0 ) A 1 _ c a r r i e r * ( t 0 ) + V A 1 _ d a t a ( t 0 ) A 2 _ d a t a * ( t 0 ) + V 2 A 2 _ d a t a ( t 0 ) A 2 _ c a r r i e r * ( t 0 ) ]        = R [ m 1 4 k = 1 N S C c k ( exp j [ 2 π ( f k + f R F 1 ) t 0 + φ R F 1 ( t 0 ) ] ) + V m 1 m 2 16 k = 1 N S C p = 1 N S C c k d p ( exp j [ 2 π ( f 1 f 2 + f k + f p + f R F 1 + f R F 2 ) t 0 + ( φ R F 1 ( t 0 ) + φ R F 2 ( t 0 ) ) + ( θ 1 2 ( t 0 ) θ 2 2 ( t 0 ) ) + ( φ 1 ( t 0 ) φ 2 ( t 0 ) ) ] ) + V 2 m 2 4 p = 1 N S C d p ( exp   j [ 2 π ( f p + f R F 2 ) t 0 + φ R F 2 ( t 0 ) ] ) ]       = R [ I s i g + V I S S B I + V 2 I A C I ]             
 γ = SE of Interleaved DDO-OFDM system SE of conventional DDO-OFDM system  SE of conventional DDO-OFDM system × 100 %     = 2 ( 2 α 1 2 ) × 100   %
EVM ( in dB ) = 10 log 10 ( i = 1 L p [ k = 1 N D S | x i k x i k ¯ | 2 ] N D S × L p × P a v g )

Metrics