Abstract

We report a photothermal nanoblade that utilizes a metallic nanostructure to harvest short laser pulse energy and convert it into a highly localized and specifically shaped explosive vapor bubble. Rapid bubble expansion and collapse punctures a lightly-contacting cell membrane via high-speed fluidic flows and induced transient shear stress. The membrane cutting pattern is controlled by the metallic nanostructure configuration, laser pulse polarization, and energy. Highly controllable, sub-micron sized circular hole pairs to half moon-like, or cat-door shaped, membrane cuts were realized in glutaraldehyde treated HeLa cells.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Baumgart, W. Bintig, A. Ngezahayo, S. Willenbrock, H. Murua Escobar, W. Ertmer, H. Lubatschowski, and A. Heisterkamp, “Quantified femtosecond laser based opto-perforation of living GFSHR-17 and MTH53 a cells,” Opt. Express 16(5), 3021–3031 (2008).
    [CrossRef] [PubMed]
  2. N. Kudo, K. Okada, and K. Yamamoto, “Sonoporation by single-shot pulsed ultrasound with microbubbles adjacent to cells,” Biophys. J. 96(12), 4866–4876 (2009).
    [CrossRef] [PubMed]
  3. S.-W. Han, C. Nakamura, N. Kotobuki, I. Obataya, H. Ohgushi, T. Nagamune, and J. Miyake, “High-efficiency DNA injection into a single human mesenchymal stem cell using a nanoneedle and atomic force microscopy,” Nanomed. Nanotechnol. Biol. Med. 4(3), 215–225 (2008).
    [CrossRef]
  4. Y. Zhang, “Microinjection technique and protocol to single cells,” Nature Protocols ( http://www.natureprotocols.com/2007/11/02/microinjection_technique_and_p.php ).
  5. G. Chu, H. Hayakawa, and P. Berg, “Electroporation for the efficient transfection of mammalian cells with DNA,” Nucleic Acids Res. 15(3), 1311–1326 (1987).
    [CrossRef] [PubMed]
  6. S. Mitragotri, “Healing sound: the use of ultrasound in drug delivery and other therapeutic applications,” Nat. Rev. Drug Discov. 4(3), 255–260 (2005).
    [CrossRef] [PubMed]
  7. U. K. Tirlapur and K. König, “Targeted transfection by femtosecond laser,” Nature 418(6895), 290–291 (2002).
    [CrossRef] [PubMed]
  8. A. Vogel, J. Noack, G. Hűttman, and G. Paltauf, “Mechanisms of femtosecond laser nanosurgery of cells and tissues,” Appl. Phys. B 81(8), 1015–1047 (2005).
    [CrossRef]
  9. I. B. Clark, E. G. Hanania, J. Stevens, M. Gallina, A. Fieck, R. Brandes, B. O. Palsson, and M. R. Koller, “Optoinjection for efficient targeted delivery of a broad range of compounds and macromolecules into diverse cell types,” J. Biomed. Opt. 11(1), 014034 (2006).
    [CrossRef] [PubMed]
  10. J. Stephens, S. K. Mohanty, S. Genc, X. Kong, K. Yokomori, and M. W. Berns, “Spatially sculpted laser scissors for study of DNA damage and repair,” J. Biomed. Opt. 14(5), 054004 (2009).
    [CrossRef] [PubMed]
  11. D. O. Lapotko, E. Lukianova, and A. A. Oraevsky, “Selective laser nano-thermolysis of human leukemia cells with microbubbles generated around clusters of gold nanoparticles,” Lasers Surg. Med. 38(6), 631–642 (2006).
    [CrossRef] [PubMed]
  12. C. M. Pitsillides, E. K. Joe, X. B. Wei, R. R. Anderson, and C. P. Lin, “Selective cell targeting with light-absorbing microparticles and nanoparticles,” Biophys. J. 84(6), 4023–4032 (2003).
    [CrossRef] [PubMed]
  13. T.-H. Wu, S. Kalim, C. Callahan, M. A. Teitell, and P.-Y. Chiou, “Image patterned molecular delivery into live cells using gold particle coated substrates,” Opt. Express 18(2), 938–946 (2010).
    [CrossRef] [PubMed]
  14. S. Wang, K.-J. Chen, T.-H. Wu, H. Wang, W.-Y. Lin, M. Ohashi, P.-Y. Chiou, and H.-R. Tseng, “Photothermal effects of supramolecularly assembled gold nanoparticles for the targeted treatment of cancer cells,” Angew. Chem. Int. Ed. Engl. 49(22), 3777–3781 (2010).
    [CrossRef] [PubMed]
  15. T.-H. Wu, P.-Y. Tseng, S. Kalim, M. A. Teitell, and P.-Y. Chiou, “A novel single-cell surgery tool using photothermal effects of metal nanoparticles,” Optical MEMS and Nanophotonics, 2007 IEEE/LEOS International Conference on, 43–44 (2007).
  16. E. Y. Lukianova-Hleb, E. Y. Hanna, J. H. Hafner, and D. O. Lapotko, “Tunable plasmonic nanobubbles for cell theranostics,” Nanotechnology 21(8), 85102 (2010).
    [CrossRef] [PubMed]
  17. S. Link and M. A. El-Sayed, “Spectral properties and relaxation dynamics of surface plasmon electronic oscillations in gold and silver nanodots and nanorods,” J. Phys. Chem. B 103(40), 8410–8426 (1999).
    [CrossRef]
  18. E. Prodan, C. Radloff, N. J. Halas, and P. Nordlander, “A hybridization model for the plasmon response of complex nanostructures,” Science 302(5644), 419–422 (2003).
    [CrossRef] [PubMed]
  19. V. Kotaidis, C. Dahmen, G. von Plessen, F. Springer, and A. Plech, “Excitation of nanoscale vapor bubbles at the surface of gold nanoparticles in water,” J. Chem. Phys. 124(18), 184702 (2006).
    [CrossRef] [PubMed]
  20. P. Marmottant and S. Hilgenfeldt, “Controlled vesicle deformation and lysis by single oscillating bubbles,” Nature 423(6936), 153–156 (2003).
    [CrossRef] [PubMed]
  21. M. Lokhandwalla and B. Sturtevant, “Mechanical haemolysis in shock wave lithotripsy (SWL): I. Analysis of cell deformation due to SWL flow-fields,” Phys. Med. Biol. 46(2), 413–437 (2001).
    [CrossRef] [PubMed]
  22. A. N. Hellman, K. R. Rau, H. H. Yoon, and V. Venugopalan, “Biophysical response to pulsed laser microbeam-induced cell lysis and molecular delivery,” J Biophotonics 1(1), 24–35 (2008).
    [CrossRef]
  23. D. W. Lynch, and W. R. Hunter, Introduction to the data for several metals. Handbook of optical constants of solids III (Academic Press, San Diego, CA, 1998).
  24. S. Passey, S. Pellegrin, and H. Mellor, “Scanning electron microscopy of cell surface morphology,” Curr. Protoc. Cell Biol. 37, 4.17.11–14.17.13 (2007).
    [CrossRef]
  25. G. Baffou, R. Quidant, and F. J. García de Abajo, “Nanoscale control of optical heating in complex plasmonic systems,” ACS Nano 4(2), 709–716 (2010).
    [CrossRef] [PubMed]
  26. R. A. Steinhardt, “The mechanisms of cell membrane repair: A tutorial guide to key experiments,” Ann. N. Y. Acad. Sci. 1066, 152–165 (2005).
    [CrossRef]
  27. P. Benjamin and C. Weaver, “The adhesion of evaporated metal films on glass,” Proc. R. Soc. Lond. A Math. Phys. Sci. 261(1307), 516–531 (1961).
    [CrossRef]
  28. V. Lulevich, T. Zink, H.-Y. Chen, F.-T. Liu, and G.-Y. Liu, “Cell mechanics using atomic force microscopy-based single-cell compression,” Langmuir 22(19), 8151–8155 (2006).
    [CrossRef] [PubMed]

2010

S. Wang, K.-J. Chen, T.-H. Wu, H. Wang, W.-Y. Lin, M. Ohashi, P.-Y. Chiou, and H.-R. Tseng, “Photothermal effects of supramolecularly assembled gold nanoparticles for the targeted treatment of cancer cells,” Angew. Chem. Int. Ed. Engl. 49(22), 3777–3781 (2010).
[CrossRef] [PubMed]

E. Y. Lukianova-Hleb, E. Y. Hanna, J. H. Hafner, and D. O. Lapotko, “Tunable plasmonic nanobubbles for cell theranostics,” Nanotechnology 21(8), 85102 (2010).
[CrossRef] [PubMed]

G. Baffou, R. Quidant, and F. J. García de Abajo, “Nanoscale control of optical heating in complex plasmonic systems,” ACS Nano 4(2), 709–716 (2010).
[CrossRef] [PubMed]

T.-H. Wu, S. Kalim, C. Callahan, M. A. Teitell, and P.-Y. Chiou, “Image patterned molecular delivery into live cells using gold particle coated substrates,” Opt. Express 18(2), 938–946 (2010).
[CrossRef] [PubMed]

2009

N. Kudo, K. Okada, and K. Yamamoto, “Sonoporation by single-shot pulsed ultrasound with microbubbles adjacent to cells,” Biophys. J. 96(12), 4866–4876 (2009).
[CrossRef] [PubMed]

J. Stephens, S. K. Mohanty, S. Genc, X. Kong, K. Yokomori, and M. W. Berns, “Spatially sculpted laser scissors for study of DNA damage and repair,” J. Biomed. Opt. 14(5), 054004 (2009).
[CrossRef] [PubMed]

2008

S.-W. Han, C. Nakamura, N. Kotobuki, I. Obataya, H. Ohgushi, T. Nagamune, and J. Miyake, “High-efficiency DNA injection into a single human mesenchymal stem cell using a nanoneedle and atomic force microscopy,” Nanomed. Nanotechnol. Biol. Med. 4(3), 215–225 (2008).
[CrossRef]

A. N. Hellman, K. R. Rau, H. H. Yoon, and V. Venugopalan, “Biophysical response to pulsed laser microbeam-induced cell lysis and molecular delivery,” J Biophotonics 1(1), 24–35 (2008).
[CrossRef]

J. Baumgart, W. Bintig, A. Ngezahayo, S. Willenbrock, H. Murua Escobar, W. Ertmer, H. Lubatschowski, and A. Heisterkamp, “Quantified femtosecond laser based opto-perforation of living GFSHR-17 and MTH53 a cells,” Opt. Express 16(5), 3021–3031 (2008).
[CrossRef] [PubMed]

2007

S. Passey, S. Pellegrin, and H. Mellor, “Scanning electron microscopy of cell surface morphology,” Curr. Protoc. Cell Biol. 37, 4.17.11–14.17.13 (2007).
[CrossRef]

2006

V. Kotaidis, C. Dahmen, G. von Plessen, F. Springer, and A. Plech, “Excitation of nanoscale vapor bubbles at the surface of gold nanoparticles in water,” J. Chem. Phys. 124(18), 184702 (2006).
[CrossRef] [PubMed]

D. O. Lapotko, E. Lukianova, and A. A. Oraevsky, “Selective laser nano-thermolysis of human leukemia cells with microbubbles generated around clusters of gold nanoparticles,” Lasers Surg. Med. 38(6), 631–642 (2006).
[CrossRef] [PubMed]

I. B. Clark, E. G. Hanania, J. Stevens, M. Gallina, A. Fieck, R. Brandes, B. O. Palsson, and M. R. Koller, “Optoinjection for efficient targeted delivery of a broad range of compounds and macromolecules into diverse cell types,” J. Biomed. Opt. 11(1), 014034 (2006).
[CrossRef] [PubMed]

V. Lulevich, T. Zink, H.-Y. Chen, F.-T. Liu, and G.-Y. Liu, “Cell mechanics using atomic force microscopy-based single-cell compression,” Langmuir 22(19), 8151–8155 (2006).
[CrossRef] [PubMed]

2005

A. Vogel, J. Noack, G. Hűttman, and G. Paltauf, “Mechanisms of femtosecond laser nanosurgery of cells and tissues,” Appl. Phys. B 81(8), 1015–1047 (2005).
[CrossRef]

S. Mitragotri, “Healing sound: the use of ultrasound in drug delivery and other therapeutic applications,” Nat. Rev. Drug Discov. 4(3), 255–260 (2005).
[CrossRef] [PubMed]

R. A. Steinhardt, “The mechanisms of cell membrane repair: A tutorial guide to key experiments,” Ann. N. Y. Acad. Sci. 1066, 152–165 (2005).
[CrossRef]

2003

P. Marmottant and S. Hilgenfeldt, “Controlled vesicle deformation and lysis by single oscillating bubbles,” Nature 423(6936), 153–156 (2003).
[CrossRef] [PubMed]

C. M. Pitsillides, E. K. Joe, X. B. Wei, R. R. Anderson, and C. P. Lin, “Selective cell targeting with light-absorbing microparticles and nanoparticles,” Biophys. J. 84(6), 4023–4032 (2003).
[CrossRef] [PubMed]

E. Prodan, C. Radloff, N. J. Halas, and P. Nordlander, “A hybridization model for the plasmon response of complex nanostructures,” Science 302(5644), 419–422 (2003).
[CrossRef] [PubMed]

2002

U. K. Tirlapur and K. König, “Targeted transfection by femtosecond laser,” Nature 418(6895), 290–291 (2002).
[CrossRef] [PubMed]

2001

M. Lokhandwalla and B. Sturtevant, “Mechanical haemolysis in shock wave lithotripsy (SWL): I. Analysis of cell deformation due to SWL flow-fields,” Phys. Med. Biol. 46(2), 413–437 (2001).
[CrossRef] [PubMed]

1999

S. Link and M. A. El-Sayed, “Spectral properties and relaxation dynamics of surface plasmon electronic oscillations in gold and silver nanodots and nanorods,” J. Phys. Chem. B 103(40), 8410–8426 (1999).
[CrossRef]

1987

G. Chu, H. Hayakawa, and P. Berg, “Electroporation for the efficient transfection of mammalian cells with DNA,” Nucleic Acids Res. 15(3), 1311–1326 (1987).
[CrossRef] [PubMed]

1961

P. Benjamin and C. Weaver, “The adhesion of evaporated metal films on glass,” Proc. R. Soc. Lond. A Math. Phys. Sci. 261(1307), 516–531 (1961).
[CrossRef]

Anderson, R. R.

C. M. Pitsillides, E. K. Joe, X. B. Wei, R. R. Anderson, and C. P. Lin, “Selective cell targeting with light-absorbing microparticles and nanoparticles,” Biophys. J. 84(6), 4023–4032 (2003).
[CrossRef] [PubMed]

Baffou, G.

G. Baffou, R. Quidant, and F. J. García de Abajo, “Nanoscale control of optical heating in complex plasmonic systems,” ACS Nano 4(2), 709–716 (2010).
[CrossRef] [PubMed]

Baumgart, J.

Benjamin, P.

P. Benjamin and C. Weaver, “The adhesion of evaporated metal films on glass,” Proc. R. Soc. Lond. A Math. Phys. Sci. 261(1307), 516–531 (1961).
[CrossRef]

Berg, P.

G. Chu, H. Hayakawa, and P. Berg, “Electroporation for the efficient transfection of mammalian cells with DNA,” Nucleic Acids Res. 15(3), 1311–1326 (1987).
[CrossRef] [PubMed]

Berns, M. W.

J. Stephens, S. K. Mohanty, S. Genc, X. Kong, K. Yokomori, and M. W. Berns, “Spatially sculpted laser scissors for study of DNA damage and repair,” J. Biomed. Opt. 14(5), 054004 (2009).
[CrossRef] [PubMed]

Bintig, W.

Brandes, R.

I. B. Clark, E. G. Hanania, J. Stevens, M. Gallina, A. Fieck, R. Brandes, B. O. Palsson, and M. R. Koller, “Optoinjection for efficient targeted delivery of a broad range of compounds and macromolecules into diverse cell types,” J. Biomed. Opt. 11(1), 014034 (2006).
[CrossRef] [PubMed]

Callahan, C.

Chen, H.-Y.

V. Lulevich, T. Zink, H.-Y. Chen, F.-T. Liu, and G.-Y. Liu, “Cell mechanics using atomic force microscopy-based single-cell compression,” Langmuir 22(19), 8151–8155 (2006).
[CrossRef] [PubMed]

Chen, K.-J.

S. Wang, K.-J. Chen, T.-H. Wu, H. Wang, W.-Y. Lin, M. Ohashi, P.-Y. Chiou, and H.-R. Tseng, “Photothermal effects of supramolecularly assembled gold nanoparticles for the targeted treatment of cancer cells,” Angew. Chem. Int. Ed. Engl. 49(22), 3777–3781 (2010).
[CrossRef] [PubMed]

Chiou, P.-Y.

S. Wang, K.-J. Chen, T.-H. Wu, H. Wang, W.-Y. Lin, M. Ohashi, P.-Y. Chiou, and H.-R. Tseng, “Photothermal effects of supramolecularly assembled gold nanoparticles for the targeted treatment of cancer cells,” Angew. Chem. Int. Ed. Engl. 49(22), 3777–3781 (2010).
[CrossRef] [PubMed]

T.-H. Wu, S. Kalim, C. Callahan, M. A. Teitell, and P.-Y. Chiou, “Image patterned molecular delivery into live cells using gold particle coated substrates,” Opt. Express 18(2), 938–946 (2010).
[CrossRef] [PubMed]

Chu, G.

G. Chu, H. Hayakawa, and P. Berg, “Electroporation for the efficient transfection of mammalian cells with DNA,” Nucleic Acids Res. 15(3), 1311–1326 (1987).
[CrossRef] [PubMed]

Clark, I. B.

I. B. Clark, E. G. Hanania, J. Stevens, M. Gallina, A. Fieck, R. Brandes, B. O. Palsson, and M. R. Koller, “Optoinjection for efficient targeted delivery of a broad range of compounds and macromolecules into diverse cell types,” J. Biomed. Opt. 11(1), 014034 (2006).
[CrossRef] [PubMed]

Dahmen, C.

V. Kotaidis, C. Dahmen, G. von Plessen, F. Springer, and A. Plech, “Excitation of nanoscale vapor bubbles at the surface of gold nanoparticles in water,” J. Chem. Phys. 124(18), 184702 (2006).
[CrossRef] [PubMed]

El-Sayed, M. A.

S. Link and M. A. El-Sayed, “Spectral properties and relaxation dynamics of surface plasmon electronic oscillations in gold and silver nanodots and nanorods,” J. Phys. Chem. B 103(40), 8410–8426 (1999).
[CrossRef]

Ertmer, W.

Fieck, A.

I. B. Clark, E. G. Hanania, J. Stevens, M. Gallina, A. Fieck, R. Brandes, B. O. Palsson, and M. R. Koller, “Optoinjection for efficient targeted delivery of a broad range of compounds and macromolecules into diverse cell types,” J. Biomed. Opt. 11(1), 014034 (2006).
[CrossRef] [PubMed]

Gallina, M.

I. B. Clark, E. G. Hanania, J. Stevens, M. Gallina, A. Fieck, R. Brandes, B. O. Palsson, and M. R. Koller, “Optoinjection for efficient targeted delivery of a broad range of compounds and macromolecules into diverse cell types,” J. Biomed. Opt. 11(1), 014034 (2006).
[CrossRef] [PubMed]

García de Abajo, F. J.

G. Baffou, R. Quidant, and F. J. García de Abajo, “Nanoscale control of optical heating in complex plasmonic systems,” ACS Nano 4(2), 709–716 (2010).
[CrossRef] [PubMed]

Genc, S.

J. Stephens, S. K. Mohanty, S. Genc, X. Kong, K. Yokomori, and M. W. Berns, “Spatially sculpted laser scissors for study of DNA damage and repair,” J. Biomed. Opt. 14(5), 054004 (2009).
[CrossRef] [PubMed]

Hafner, J. H.

E. Y. Lukianova-Hleb, E. Y. Hanna, J. H. Hafner, and D. O. Lapotko, “Tunable plasmonic nanobubbles for cell theranostics,” Nanotechnology 21(8), 85102 (2010).
[CrossRef] [PubMed]

Halas, N. J.

E. Prodan, C. Radloff, N. J. Halas, and P. Nordlander, “A hybridization model for the plasmon response of complex nanostructures,” Science 302(5644), 419–422 (2003).
[CrossRef] [PubMed]

Han, S.-W.

S.-W. Han, C. Nakamura, N. Kotobuki, I. Obataya, H. Ohgushi, T. Nagamune, and J. Miyake, “High-efficiency DNA injection into a single human mesenchymal stem cell using a nanoneedle and atomic force microscopy,” Nanomed. Nanotechnol. Biol. Med. 4(3), 215–225 (2008).
[CrossRef]

Hanania, E. G.

I. B. Clark, E. G. Hanania, J. Stevens, M. Gallina, A. Fieck, R. Brandes, B. O. Palsson, and M. R. Koller, “Optoinjection for efficient targeted delivery of a broad range of compounds and macromolecules into diverse cell types,” J. Biomed. Opt. 11(1), 014034 (2006).
[CrossRef] [PubMed]

Hanna, E. Y.

E. Y. Lukianova-Hleb, E. Y. Hanna, J. H. Hafner, and D. O. Lapotko, “Tunable plasmonic nanobubbles for cell theranostics,” Nanotechnology 21(8), 85102 (2010).
[CrossRef] [PubMed]

Hayakawa, H.

G. Chu, H. Hayakawa, and P. Berg, “Electroporation for the efficient transfection of mammalian cells with DNA,” Nucleic Acids Res. 15(3), 1311–1326 (1987).
[CrossRef] [PubMed]

Heisterkamp, A.

Hellman, A. N.

A. N. Hellman, K. R. Rau, H. H. Yoon, and V. Venugopalan, “Biophysical response to pulsed laser microbeam-induced cell lysis and molecular delivery,” J Biophotonics 1(1), 24–35 (2008).
[CrossRef]

Hilgenfeldt, S.

P. Marmottant and S. Hilgenfeldt, “Controlled vesicle deformation and lysis by single oscillating bubbles,” Nature 423(6936), 153–156 (2003).
[CrossRef] [PubMed]

Huttman, G.

A. Vogel, J. Noack, G. Hűttman, and G. Paltauf, “Mechanisms of femtosecond laser nanosurgery of cells and tissues,” Appl. Phys. B 81(8), 1015–1047 (2005).
[CrossRef]

Joe, E. K.

C. M. Pitsillides, E. K. Joe, X. B. Wei, R. R. Anderson, and C. P. Lin, “Selective cell targeting with light-absorbing microparticles and nanoparticles,” Biophys. J. 84(6), 4023–4032 (2003).
[CrossRef] [PubMed]

Kalim, S.

Koller, M. R.

I. B. Clark, E. G. Hanania, J. Stevens, M. Gallina, A. Fieck, R. Brandes, B. O. Palsson, and M. R. Koller, “Optoinjection for efficient targeted delivery of a broad range of compounds and macromolecules into diverse cell types,” J. Biomed. Opt. 11(1), 014034 (2006).
[CrossRef] [PubMed]

Kong, X.

J. Stephens, S. K. Mohanty, S. Genc, X. Kong, K. Yokomori, and M. W. Berns, “Spatially sculpted laser scissors for study of DNA damage and repair,” J. Biomed. Opt. 14(5), 054004 (2009).
[CrossRef] [PubMed]

König, K.

U. K. Tirlapur and K. König, “Targeted transfection by femtosecond laser,” Nature 418(6895), 290–291 (2002).
[CrossRef] [PubMed]

Kotaidis, V.

V. Kotaidis, C. Dahmen, G. von Plessen, F. Springer, and A. Plech, “Excitation of nanoscale vapor bubbles at the surface of gold nanoparticles in water,” J. Chem. Phys. 124(18), 184702 (2006).
[CrossRef] [PubMed]

Kotobuki, N.

S.-W. Han, C. Nakamura, N. Kotobuki, I. Obataya, H. Ohgushi, T. Nagamune, and J. Miyake, “High-efficiency DNA injection into a single human mesenchymal stem cell using a nanoneedle and atomic force microscopy,” Nanomed. Nanotechnol. Biol. Med. 4(3), 215–225 (2008).
[CrossRef]

Kudo, N.

N. Kudo, K. Okada, and K. Yamamoto, “Sonoporation by single-shot pulsed ultrasound with microbubbles adjacent to cells,” Biophys. J. 96(12), 4866–4876 (2009).
[CrossRef] [PubMed]

Lapotko, D. O.

E. Y. Lukianova-Hleb, E. Y. Hanna, J. H. Hafner, and D. O. Lapotko, “Tunable plasmonic nanobubbles for cell theranostics,” Nanotechnology 21(8), 85102 (2010).
[CrossRef] [PubMed]

D. O. Lapotko, E. Lukianova, and A. A. Oraevsky, “Selective laser nano-thermolysis of human leukemia cells with microbubbles generated around clusters of gold nanoparticles,” Lasers Surg. Med. 38(6), 631–642 (2006).
[CrossRef] [PubMed]

Lin, C. P.

C. M. Pitsillides, E. K. Joe, X. B. Wei, R. R. Anderson, and C. P. Lin, “Selective cell targeting with light-absorbing microparticles and nanoparticles,” Biophys. J. 84(6), 4023–4032 (2003).
[CrossRef] [PubMed]

Lin, W.-Y.

S. Wang, K.-J. Chen, T.-H. Wu, H. Wang, W.-Y. Lin, M. Ohashi, P.-Y. Chiou, and H.-R. Tseng, “Photothermal effects of supramolecularly assembled gold nanoparticles for the targeted treatment of cancer cells,” Angew. Chem. Int. Ed. Engl. 49(22), 3777–3781 (2010).
[CrossRef] [PubMed]

Link, S.

S. Link and M. A. El-Sayed, “Spectral properties and relaxation dynamics of surface plasmon electronic oscillations in gold and silver nanodots and nanorods,” J. Phys. Chem. B 103(40), 8410–8426 (1999).
[CrossRef]

Liu, F.-T.

V. Lulevich, T. Zink, H.-Y. Chen, F.-T. Liu, and G.-Y. Liu, “Cell mechanics using atomic force microscopy-based single-cell compression,” Langmuir 22(19), 8151–8155 (2006).
[CrossRef] [PubMed]

Liu, G.-Y.

V. Lulevich, T. Zink, H.-Y. Chen, F.-T. Liu, and G.-Y. Liu, “Cell mechanics using atomic force microscopy-based single-cell compression,” Langmuir 22(19), 8151–8155 (2006).
[CrossRef] [PubMed]

Lokhandwalla, M.

M. Lokhandwalla and B. Sturtevant, “Mechanical haemolysis in shock wave lithotripsy (SWL): I. Analysis of cell deformation due to SWL flow-fields,” Phys. Med. Biol. 46(2), 413–437 (2001).
[CrossRef] [PubMed]

Lubatschowski, H.

Lukianova, E.

D. O. Lapotko, E. Lukianova, and A. A. Oraevsky, “Selective laser nano-thermolysis of human leukemia cells with microbubbles generated around clusters of gold nanoparticles,” Lasers Surg. Med. 38(6), 631–642 (2006).
[CrossRef] [PubMed]

Lukianova-Hleb, E. Y.

E. Y. Lukianova-Hleb, E. Y. Hanna, J. H. Hafner, and D. O. Lapotko, “Tunable plasmonic nanobubbles for cell theranostics,” Nanotechnology 21(8), 85102 (2010).
[CrossRef] [PubMed]

Lulevich, V.

V. Lulevich, T. Zink, H.-Y. Chen, F.-T. Liu, and G.-Y. Liu, “Cell mechanics using atomic force microscopy-based single-cell compression,” Langmuir 22(19), 8151–8155 (2006).
[CrossRef] [PubMed]

Marmottant, P.

P. Marmottant and S. Hilgenfeldt, “Controlled vesicle deformation and lysis by single oscillating bubbles,” Nature 423(6936), 153–156 (2003).
[CrossRef] [PubMed]

Mellor, H.

S. Passey, S. Pellegrin, and H. Mellor, “Scanning electron microscopy of cell surface morphology,” Curr. Protoc. Cell Biol. 37, 4.17.11–14.17.13 (2007).
[CrossRef]

Mitragotri, S.

S. Mitragotri, “Healing sound: the use of ultrasound in drug delivery and other therapeutic applications,” Nat. Rev. Drug Discov. 4(3), 255–260 (2005).
[CrossRef] [PubMed]

Miyake, J.

S.-W. Han, C. Nakamura, N. Kotobuki, I. Obataya, H. Ohgushi, T. Nagamune, and J. Miyake, “High-efficiency DNA injection into a single human mesenchymal stem cell using a nanoneedle and atomic force microscopy,” Nanomed. Nanotechnol. Biol. Med. 4(3), 215–225 (2008).
[CrossRef]

Mohanty, S. K.

J. Stephens, S. K. Mohanty, S. Genc, X. Kong, K. Yokomori, and M. W. Berns, “Spatially sculpted laser scissors for study of DNA damage and repair,” J. Biomed. Opt. 14(5), 054004 (2009).
[CrossRef] [PubMed]

Murua Escobar, H.

Nagamune, T.

S.-W. Han, C. Nakamura, N. Kotobuki, I. Obataya, H. Ohgushi, T. Nagamune, and J. Miyake, “High-efficiency DNA injection into a single human mesenchymal stem cell using a nanoneedle and atomic force microscopy,” Nanomed. Nanotechnol. Biol. Med. 4(3), 215–225 (2008).
[CrossRef]

Nakamura, C.

S.-W. Han, C. Nakamura, N. Kotobuki, I. Obataya, H. Ohgushi, T. Nagamune, and J. Miyake, “High-efficiency DNA injection into a single human mesenchymal stem cell using a nanoneedle and atomic force microscopy,” Nanomed. Nanotechnol. Biol. Med. 4(3), 215–225 (2008).
[CrossRef]

Ngezahayo, A.

Noack, J.

A. Vogel, J. Noack, G. Hűttman, and G. Paltauf, “Mechanisms of femtosecond laser nanosurgery of cells and tissues,” Appl. Phys. B 81(8), 1015–1047 (2005).
[CrossRef]

Nordlander, P.

E. Prodan, C. Radloff, N. J. Halas, and P. Nordlander, “A hybridization model for the plasmon response of complex nanostructures,” Science 302(5644), 419–422 (2003).
[CrossRef] [PubMed]

Obataya, I.

S.-W. Han, C. Nakamura, N. Kotobuki, I. Obataya, H. Ohgushi, T. Nagamune, and J. Miyake, “High-efficiency DNA injection into a single human mesenchymal stem cell using a nanoneedle and atomic force microscopy,” Nanomed. Nanotechnol. Biol. Med. 4(3), 215–225 (2008).
[CrossRef]

Ohashi, M.

S. Wang, K.-J. Chen, T.-H. Wu, H. Wang, W.-Y. Lin, M. Ohashi, P.-Y. Chiou, and H.-R. Tseng, “Photothermal effects of supramolecularly assembled gold nanoparticles for the targeted treatment of cancer cells,” Angew. Chem. Int. Ed. Engl. 49(22), 3777–3781 (2010).
[CrossRef] [PubMed]

Ohgushi, H.

S.-W. Han, C. Nakamura, N. Kotobuki, I. Obataya, H. Ohgushi, T. Nagamune, and J. Miyake, “High-efficiency DNA injection into a single human mesenchymal stem cell using a nanoneedle and atomic force microscopy,” Nanomed. Nanotechnol. Biol. Med. 4(3), 215–225 (2008).
[CrossRef]

Okada, K.

N. Kudo, K. Okada, and K. Yamamoto, “Sonoporation by single-shot pulsed ultrasound with microbubbles adjacent to cells,” Biophys. J. 96(12), 4866–4876 (2009).
[CrossRef] [PubMed]

Oraevsky, A. A.

D. O. Lapotko, E. Lukianova, and A. A. Oraevsky, “Selective laser nano-thermolysis of human leukemia cells with microbubbles generated around clusters of gold nanoparticles,” Lasers Surg. Med. 38(6), 631–642 (2006).
[CrossRef] [PubMed]

Palsson, B. O.

I. B. Clark, E. G. Hanania, J. Stevens, M. Gallina, A. Fieck, R. Brandes, B. O. Palsson, and M. R. Koller, “Optoinjection for efficient targeted delivery of a broad range of compounds and macromolecules into diverse cell types,” J. Biomed. Opt. 11(1), 014034 (2006).
[CrossRef] [PubMed]

Paltauf, G.

A. Vogel, J. Noack, G. Hűttman, and G. Paltauf, “Mechanisms of femtosecond laser nanosurgery of cells and tissues,” Appl. Phys. B 81(8), 1015–1047 (2005).
[CrossRef]

Passey, S.

S. Passey, S. Pellegrin, and H. Mellor, “Scanning electron microscopy of cell surface morphology,” Curr. Protoc. Cell Biol. 37, 4.17.11–14.17.13 (2007).
[CrossRef]

Pellegrin, S.

S. Passey, S. Pellegrin, and H. Mellor, “Scanning electron microscopy of cell surface morphology,” Curr. Protoc. Cell Biol. 37, 4.17.11–14.17.13 (2007).
[CrossRef]

Pitsillides, C. M.

C. M. Pitsillides, E. K. Joe, X. B. Wei, R. R. Anderson, and C. P. Lin, “Selective cell targeting with light-absorbing microparticles and nanoparticles,” Biophys. J. 84(6), 4023–4032 (2003).
[CrossRef] [PubMed]

Plech, A.

V. Kotaidis, C. Dahmen, G. von Plessen, F. Springer, and A. Plech, “Excitation of nanoscale vapor bubbles at the surface of gold nanoparticles in water,” J. Chem. Phys. 124(18), 184702 (2006).
[CrossRef] [PubMed]

Prodan, E.

E. Prodan, C. Radloff, N. J. Halas, and P. Nordlander, “A hybridization model for the plasmon response of complex nanostructures,” Science 302(5644), 419–422 (2003).
[CrossRef] [PubMed]

Quidant, R.

G. Baffou, R. Quidant, and F. J. García de Abajo, “Nanoscale control of optical heating in complex plasmonic systems,” ACS Nano 4(2), 709–716 (2010).
[CrossRef] [PubMed]

Radloff, C.

E. Prodan, C. Radloff, N. J. Halas, and P. Nordlander, “A hybridization model for the plasmon response of complex nanostructures,” Science 302(5644), 419–422 (2003).
[CrossRef] [PubMed]

Rau, K. R.

A. N. Hellman, K. R. Rau, H. H. Yoon, and V. Venugopalan, “Biophysical response to pulsed laser microbeam-induced cell lysis and molecular delivery,” J Biophotonics 1(1), 24–35 (2008).
[CrossRef]

Springer, F.

V. Kotaidis, C. Dahmen, G. von Plessen, F. Springer, and A. Plech, “Excitation of nanoscale vapor bubbles at the surface of gold nanoparticles in water,” J. Chem. Phys. 124(18), 184702 (2006).
[CrossRef] [PubMed]

Steinhardt, R. A.

R. A. Steinhardt, “The mechanisms of cell membrane repair: A tutorial guide to key experiments,” Ann. N. Y. Acad. Sci. 1066, 152–165 (2005).
[CrossRef]

Stephens, J.

J. Stephens, S. K. Mohanty, S. Genc, X. Kong, K. Yokomori, and M. W. Berns, “Spatially sculpted laser scissors for study of DNA damage and repair,” J. Biomed. Opt. 14(5), 054004 (2009).
[CrossRef] [PubMed]

Stevens, J.

I. B. Clark, E. G. Hanania, J. Stevens, M. Gallina, A. Fieck, R. Brandes, B. O. Palsson, and M. R. Koller, “Optoinjection for efficient targeted delivery of a broad range of compounds and macromolecules into diverse cell types,” J. Biomed. Opt. 11(1), 014034 (2006).
[CrossRef] [PubMed]

Sturtevant, B.

M. Lokhandwalla and B. Sturtevant, “Mechanical haemolysis in shock wave lithotripsy (SWL): I. Analysis of cell deformation due to SWL flow-fields,” Phys. Med. Biol. 46(2), 413–437 (2001).
[CrossRef] [PubMed]

Teitell, M. A.

Tirlapur, U. K.

U. K. Tirlapur and K. König, “Targeted transfection by femtosecond laser,” Nature 418(6895), 290–291 (2002).
[CrossRef] [PubMed]

Tseng, H.-R.

S. Wang, K.-J. Chen, T.-H. Wu, H. Wang, W.-Y. Lin, M. Ohashi, P.-Y. Chiou, and H.-R. Tseng, “Photothermal effects of supramolecularly assembled gold nanoparticles for the targeted treatment of cancer cells,” Angew. Chem. Int. Ed. Engl. 49(22), 3777–3781 (2010).
[CrossRef] [PubMed]

Venugopalan, V.

A. N. Hellman, K. R. Rau, H. H. Yoon, and V. Venugopalan, “Biophysical response to pulsed laser microbeam-induced cell lysis and molecular delivery,” J Biophotonics 1(1), 24–35 (2008).
[CrossRef]

Vogel, A.

A. Vogel, J. Noack, G. Hűttman, and G. Paltauf, “Mechanisms of femtosecond laser nanosurgery of cells and tissues,” Appl. Phys. B 81(8), 1015–1047 (2005).
[CrossRef]

von Plessen, G.

V. Kotaidis, C. Dahmen, G. von Plessen, F. Springer, and A. Plech, “Excitation of nanoscale vapor bubbles at the surface of gold nanoparticles in water,” J. Chem. Phys. 124(18), 184702 (2006).
[CrossRef] [PubMed]

Wang, H.

S. Wang, K.-J. Chen, T.-H. Wu, H. Wang, W.-Y. Lin, M. Ohashi, P.-Y. Chiou, and H.-R. Tseng, “Photothermal effects of supramolecularly assembled gold nanoparticles for the targeted treatment of cancer cells,” Angew. Chem. Int. Ed. Engl. 49(22), 3777–3781 (2010).
[CrossRef] [PubMed]

Wang, S.

S. Wang, K.-J. Chen, T.-H. Wu, H. Wang, W.-Y. Lin, M. Ohashi, P.-Y. Chiou, and H.-R. Tseng, “Photothermal effects of supramolecularly assembled gold nanoparticles for the targeted treatment of cancer cells,” Angew. Chem. Int. Ed. Engl. 49(22), 3777–3781 (2010).
[CrossRef] [PubMed]

Weaver, C.

P. Benjamin and C. Weaver, “The adhesion of evaporated metal films on glass,” Proc. R. Soc. Lond. A Math. Phys. Sci. 261(1307), 516–531 (1961).
[CrossRef]

Wei, X. B.

C. M. Pitsillides, E. K. Joe, X. B. Wei, R. R. Anderson, and C. P. Lin, “Selective cell targeting with light-absorbing microparticles and nanoparticles,” Biophys. J. 84(6), 4023–4032 (2003).
[CrossRef] [PubMed]

Willenbrock, S.

Wu, T.-H.

S. Wang, K.-J. Chen, T.-H. Wu, H. Wang, W.-Y. Lin, M. Ohashi, P.-Y. Chiou, and H.-R. Tseng, “Photothermal effects of supramolecularly assembled gold nanoparticles for the targeted treatment of cancer cells,” Angew. Chem. Int. Ed. Engl. 49(22), 3777–3781 (2010).
[CrossRef] [PubMed]

T.-H. Wu, S. Kalim, C. Callahan, M. A. Teitell, and P.-Y. Chiou, “Image patterned molecular delivery into live cells using gold particle coated substrates,” Opt. Express 18(2), 938–946 (2010).
[CrossRef] [PubMed]

Yamamoto, K.

N. Kudo, K. Okada, and K. Yamamoto, “Sonoporation by single-shot pulsed ultrasound with microbubbles adjacent to cells,” Biophys. J. 96(12), 4866–4876 (2009).
[CrossRef] [PubMed]

Yokomori, K.

J. Stephens, S. K. Mohanty, S. Genc, X. Kong, K. Yokomori, and M. W. Berns, “Spatially sculpted laser scissors for study of DNA damage and repair,” J. Biomed. Opt. 14(5), 054004 (2009).
[CrossRef] [PubMed]

Yoon, H. H.

A. N. Hellman, K. R. Rau, H. H. Yoon, and V. Venugopalan, “Biophysical response to pulsed laser microbeam-induced cell lysis and molecular delivery,” J Biophotonics 1(1), 24–35 (2008).
[CrossRef]

Zink, T.

V. Lulevich, T. Zink, H.-Y. Chen, F.-T. Liu, and G.-Y. Liu, “Cell mechanics using atomic force microscopy-based single-cell compression,” Langmuir 22(19), 8151–8155 (2006).
[CrossRef] [PubMed]

ACS Nano

G. Baffou, R. Quidant, and F. J. García de Abajo, “Nanoscale control of optical heating in complex plasmonic systems,” ACS Nano 4(2), 709–716 (2010).
[CrossRef] [PubMed]

Angew. Chem. Int. Ed. Engl.

S. Wang, K.-J. Chen, T.-H. Wu, H. Wang, W.-Y. Lin, M. Ohashi, P.-Y. Chiou, and H.-R. Tseng, “Photothermal effects of supramolecularly assembled gold nanoparticles for the targeted treatment of cancer cells,” Angew. Chem. Int. Ed. Engl. 49(22), 3777–3781 (2010).
[CrossRef] [PubMed]

Ann. N. Y. Acad. Sci.

R. A. Steinhardt, “The mechanisms of cell membrane repair: A tutorial guide to key experiments,” Ann. N. Y. Acad. Sci. 1066, 152–165 (2005).
[CrossRef]

Appl. Phys. B

A. Vogel, J. Noack, G. Hűttman, and G. Paltauf, “Mechanisms of femtosecond laser nanosurgery of cells and tissues,” Appl. Phys. B 81(8), 1015–1047 (2005).
[CrossRef]

Biophys. J.

N. Kudo, K. Okada, and K. Yamamoto, “Sonoporation by single-shot pulsed ultrasound with microbubbles adjacent to cells,” Biophys. J. 96(12), 4866–4876 (2009).
[CrossRef] [PubMed]

C. M. Pitsillides, E. K. Joe, X. B. Wei, R. R. Anderson, and C. P. Lin, “Selective cell targeting with light-absorbing microparticles and nanoparticles,” Biophys. J. 84(6), 4023–4032 (2003).
[CrossRef] [PubMed]

Curr. Protoc. Cell Biol.

S. Passey, S. Pellegrin, and H. Mellor, “Scanning electron microscopy of cell surface morphology,” Curr. Protoc. Cell Biol. 37, 4.17.11–14.17.13 (2007).
[CrossRef]

J Biophotonics

A. N. Hellman, K. R. Rau, H. H. Yoon, and V. Venugopalan, “Biophysical response to pulsed laser microbeam-induced cell lysis and molecular delivery,” J Biophotonics 1(1), 24–35 (2008).
[CrossRef]

J. Biomed. Opt.

I. B. Clark, E. G. Hanania, J. Stevens, M. Gallina, A. Fieck, R. Brandes, B. O. Palsson, and M. R. Koller, “Optoinjection for efficient targeted delivery of a broad range of compounds and macromolecules into diverse cell types,” J. Biomed. Opt. 11(1), 014034 (2006).
[CrossRef] [PubMed]

J. Stephens, S. K. Mohanty, S. Genc, X. Kong, K. Yokomori, and M. W. Berns, “Spatially sculpted laser scissors for study of DNA damage and repair,” J. Biomed. Opt. 14(5), 054004 (2009).
[CrossRef] [PubMed]

J. Chem. Phys.

V. Kotaidis, C. Dahmen, G. von Plessen, F. Springer, and A. Plech, “Excitation of nanoscale vapor bubbles at the surface of gold nanoparticles in water,” J. Chem. Phys. 124(18), 184702 (2006).
[CrossRef] [PubMed]

J. Phys. Chem. B

S. Link and M. A. El-Sayed, “Spectral properties and relaxation dynamics of surface plasmon electronic oscillations in gold and silver nanodots and nanorods,” J. Phys. Chem. B 103(40), 8410–8426 (1999).
[CrossRef]

Langmuir

V. Lulevich, T. Zink, H.-Y. Chen, F.-T. Liu, and G.-Y. Liu, “Cell mechanics using atomic force microscopy-based single-cell compression,” Langmuir 22(19), 8151–8155 (2006).
[CrossRef] [PubMed]

Lasers Surg. Med.

D. O. Lapotko, E. Lukianova, and A. A. Oraevsky, “Selective laser nano-thermolysis of human leukemia cells with microbubbles generated around clusters of gold nanoparticles,” Lasers Surg. Med. 38(6), 631–642 (2006).
[CrossRef] [PubMed]

Nanomed. Nanotechnol. Biol. Med.

S.-W. Han, C. Nakamura, N. Kotobuki, I. Obataya, H. Ohgushi, T. Nagamune, and J. Miyake, “High-efficiency DNA injection into a single human mesenchymal stem cell using a nanoneedle and atomic force microscopy,” Nanomed. Nanotechnol. Biol. Med. 4(3), 215–225 (2008).
[CrossRef]

Nanotechnology

E. Y. Lukianova-Hleb, E. Y. Hanna, J. H. Hafner, and D. O. Lapotko, “Tunable plasmonic nanobubbles for cell theranostics,” Nanotechnology 21(8), 85102 (2010).
[CrossRef] [PubMed]

Nat. Rev. Drug Discov.

S. Mitragotri, “Healing sound: the use of ultrasound in drug delivery and other therapeutic applications,” Nat. Rev. Drug Discov. 4(3), 255–260 (2005).
[CrossRef] [PubMed]

Nature

U. K. Tirlapur and K. König, “Targeted transfection by femtosecond laser,” Nature 418(6895), 290–291 (2002).
[CrossRef] [PubMed]

P. Marmottant and S. Hilgenfeldt, “Controlled vesicle deformation and lysis by single oscillating bubbles,” Nature 423(6936), 153–156 (2003).
[CrossRef] [PubMed]

Nucleic Acids Res.

G. Chu, H. Hayakawa, and P. Berg, “Electroporation for the efficient transfection of mammalian cells with DNA,” Nucleic Acids Res. 15(3), 1311–1326 (1987).
[CrossRef] [PubMed]

Opt. Express

Phys. Med. Biol.

M. Lokhandwalla and B. Sturtevant, “Mechanical haemolysis in shock wave lithotripsy (SWL): I. Analysis of cell deformation due to SWL flow-fields,” Phys. Med. Biol. 46(2), 413–437 (2001).
[CrossRef] [PubMed]

Proc. R. Soc. Lond. A Math. Phys. Sci.

P. Benjamin and C. Weaver, “The adhesion of evaporated metal films on glass,” Proc. R. Soc. Lond. A Math. Phys. Sci. 261(1307), 516–531 (1961).
[CrossRef]

Science

E. Prodan, C. Radloff, N. J. Halas, and P. Nordlander, “A hybridization model for the plasmon response of complex nanostructures,” Science 302(5644), 419–422 (2003).
[CrossRef] [PubMed]

Other

T.-H. Wu, P.-Y. Tseng, S. Kalim, M. A. Teitell, and P.-Y. Chiou, “A novel single-cell surgery tool using photothermal effects of metal nanoparticles,” Optical MEMS and Nanophotonics, 2007 IEEE/LEOS International Conference on, 43–44 (2007).

Y. Zhang, “Microinjection technique and protocol to single cells,” Nature Protocols ( http://www.natureprotocols.com/2007/11/02/microinjection_technique_and_p.php ).

D. W. Lynch, and W. R. Hunter, Introduction to the data for several metals. Handbook of optical constants of solids III (Academic Press, San Diego, CA, 1998).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Ultrafast, patterned membrane cutting mechanism of the photothermal nanoblade. A Ti thin film coats the outside of a glass micropipette. Upon excitation by a nanosecond laser pulse, the Ti heats rapidly, along with a thin surrounding aqueous layer through heat conduction. An explosive vapor bubble that expands and collapses in <1 µs locally cuts the contacting cell membrane.

Fig. 2
Fig. 2

Experimental setup and the time-resolved imaging system to quantify bubble dynamics of the photothermal nanoblade with a nanosecond delay from the excitation laser pulse.

Fig. 3
Fig. 3

Structure of a Ti-coated micropipette and the calculated optical absorption profiles from laser excitation. (a) Scanning electron microscope images of a pulled, FIB-milled Ti-coated 2-μm tip diameter micropipette. (b) Schematic of the 3D FDTD simulation. (c) Normalized intensity profiles at the tip of the micropipette. (d) Optical absorption profiles in the Ti ring at the micropipette tip under linearly and circularly polarized laser excitations.

Fig. 4
Fig. 4

Ultrafast and patterned cavitation bubble dynamics on the photothermal nanoblade. (a) Bubble patterns on 4 µm-wide (top row) and 2 µm-wide (bottom row) microcapillary pipette tips using linear and circular laser polarization excitations, respectively. (b) Measured bubble radius on a 4 µm-wide microcapillary tip.

Fig. 5
Fig. 5

Cell membrane cutting patterns by the photothermal nanoblade under different laser polarizations and micropipette orientations. Laser fluence = 360 mJ/cm2. Pipette tip diameter = 2 µm. (a) Linear polarization. (b) Circular polarization. (c) Linearly polarized laser excitation with micropipette tilted at 30° from the vertical axis. Bar in inset = 1 µm.

Fig. 6
Fig. 6

Live cell membrane opening and fluorescent dye delivery by the photothermal nanoblade. Laser fluence = 180 mJ/cm2. Pipette tip diameter = 2 µm. Left: Bright field image of the Ti coated micropipette (indicated by the arrow) in light contact with the cell membrane. Right: Fluorescent image showing dye delivery after laser pulsing and membrane opening by the phothermal nanoblade.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

p ( r ) = ω ε 0 Im { ε ( ω ) } | E ( r ) | 2

Metrics