Abstract

Waveguiding mechanism and modal characteristics of hollow core fibers consisting of a single or a regular arrangement of dielectric tubes are investigated. These fibers have been recently proposed as low loss, broadband THz waveguides. By starting from a description in terms of coupling between air and dielectric modes in a single tube waveguide, a simple and useful model is proposed and numerically validated. It is able to predict dispersion curves, high and low loss spectral regions, and the conditions to ensure the existence of low loss regions. In addition, it allows a better understanding of the role of the geometrical parameters and of the dielectric refractive index. The model is then applied to improve the tradeoff between low loss and effectively single mode propagation, showing that the best results are obtained with a heptagonal arrangement of the tubes.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Tonouchi, “Cutting-edge terahertz technology,” Nat. Photonics 1(2), 97–105 (2007).
    [CrossRef]
  2. M. A. Ordal, L. L. Long, R. J. Bell, S. E. Bell, R. R. Bell, R. W. Alexander, and C. A. Ward, “Optical properties of the metals Al, Co, Cu, Au, Fe, Pb, Ni, Pd, Pt, Ag, Ti, and W in the infrared and far infrared,” Appl. Opt. 22(7), 1099–20 (1983).
    [CrossRef] [PubMed]
  3. M. Naftaly and R. E. Miles, “Terahertz Time-Domain spectroscopy for Material Characterization,” Proc. IEEE 95(8), 1658–1665 (2007).
    [CrossRef]
  4. M. Goto, A. Quema, H. Takahashi, S. Ono, and N. Sarukura, “Teflon photonic crystal fiber as terahertz waveguide,” Jpn. J. Appl. Phys. 43(2B), 317–319 (2004).
    [CrossRef]
  5. J. R. Birch, J. D. Dromey, and J. Lesurf, “The optical constants of some common low-loss polymers between 4 and 40 cm−1,” Infrared Phys. 21(4), 225–228 (1981).
    [CrossRef]
  6. C. Winnewisser, F. Lewen, and H. Helm, “Transmission characteristics of dichroic filters measured by THz time-domain spectroscopy,” Appl. Phys., A Mater. Sci. Process. 66(6), 593–598 (1998).
    [CrossRef]
  7. Y. Jin, G. Kim, and S. Jeon, “Terahertz Dielectric Properties of Polymers,” J. Korean Phys. Soc. 49, 513–517 (2006).
  8. G. Gallot, S. P. Jamison, R. W. McGowan, and D. Grischkowsky, “Terahertz waveguides,” J. Opt. Soc. Am. B 17(5), 851–863 (2000).
    [CrossRef]
  9. T. Ito, Y. Matsuura, M. Miyagi, H. Minamide, and H. Ito, “Flexible terahertz fiber optics with low bend-induced losses,” J. Opt. Soc. Am. B 24(5), 1230–1235 (2007).
    [CrossRef]
  10. R. Mendis, “THz transmission characteristics of dielectric-filled parallel-plate waveguides,” J. Appl. Phys. 101(8), 083115 (2007).
    [CrossRef]
  11. K. Wang and D. M. Mittleman, “Guided propagation of terahertz pulses on metal wires,” J. Opt. Soc. Am. B 22, 2001–2008 (2005).
    [CrossRef]
  12. T. Jeon, J. Zhang, and D. Grischkowsky, “THz Sommerfield wave propagation on a single metal wire,” Appl. Phys. Lett. 86(16), 161904 (2005).
    [CrossRef]
  13. L. J. Chen, H. W. Chen, T. F. Kao, J. Y. Lu, and C. K. Sun, “Low-loss subwavelength plastic fiber for terahertz waveguiding,” Opt. Lett. 31(3), 308–310 (2006).
    [CrossRef] [PubMed]
  14. C. Zhao, M. Wu, D. Fan, and S. Wen, “Field enhancement and power distribution characteristics of subwavelength-diameter terahertz hollow optical fiber,” Opt. Commun. 281(5), 1129–1133 (2008).
    [CrossRef]
  15. A. Hassani, A. Dupuis, and M. Skorobogatiy, “Porous polymer fibers for low-loss Terahertz guiding” Opt. Express 16, 6340–6351 (2008), http://www.opticsinfobase.org/oe/abstract.cfm?uri=oe-16-9-6340 .
  16. S. Atakaramians, S. Afshar Vahid, H. Ebendorff-Heidepriem, M. Nagel, B. Fischer, D. Abbott, and T. Monro, “THz porous fibers: design, fabrication and experimental characterization,” Opt. Express 17, 14053–14062, http://www.opticsinfobase.org/oe/abstract.cfm?uri=oe-17-16-14053 .
  17. F. Benabid, P. J. Roberts, F. Couny, and P. S. Light, “Light and gas confinement in hollow-core photonic crystal fibre based photonic microcells,” J. Eur. Opt. Soc. 4, 09004 (2009).
    [CrossRef]
  18. P. Russell, “Photonic-Crystal Fibers,” J. Lightwave Technol. 24(12), 4729–4749 (2006).
    [CrossRef]
  19. F. Benabid, “Hollow-core photonic bandgap fibre: new light guidance for new science and technology,” Philos. Trans. R. Soc. London, Ser. A. 364(1849), 3439–3462 (2006).
    [CrossRef]
  20. J. C. Knight, J. Broeng, T. A. Birks, and P. S. J. Russell, “Photonic band gap guidance in optical fibers,” Science 282(5393), 1476–1478 (1998).
    [CrossRef] [PubMed]
  21. Y. F. Geng, X. L. Tan, P. Wang, and J. Q. Yao, “Transmission loss and dispersion in plastic terahertz photonic band-gap fibers,” Appl. Phys. B 91(2), 333–336 (2008).
    [CrossRef]
  22. L. Vincetti, “Hollow core photonic band gap fibre for THz Applications,” Microwave Opt. Technol. Lett. 51(7), 1711–1714 (2009).
    [CrossRef]
  23. J. Lu, C. Yu, H. Chang, H. Chen, Y. Li, C. Pan, and C. Sun, “Terahertz air-core microstructure fiber,” Appl. Phys. Lett. 92(6), 64105 (2008).
    [CrossRef]
  24. L. Vincetti, “Numerical analysis of plastic hollow core microstructured fiber for Terahertz applications,” Opt. Fiber Technol. 15(4), 398–401 (2009).
    [CrossRef]
  25. L. Vincetti, “Single-mode propagation in triangular tube lattice hollow-core terahertz fibers,” Opt. Commun. 283(6), 979–984 (2010).
    [CrossRef]
  26. F. Couny and F. Benabid, “P. J. robets, P. S. Light, and M. G. Raymer, “Generation and Photonic Guidance of Multi-Octave Optical-Frequency Combs,” Science 318, 118–121 (2007).
  27. A. Argyros and J. Pla, “Hollow-core polymer fibres with a kagome lattice: potential for transmission in the infrared,” Opt. Express 15, 7713–7719 (2007), http://www.opticsinfobase.org/oe/abstract.cfm?uri=oe-15-12-7713 .
  28. G. J. Pearce, G. S. Wiederhecker, C. G. Poulton, S. Burger, and P. St. Russell, “Models for guidance in kagome-structured hollow-core photonic crystal fibres,” Opt. Express 15, 12680–12685 (2007), http://www.opticsinfobase.org/oe/abstract.cfm?uri=oe-15-20-12680 .
  29. F. Couny, P. J. Roberts, T. A. Birks, and F. Benabid, “Square-lattice large-pitch hollow-core photonic crystal fiber,” Opt. Express 16, 20626–20636 (2008), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-16-25-20626 .
  30. A. Argyros, S. G. Leon-Saval, J. Pla, and A. Docherty, “Antiresonant reflection and inhibited coupling in hollow-core square lattice optical fibres,” Opt. Express 16, 5642–5648 (2008), http://www.opticsinfobase.org/abstract.cfm?URI=oe-16-8-5642 .
  31. C. Lai, B. You, J. Lu, T. Lu, J. Peng, C. Sun, and H. Chang, “Modal characteristics of antiresonant reflecting pipe waveguides for terahertz waveguiding,” Opt. Express 18, 309–322 (2010), http://www.opticsinfobase.org/abstract.cfm?URI=oe-18-1-309 .
  32. M. Kharadly, and J. Lewis, “Properties of dielectric-tube waveguides,” Proc. IEE 116, 214–224 (1969).
  33. E. Marcatili and R. Schmeltzer, “Hollow Metallic and Dielectric Waveguides for Long Distance Optical Transmission and Lasers,” Bell Syst. Tech. J. 1783–1809 (1964).
  34. S. Selleri, L. Vincetti, A. Cucinotta, and M. Zoboli, “Complex FEM Modal Solver of Optical Waveguides with PML Boundary Conditions,” Opt. Quantum Electron. 33(4/5), 359–371 (2001).
    [CrossRef]
  35. L. Vincetti, V. Setti, and M. Zoboli, “Terahertz Tube Lattice Fibers With Octagonal Symmetry,” IEEE Photon. Technol. Lett. 22(13), 972–974 (2010).
    [CrossRef]
  36. L. Vincetti, “Confinement losses in honeycomb fibers,” IEEE Photon. Technol. Lett. 16(9), 2048–2050 (2004).
    [CrossRef]
  37. L. Vincetti, “Hollow core photonic band gap fiber for THz applications,” Microw. Opt. Technol. Lett. 51(7), 1711–1714 (2009).
    [CrossRef]
  38. A. Cucinotta, G. Pelosi, S. Selleri, L. Vincetti, and M. Zoboli, “Perfectly Matched Anisotropic Layers for Optical Waveguides Analysis through the Finite Element Beam Propagation Method,” Microw. Opt. Technol. Lett. 23(2), 67–69 (1999).
    [CrossRef]
  39. D. Chen, and H. Chen, “A novel low-loss Terahertz waveguide: Polymer tube,” Opt. Express 18, 3762–3767 (2010), http://www.opticsinfobase.org/oe/abstract.cfm?uri=oe-18-4-3762 .
  40. K. Saitoh, N. A. Mortensen, and M. Koshiba, “Air-core photonic band-gap fibers: the impact of surface modes,” Opt. Express 12, 394–400 (2004), http://www.opticsinfobase.org/oe/abstract.cfm?URI=OPEX-12-3-394 .
  41. P. L. François and C. Vassallo, “Finite cladding effects in W fibers: a new interpretation of leaky modes,” Appl. Opt. 22(19), 3109–3120 (1983).
    [CrossRef] [PubMed]
  42. J. Fini, “Design of solid and microstructure fibers for suppression of higher-order modes,” Opt. Express 13, 3477–3490 (2005), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-13-9-3477 .
  43. K. Saitoh, N. Florous, T. Murao, and M. Koshiba, “Design of photonic band gap fibers with suppressed higher-order modes: Towards the development of effectively single mode large hollow-core fiber platforms,” Opt. Express 14, 7342–7352 (2006), http://www.opticsinfobase.org/abstract.cfm?URI=oe-14-16-7342 .

2010

L. Vincetti, “Single-mode propagation in triangular tube lattice hollow-core terahertz fibers,” Opt. Commun. 283(6), 979–984 (2010).
[CrossRef]

L. Vincetti, V. Setti, and M. Zoboli, “Terahertz Tube Lattice Fibers With Octagonal Symmetry,” IEEE Photon. Technol. Lett. 22(13), 972–974 (2010).
[CrossRef]

2009

L. Vincetti, “Hollow core photonic band gap fiber for THz applications,” Microw. Opt. Technol. Lett. 51(7), 1711–1714 (2009).
[CrossRef]

L. Vincetti, “Numerical analysis of plastic hollow core microstructured fiber for Terahertz applications,” Opt. Fiber Technol. 15(4), 398–401 (2009).
[CrossRef]

L. Vincetti, “Hollow core photonic band gap fibre for THz Applications,” Microwave Opt. Technol. Lett. 51(7), 1711–1714 (2009).
[CrossRef]

F. Benabid, P. J. Roberts, F. Couny, and P. S. Light, “Light and gas confinement in hollow-core photonic crystal fibre based photonic microcells,” J. Eur. Opt. Soc. 4, 09004 (2009).
[CrossRef]

2008

J. Lu, C. Yu, H. Chang, H. Chen, Y. Li, C. Pan, and C. Sun, “Terahertz air-core microstructure fiber,” Appl. Phys. Lett. 92(6), 64105 (2008).
[CrossRef]

C. Zhao, M. Wu, D. Fan, and S. Wen, “Field enhancement and power distribution characteristics of subwavelength-diameter terahertz hollow optical fiber,” Opt. Commun. 281(5), 1129–1133 (2008).
[CrossRef]

Y. F. Geng, X. L. Tan, P. Wang, and J. Q. Yao, “Transmission loss and dispersion in plastic terahertz photonic band-gap fibers,” Appl. Phys. B 91(2), 333–336 (2008).
[CrossRef]

2007

F. Couny and F. Benabid, “P. J. robets, P. S. Light, and M. G. Raymer, “Generation and Photonic Guidance of Multi-Octave Optical-Frequency Combs,” Science 318, 118–121 (2007).

M. Tonouchi, “Cutting-edge terahertz technology,” Nat. Photonics 1(2), 97–105 (2007).
[CrossRef]

M. Naftaly and R. E. Miles, “Terahertz Time-Domain spectroscopy for Material Characterization,” Proc. IEEE 95(8), 1658–1665 (2007).
[CrossRef]

T. Ito, Y. Matsuura, M. Miyagi, H. Minamide, and H. Ito, “Flexible terahertz fiber optics with low bend-induced losses,” J. Opt. Soc. Am. B 24(5), 1230–1235 (2007).
[CrossRef]

R. Mendis, “THz transmission characteristics of dielectric-filled parallel-plate waveguides,” J. Appl. Phys. 101(8), 083115 (2007).
[CrossRef]

2006

P. Russell, “Photonic-Crystal Fibers,” J. Lightwave Technol. 24(12), 4729–4749 (2006).
[CrossRef]

F. Benabid, “Hollow-core photonic bandgap fibre: new light guidance for new science and technology,” Philos. Trans. R. Soc. London, Ser. A. 364(1849), 3439–3462 (2006).
[CrossRef]

Y. Jin, G. Kim, and S. Jeon, “Terahertz Dielectric Properties of Polymers,” J. Korean Phys. Soc. 49, 513–517 (2006).

L. J. Chen, H. W. Chen, T. F. Kao, J. Y. Lu, and C. K. Sun, “Low-loss subwavelength plastic fiber for terahertz waveguiding,” Opt. Lett. 31(3), 308–310 (2006).
[CrossRef] [PubMed]

2005

K. Wang and D. M. Mittleman, “Guided propagation of terahertz pulses on metal wires,” J. Opt. Soc. Am. B 22, 2001–2008 (2005).
[CrossRef]

T. Jeon, J. Zhang, and D. Grischkowsky, “THz Sommerfield wave propagation on a single metal wire,” Appl. Phys. Lett. 86(16), 161904 (2005).
[CrossRef]

2004

M. Goto, A. Quema, H. Takahashi, S. Ono, and N. Sarukura, “Teflon photonic crystal fiber as terahertz waveguide,” Jpn. J. Appl. Phys. 43(2B), 317–319 (2004).
[CrossRef]

L. Vincetti, “Confinement losses in honeycomb fibers,” IEEE Photon. Technol. Lett. 16(9), 2048–2050 (2004).
[CrossRef]

2001

S. Selleri, L. Vincetti, A. Cucinotta, and M. Zoboli, “Complex FEM Modal Solver of Optical Waveguides with PML Boundary Conditions,” Opt. Quantum Electron. 33(4/5), 359–371 (2001).
[CrossRef]

2000

1999

A. Cucinotta, G. Pelosi, S. Selleri, L. Vincetti, and M. Zoboli, “Perfectly Matched Anisotropic Layers for Optical Waveguides Analysis through the Finite Element Beam Propagation Method,” Microw. Opt. Technol. Lett. 23(2), 67–69 (1999).
[CrossRef]

1998

C. Winnewisser, F. Lewen, and H. Helm, “Transmission characteristics of dichroic filters measured by THz time-domain spectroscopy,” Appl. Phys., A Mater. Sci. Process. 66(6), 593–598 (1998).
[CrossRef]

J. C. Knight, J. Broeng, T. A. Birks, and P. S. J. Russell, “Photonic band gap guidance in optical fibers,” Science 282(5393), 1476–1478 (1998).
[CrossRef] [PubMed]

1983

1981

J. R. Birch, J. D. Dromey, and J. Lesurf, “The optical constants of some common low-loss polymers between 4 and 40 cm−1,” Infrared Phys. 21(4), 225–228 (1981).
[CrossRef]

1964

E. Marcatili and R. Schmeltzer, “Hollow Metallic and Dielectric Waveguides for Long Distance Optical Transmission and Lasers,” Bell Syst. Tech. J. 1783–1809 (1964).

Alexander, R. W.

Bell, R. J.

Bell, R. R.

Bell, S. E.

Benabid, F.

F. Benabid, P. J. Roberts, F. Couny, and P. S. Light, “Light and gas confinement in hollow-core photonic crystal fibre based photonic microcells,” J. Eur. Opt. Soc. 4, 09004 (2009).
[CrossRef]

F. Couny and F. Benabid, “P. J. robets, P. S. Light, and M. G. Raymer, “Generation and Photonic Guidance of Multi-Octave Optical-Frequency Combs,” Science 318, 118–121 (2007).

F. Benabid, “Hollow-core photonic bandgap fibre: new light guidance for new science and technology,” Philos. Trans. R. Soc. London, Ser. A. 364(1849), 3439–3462 (2006).
[CrossRef]

Birch, J. R.

J. R. Birch, J. D. Dromey, and J. Lesurf, “The optical constants of some common low-loss polymers between 4 and 40 cm−1,” Infrared Phys. 21(4), 225–228 (1981).
[CrossRef]

Birks, T. A.

J. C. Knight, J. Broeng, T. A. Birks, and P. S. J. Russell, “Photonic band gap guidance in optical fibers,” Science 282(5393), 1476–1478 (1998).
[CrossRef] [PubMed]

Broeng, J.

J. C. Knight, J. Broeng, T. A. Birks, and P. S. J. Russell, “Photonic band gap guidance in optical fibers,” Science 282(5393), 1476–1478 (1998).
[CrossRef] [PubMed]

Chang, H.

J. Lu, C. Yu, H. Chang, H. Chen, Y. Li, C. Pan, and C. Sun, “Terahertz air-core microstructure fiber,” Appl. Phys. Lett. 92(6), 64105 (2008).
[CrossRef]

Chen, H.

J. Lu, C. Yu, H. Chang, H. Chen, Y. Li, C. Pan, and C. Sun, “Terahertz air-core microstructure fiber,” Appl. Phys. Lett. 92(6), 64105 (2008).
[CrossRef]

Chen, H. W.

Chen, L. J.

Couny, F.

F. Benabid, P. J. Roberts, F. Couny, and P. S. Light, “Light and gas confinement in hollow-core photonic crystal fibre based photonic microcells,” J. Eur. Opt. Soc. 4, 09004 (2009).
[CrossRef]

F. Couny and F. Benabid, “P. J. robets, P. S. Light, and M. G. Raymer, “Generation and Photonic Guidance of Multi-Octave Optical-Frequency Combs,” Science 318, 118–121 (2007).

Cucinotta, A.

S. Selleri, L. Vincetti, A. Cucinotta, and M. Zoboli, “Complex FEM Modal Solver of Optical Waveguides with PML Boundary Conditions,” Opt. Quantum Electron. 33(4/5), 359–371 (2001).
[CrossRef]

A. Cucinotta, G. Pelosi, S. Selleri, L. Vincetti, and M. Zoboli, “Perfectly Matched Anisotropic Layers for Optical Waveguides Analysis through the Finite Element Beam Propagation Method,” Microw. Opt. Technol. Lett. 23(2), 67–69 (1999).
[CrossRef]

Dromey, J. D.

J. R. Birch, J. D. Dromey, and J. Lesurf, “The optical constants of some common low-loss polymers between 4 and 40 cm−1,” Infrared Phys. 21(4), 225–228 (1981).
[CrossRef]

Fan, D.

C. Zhao, M. Wu, D. Fan, and S. Wen, “Field enhancement and power distribution characteristics of subwavelength-diameter terahertz hollow optical fiber,” Opt. Commun. 281(5), 1129–1133 (2008).
[CrossRef]

François, P. L.

Gallot, G.

Geng, Y. F.

Y. F. Geng, X. L. Tan, P. Wang, and J. Q. Yao, “Transmission loss and dispersion in plastic terahertz photonic band-gap fibers,” Appl. Phys. B 91(2), 333–336 (2008).
[CrossRef]

Goto, M.

M. Goto, A. Quema, H. Takahashi, S. Ono, and N. Sarukura, “Teflon photonic crystal fiber as terahertz waveguide,” Jpn. J. Appl. Phys. 43(2B), 317–319 (2004).
[CrossRef]

Grischkowsky, D.

T. Jeon, J. Zhang, and D. Grischkowsky, “THz Sommerfield wave propagation on a single metal wire,” Appl. Phys. Lett. 86(16), 161904 (2005).
[CrossRef]

G. Gallot, S. P. Jamison, R. W. McGowan, and D. Grischkowsky, “Terahertz waveguides,” J. Opt. Soc. Am. B 17(5), 851–863 (2000).
[CrossRef]

Helm, H.

C. Winnewisser, F. Lewen, and H. Helm, “Transmission characteristics of dichroic filters measured by THz time-domain spectroscopy,” Appl. Phys., A Mater. Sci. Process. 66(6), 593–598 (1998).
[CrossRef]

Ito, H.

Ito, T.

Jamison, S. P.

Jeon, S.

Y. Jin, G. Kim, and S. Jeon, “Terahertz Dielectric Properties of Polymers,” J. Korean Phys. Soc. 49, 513–517 (2006).

Jeon, T.

T. Jeon, J. Zhang, and D. Grischkowsky, “THz Sommerfield wave propagation on a single metal wire,” Appl. Phys. Lett. 86(16), 161904 (2005).
[CrossRef]

Jin, Y.

Y. Jin, G. Kim, and S. Jeon, “Terahertz Dielectric Properties of Polymers,” J. Korean Phys. Soc. 49, 513–517 (2006).

Kao, T. F.

Kim, G.

Y. Jin, G. Kim, and S. Jeon, “Terahertz Dielectric Properties of Polymers,” J. Korean Phys. Soc. 49, 513–517 (2006).

Knight, J. C.

J. C. Knight, J. Broeng, T. A. Birks, and P. S. J. Russell, “Photonic band gap guidance in optical fibers,” Science 282(5393), 1476–1478 (1998).
[CrossRef] [PubMed]

Lesurf, J.

J. R. Birch, J. D. Dromey, and J. Lesurf, “The optical constants of some common low-loss polymers between 4 and 40 cm−1,” Infrared Phys. 21(4), 225–228 (1981).
[CrossRef]

Lewen, F.

C. Winnewisser, F. Lewen, and H. Helm, “Transmission characteristics of dichroic filters measured by THz time-domain spectroscopy,” Appl. Phys., A Mater. Sci. Process. 66(6), 593–598 (1998).
[CrossRef]

Li, Y.

J. Lu, C. Yu, H. Chang, H. Chen, Y. Li, C. Pan, and C. Sun, “Terahertz air-core microstructure fiber,” Appl. Phys. Lett. 92(6), 64105 (2008).
[CrossRef]

Light, P. S.

F. Benabid, P. J. Roberts, F. Couny, and P. S. Light, “Light and gas confinement in hollow-core photonic crystal fibre based photonic microcells,” J. Eur. Opt. Soc. 4, 09004 (2009).
[CrossRef]

Long, L. L.

Lu, J.

J. Lu, C. Yu, H. Chang, H. Chen, Y. Li, C. Pan, and C. Sun, “Terahertz air-core microstructure fiber,” Appl. Phys. Lett. 92(6), 64105 (2008).
[CrossRef]

Lu, J. Y.

Marcatili, E.

E. Marcatili and R. Schmeltzer, “Hollow Metallic and Dielectric Waveguides for Long Distance Optical Transmission and Lasers,” Bell Syst. Tech. J. 1783–1809 (1964).

Matsuura, Y.

McGowan, R. W.

Mendis, R.

R. Mendis, “THz transmission characteristics of dielectric-filled parallel-plate waveguides,” J. Appl. Phys. 101(8), 083115 (2007).
[CrossRef]

Miles, R. E.

M. Naftaly and R. E. Miles, “Terahertz Time-Domain spectroscopy for Material Characterization,” Proc. IEEE 95(8), 1658–1665 (2007).
[CrossRef]

Minamide, H.

Mittleman, D. M.

Miyagi, M.

Naftaly, M.

M. Naftaly and R. E. Miles, “Terahertz Time-Domain spectroscopy for Material Characterization,” Proc. IEEE 95(8), 1658–1665 (2007).
[CrossRef]

Ono, S.

M. Goto, A. Quema, H. Takahashi, S. Ono, and N. Sarukura, “Teflon photonic crystal fiber as terahertz waveguide,” Jpn. J. Appl. Phys. 43(2B), 317–319 (2004).
[CrossRef]

Ordal, M. A.

Pan, C.

J. Lu, C. Yu, H. Chang, H. Chen, Y. Li, C. Pan, and C. Sun, “Terahertz air-core microstructure fiber,” Appl. Phys. Lett. 92(6), 64105 (2008).
[CrossRef]

Pelosi, G.

A. Cucinotta, G. Pelosi, S. Selleri, L. Vincetti, and M. Zoboli, “Perfectly Matched Anisotropic Layers for Optical Waveguides Analysis through the Finite Element Beam Propagation Method,” Microw. Opt. Technol. Lett. 23(2), 67–69 (1999).
[CrossRef]

Quema, A.

M. Goto, A. Quema, H. Takahashi, S. Ono, and N. Sarukura, “Teflon photonic crystal fiber as terahertz waveguide,” Jpn. J. Appl. Phys. 43(2B), 317–319 (2004).
[CrossRef]

Roberts, P. J.

F. Benabid, P. J. Roberts, F. Couny, and P. S. Light, “Light and gas confinement in hollow-core photonic crystal fibre based photonic microcells,” J. Eur. Opt. Soc. 4, 09004 (2009).
[CrossRef]

Russell, P.

Russell, P. S. J.

J. C. Knight, J. Broeng, T. A. Birks, and P. S. J. Russell, “Photonic band gap guidance in optical fibers,” Science 282(5393), 1476–1478 (1998).
[CrossRef] [PubMed]

Sarukura, N.

M. Goto, A. Quema, H. Takahashi, S. Ono, and N. Sarukura, “Teflon photonic crystal fiber as terahertz waveguide,” Jpn. J. Appl. Phys. 43(2B), 317–319 (2004).
[CrossRef]

Schmeltzer, R.

E. Marcatili and R. Schmeltzer, “Hollow Metallic and Dielectric Waveguides for Long Distance Optical Transmission and Lasers,” Bell Syst. Tech. J. 1783–1809 (1964).

Selleri, S.

S. Selleri, L. Vincetti, A. Cucinotta, and M. Zoboli, “Complex FEM Modal Solver of Optical Waveguides with PML Boundary Conditions,” Opt. Quantum Electron. 33(4/5), 359–371 (2001).
[CrossRef]

A. Cucinotta, G. Pelosi, S. Selleri, L. Vincetti, and M. Zoboli, “Perfectly Matched Anisotropic Layers for Optical Waveguides Analysis through the Finite Element Beam Propagation Method,” Microw. Opt. Technol. Lett. 23(2), 67–69 (1999).
[CrossRef]

Setti, V.

L. Vincetti, V. Setti, and M. Zoboli, “Terahertz Tube Lattice Fibers With Octagonal Symmetry,” IEEE Photon. Technol. Lett. 22(13), 972–974 (2010).
[CrossRef]

Sun, C.

J. Lu, C. Yu, H. Chang, H. Chen, Y. Li, C. Pan, and C. Sun, “Terahertz air-core microstructure fiber,” Appl. Phys. Lett. 92(6), 64105 (2008).
[CrossRef]

Sun, C. K.

Takahashi, H.

M. Goto, A. Quema, H. Takahashi, S. Ono, and N. Sarukura, “Teflon photonic crystal fiber as terahertz waveguide,” Jpn. J. Appl. Phys. 43(2B), 317–319 (2004).
[CrossRef]

Tan, X. L.

Y. F. Geng, X. L. Tan, P. Wang, and J. Q. Yao, “Transmission loss and dispersion in plastic terahertz photonic band-gap fibers,” Appl. Phys. B 91(2), 333–336 (2008).
[CrossRef]

Tonouchi, M.

M. Tonouchi, “Cutting-edge terahertz technology,” Nat. Photonics 1(2), 97–105 (2007).
[CrossRef]

Vassallo, C.

Vincetti, L.

L. Vincetti, V. Setti, and M. Zoboli, “Terahertz Tube Lattice Fibers With Octagonal Symmetry,” IEEE Photon. Technol. Lett. 22(13), 972–974 (2010).
[CrossRef]

L. Vincetti, “Single-mode propagation in triangular tube lattice hollow-core terahertz fibers,” Opt. Commun. 283(6), 979–984 (2010).
[CrossRef]

L. Vincetti, “Hollow core photonic band gap fibre for THz Applications,” Microwave Opt. Technol. Lett. 51(7), 1711–1714 (2009).
[CrossRef]

L. Vincetti, “Numerical analysis of plastic hollow core microstructured fiber for Terahertz applications,” Opt. Fiber Technol. 15(4), 398–401 (2009).
[CrossRef]

L. Vincetti, “Hollow core photonic band gap fiber for THz applications,” Microw. Opt. Technol. Lett. 51(7), 1711–1714 (2009).
[CrossRef]

L. Vincetti, “Confinement losses in honeycomb fibers,” IEEE Photon. Technol. Lett. 16(9), 2048–2050 (2004).
[CrossRef]

S. Selleri, L. Vincetti, A. Cucinotta, and M. Zoboli, “Complex FEM Modal Solver of Optical Waveguides with PML Boundary Conditions,” Opt. Quantum Electron. 33(4/5), 359–371 (2001).
[CrossRef]

A. Cucinotta, G. Pelosi, S. Selleri, L. Vincetti, and M. Zoboli, “Perfectly Matched Anisotropic Layers for Optical Waveguides Analysis through the Finite Element Beam Propagation Method,” Microw. Opt. Technol. Lett. 23(2), 67–69 (1999).
[CrossRef]

Wang, K.

Wang, P.

Y. F. Geng, X. L. Tan, P. Wang, and J. Q. Yao, “Transmission loss and dispersion in plastic terahertz photonic band-gap fibers,” Appl. Phys. B 91(2), 333–336 (2008).
[CrossRef]

Ward, C. A.

Wen, S.

C. Zhao, M. Wu, D. Fan, and S. Wen, “Field enhancement and power distribution characteristics of subwavelength-diameter terahertz hollow optical fiber,” Opt. Commun. 281(5), 1129–1133 (2008).
[CrossRef]

Winnewisser, C.

C. Winnewisser, F. Lewen, and H. Helm, “Transmission characteristics of dichroic filters measured by THz time-domain spectroscopy,” Appl. Phys., A Mater. Sci. Process. 66(6), 593–598 (1998).
[CrossRef]

Wu, M.

C. Zhao, M. Wu, D. Fan, and S. Wen, “Field enhancement and power distribution characteristics of subwavelength-diameter terahertz hollow optical fiber,” Opt. Commun. 281(5), 1129–1133 (2008).
[CrossRef]

Yao, J. Q.

Y. F. Geng, X. L. Tan, P. Wang, and J. Q. Yao, “Transmission loss and dispersion in plastic terahertz photonic band-gap fibers,” Appl. Phys. B 91(2), 333–336 (2008).
[CrossRef]

Yu, C.

J. Lu, C. Yu, H. Chang, H. Chen, Y. Li, C. Pan, and C. Sun, “Terahertz air-core microstructure fiber,” Appl. Phys. Lett. 92(6), 64105 (2008).
[CrossRef]

Zhang, J.

T. Jeon, J. Zhang, and D. Grischkowsky, “THz Sommerfield wave propagation on a single metal wire,” Appl. Phys. Lett. 86(16), 161904 (2005).
[CrossRef]

Zhao, C.

C. Zhao, M. Wu, D. Fan, and S. Wen, “Field enhancement and power distribution characteristics of subwavelength-diameter terahertz hollow optical fiber,” Opt. Commun. 281(5), 1129–1133 (2008).
[CrossRef]

Zoboli, M.

L. Vincetti, V. Setti, and M. Zoboli, “Terahertz Tube Lattice Fibers With Octagonal Symmetry,” IEEE Photon. Technol. Lett. 22(13), 972–974 (2010).
[CrossRef]

S. Selleri, L. Vincetti, A. Cucinotta, and M. Zoboli, “Complex FEM Modal Solver of Optical Waveguides with PML Boundary Conditions,” Opt. Quantum Electron. 33(4/5), 359–371 (2001).
[CrossRef]

A. Cucinotta, G. Pelosi, S. Selleri, L. Vincetti, and M. Zoboli, “Perfectly Matched Anisotropic Layers for Optical Waveguides Analysis through the Finite Element Beam Propagation Method,” Microw. Opt. Technol. Lett. 23(2), 67–69 (1999).
[CrossRef]

Appl. Opt.

Appl. Phys. B

Y. F. Geng, X. L. Tan, P. Wang, and J. Q. Yao, “Transmission loss and dispersion in plastic terahertz photonic band-gap fibers,” Appl. Phys. B 91(2), 333–336 (2008).
[CrossRef]

Appl. Phys. Lett.

J. Lu, C. Yu, H. Chang, H. Chen, Y. Li, C. Pan, and C. Sun, “Terahertz air-core microstructure fiber,” Appl. Phys. Lett. 92(6), 64105 (2008).
[CrossRef]

T. Jeon, J. Zhang, and D. Grischkowsky, “THz Sommerfield wave propagation on a single metal wire,” Appl. Phys. Lett. 86(16), 161904 (2005).
[CrossRef]

Appl. Phys., A Mater. Sci. Process.

C. Winnewisser, F. Lewen, and H. Helm, “Transmission characteristics of dichroic filters measured by THz time-domain spectroscopy,” Appl. Phys., A Mater. Sci. Process. 66(6), 593–598 (1998).
[CrossRef]

Bell Syst. Tech. J.

E. Marcatili and R. Schmeltzer, “Hollow Metallic and Dielectric Waveguides for Long Distance Optical Transmission and Lasers,” Bell Syst. Tech. J. 1783–1809 (1964).

IEEE Photon. Technol. Lett.

L. Vincetti, V. Setti, and M. Zoboli, “Terahertz Tube Lattice Fibers With Octagonal Symmetry,” IEEE Photon. Technol. Lett. 22(13), 972–974 (2010).
[CrossRef]

L. Vincetti, “Confinement losses in honeycomb fibers,” IEEE Photon. Technol. Lett. 16(9), 2048–2050 (2004).
[CrossRef]

Infrared Phys.

J. R. Birch, J. D. Dromey, and J. Lesurf, “The optical constants of some common low-loss polymers between 4 and 40 cm−1,” Infrared Phys. 21(4), 225–228 (1981).
[CrossRef]

J. Appl. Phys.

R. Mendis, “THz transmission characteristics of dielectric-filled parallel-plate waveguides,” J. Appl. Phys. 101(8), 083115 (2007).
[CrossRef]

J. Eur. Opt. Soc.

F. Benabid, P. J. Roberts, F. Couny, and P. S. Light, “Light and gas confinement in hollow-core photonic crystal fibre based photonic microcells,” J. Eur. Opt. Soc. 4, 09004 (2009).
[CrossRef]

J. Korean Phys. Soc.

Y. Jin, G. Kim, and S. Jeon, “Terahertz Dielectric Properties of Polymers,” J. Korean Phys. Soc. 49, 513–517 (2006).

J. Lightwave Technol.

J. Opt. Soc. Am. B

Jpn. J. Appl. Phys.

M. Goto, A. Quema, H. Takahashi, S. Ono, and N. Sarukura, “Teflon photonic crystal fiber as terahertz waveguide,” Jpn. J. Appl. Phys. 43(2B), 317–319 (2004).
[CrossRef]

Microw. Opt. Technol. Lett.

L. Vincetti, “Hollow core photonic band gap fiber for THz applications,” Microw. Opt. Technol. Lett. 51(7), 1711–1714 (2009).
[CrossRef]

A. Cucinotta, G. Pelosi, S. Selleri, L. Vincetti, and M. Zoboli, “Perfectly Matched Anisotropic Layers for Optical Waveguides Analysis through the Finite Element Beam Propagation Method,” Microw. Opt. Technol. Lett. 23(2), 67–69 (1999).
[CrossRef]

Microwave Opt. Technol. Lett.

L. Vincetti, “Hollow core photonic band gap fibre for THz Applications,” Microwave Opt. Technol. Lett. 51(7), 1711–1714 (2009).
[CrossRef]

Nat. Photonics

M. Tonouchi, “Cutting-edge terahertz technology,” Nat. Photonics 1(2), 97–105 (2007).
[CrossRef]

Opt. Commun.

C. Zhao, M. Wu, D. Fan, and S. Wen, “Field enhancement and power distribution characteristics of subwavelength-diameter terahertz hollow optical fiber,” Opt. Commun. 281(5), 1129–1133 (2008).
[CrossRef]

L. Vincetti, “Single-mode propagation in triangular tube lattice hollow-core terahertz fibers,” Opt. Commun. 283(6), 979–984 (2010).
[CrossRef]

Opt. Fiber Technol.

L. Vincetti, “Numerical analysis of plastic hollow core microstructured fiber for Terahertz applications,” Opt. Fiber Technol. 15(4), 398–401 (2009).
[CrossRef]

Opt. Lett.

Opt. Quantum Electron.

S. Selleri, L. Vincetti, A. Cucinotta, and M. Zoboli, “Complex FEM Modal Solver of Optical Waveguides with PML Boundary Conditions,” Opt. Quantum Electron. 33(4/5), 359–371 (2001).
[CrossRef]

Philos. Trans. R. Soc. London, Ser. A.

F. Benabid, “Hollow-core photonic bandgap fibre: new light guidance for new science and technology,” Philos. Trans. R. Soc. London, Ser. A. 364(1849), 3439–3462 (2006).
[CrossRef]

Proc. IEEE

M. Naftaly and R. E. Miles, “Terahertz Time-Domain spectroscopy for Material Characterization,” Proc. IEEE 95(8), 1658–1665 (2007).
[CrossRef]

Science

J. C. Knight, J. Broeng, T. A. Birks, and P. S. J. Russell, “Photonic band gap guidance in optical fibers,” Science 282(5393), 1476–1478 (1998).
[CrossRef] [PubMed]

F. Couny and F. Benabid, “P. J. robets, P. S. Light, and M. G. Raymer, “Generation and Photonic Guidance of Multi-Octave Optical-Frequency Combs,” Science 318, 118–121 (2007).

Other

A. Argyros and J. Pla, “Hollow-core polymer fibres with a kagome lattice: potential for transmission in the infrared,” Opt. Express 15, 7713–7719 (2007), http://www.opticsinfobase.org/oe/abstract.cfm?uri=oe-15-12-7713 .

G. J. Pearce, G. S. Wiederhecker, C. G. Poulton, S. Burger, and P. St. Russell, “Models for guidance in kagome-structured hollow-core photonic crystal fibres,” Opt. Express 15, 12680–12685 (2007), http://www.opticsinfobase.org/oe/abstract.cfm?uri=oe-15-20-12680 .

F. Couny, P. J. Roberts, T. A. Birks, and F. Benabid, “Square-lattice large-pitch hollow-core photonic crystal fiber,” Opt. Express 16, 20626–20636 (2008), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-16-25-20626 .

A. Argyros, S. G. Leon-Saval, J. Pla, and A. Docherty, “Antiresonant reflection and inhibited coupling in hollow-core square lattice optical fibres,” Opt. Express 16, 5642–5648 (2008), http://www.opticsinfobase.org/abstract.cfm?URI=oe-16-8-5642 .

C. Lai, B. You, J. Lu, T. Lu, J. Peng, C. Sun, and H. Chang, “Modal characteristics of antiresonant reflecting pipe waveguides for terahertz waveguiding,” Opt. Express 18, 309–322 (2010), http://www.opticsinfobase.org/abstract.cfm?URI=oe-18-1-309 .

M. Kharadly, and J. Lewis, “Properties of dielectric-tube waveguides,” Proc. IEE 116, 214–224 (1969).

A. Hassani, A. Dupuis, and M. Skorobogatiy, “Porous polymer fibers for low-loss Terahertz guiding” Opt. Express 16, 6340–6351 (2008), http://www.opticsinfobase.org/oe/abstract.cfm?uri=oe-16-9-6340 .

S. Atakaramians, S. Afshar Vahid, H. Ebendorff-Heidepriem, M. Nagel, B. Fischer, D. Abbott, and T. Monro, “THz porous fibers: design, fabrication and experimental characterization,” Opt. Express 17, 14053–14062, http://www.opticsinfobase.org/oe/abstract.cfm?uri=oe-17-16-14053 .

D. Chen, and H. Chen, “A novel low-loss Terahertz waveguide: Polymer tube,” Opt. Express 18, 3762–3767 (2010), http://www.opticsinfobase.org/oe/abstract.cfm?uri=oe-18-4-3762 .

K. Saitoh, N. A. Mortensen, and M. Koshiba, “Air-core photonic band-gap fibers: the impact of surface modes,” Opt. Express 12, 394–400 (2004), http://www.opticsinfobase.org/oe/abstract.cfm?URI=OPEX-12-3-394 .

J. Fini, “Design of solid and microstructure fibers for suppression of higher-order modes,” Opt. Express 13, 3477–3490 (2005), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-13-9-3477 .

K. Saitoh, N. Florous, T. Murao, and M. Koshiba, “Design of photonic band gap fibers with suppressed higher-order modes: Towards the development of effectively single mode large hollow-core fiber platforms,” Opt. Express 14, 7342–7352 (2006), http://www.opticsinfobase.org/abstract.cfm?URI=oe-14-16-7342 .

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1

(a) Transverse section of the tube waveguide. (b) Intensity and electric field distribution of the tube waveguide modes: airy modes (top) and dielectric modes (bottom). The modes are ordered from left to right and, for dielectric modes, from top to bottom following the ordering of their cut-off frequencies.

Fig. 2
Fig. 2

Loss of the first airy modes (top) and dispersion curves (bottom) of some airy and dielectric modes versus the normalized frequency F. A tube waveguide with n=1.44 and ρ=0.9 is considered. Dashed lines represent the dispersion curves given by Eq. (2).

Fig. 3
Fig. 3

Normalized cut-off frequencies versus the inner and outer diameter ratio ρ, for two different dielectric refractive indices: n=1.44, 2.5.

Fig. 4
Fig. 4

(a) Transverse section of a TTL fiber. (b) Intensity distribution of the first four core modes. (c) Leakage loss (top) and dispersion curves (bottom) of the first core modes of a TTL fiber with ρ=0.9. Solid lines show curves given by Eq. (2) with R=(R1 +R2 )/2 being R1 and R2 computed through Eq. (3)

Fig. 5
Fig. 5

(a) Intensity distribution of two cladding modes: a dielectric mode (top) and a HE11-like airy mode (bottom). (b) Effective indices of cladding modes versus the normalized frequency F of a TTL fiber with ρ=0.9. Top: dielectric modes around F=1; with high (green crosses) and low (red points) azimuthal dependence; squares show effective index of the dielectric mode of the single tube waveguide analytically computed. Bottom: the airy mode HE11-like (red points); dotted black line shows dispersion curves computed through Eq. (2) with R=D/2.

Fig. 6
Fig. 6

Leakage loss (top) and dispersion curves (bottom) for n=1.44 and three different values of the ratio ρ: 0.4 (left), 0.65 (middle), and 0.75 (right). Dashed black lines show dispersion curves given by Eq. (2) with u11 and R=(R1 +R2 )/2 being R1 and R2 computed through Eq. (3).

Fig. 7
Fig. 7

Leakage loss (top) and dispersion curves (bottom) for ρ=0.9 and three different values of the refractive index n: 1.44 (red), 2.0 (green), and 2.5 (blue). Solid black lines shows dispersion curves computed through Eq. (2) with R=(R1 +R2 )/2 being R1 and R2 computed through Eq. (3).

Fig. 8
Fig. 8

Left: Fibers geometries obtained by arranging tube on the vertices on a polygon with N sides. Right: on the top detail on the core geometry; on the bottom number N of tubes necessary to guarantee the resonance between core mode TE01 and the airy mode HE11 versus the ratio diameters ρ, for three different l/d.

Fig. 9
Fig. 9

Leakege loss and dispersion curves for TTL (left), Heptagonal (middle), and Octagonal (right) fibers with a core radius R=1.2mm and tube thickness t=0.1mm. Solid red lines show dispersion curves of the HE11 airy cladding modes.

Fig. 10
Fig. 10

Differential loss versus the minimum of the FM loss for different core radius in case of lossless dielectric (left) and lossy dielectric (right) with ni =1.2E-3. By starting form bottom-left side the core radii are: R=1.6mm, 1.2mm, 0.97mm, 0.73mm.

Fig. 11
Fig. 11

Leakege loss and dispersion curves of a heptagonal fiber with a core radius R=0.73mm and tube thickness t=0.1mm. Solid red lines show dispersion curves of the HE11 -like airy cladding modes.

Equations (11)

Equations on this page are rendered with MathJax. Learn more.

¯ × ( p ^ ¯ × v ¯ ) k 0 2 q ^ v ¯ = 0 ,
( [ A ] ( γ k 0 ) 2 [ B ] ) { V } = 0.
L O S S = 20 log 10 e α 8.686 α [ dB / m ]
F = 2 t c n 2 1 f .
n e f f μ ν ( f ) = 1 1 2 ( u μ ν c π 2 R f ) 2 ,
R 1 = d ( 3 l d 1 2 ) , and R 2 = d ( 2 l d 1 2 ) .
Δ α = α F M α H O M ,
R = 1 2 d ( l d 1 sin ( π N ) 1 ) .
n H O M T E 01 ( f ) = 1 1 2 ( u 01 c 2 π R f ) 2 .
n A i r y H E 11 ( f ) = 1 1 2 ( u 11 c π D f ) 2 .
N = π arc sin [ l d u 11 u 11 + u 01 ρ ] .

Metrics