Abstract

We demonstrate a 120 GHz 3-dB bandwidth on-chip silicon photonic interleaver with a flat passband over a broad spectral range of 70 nm. The structure of the interleaver is based on an asymmetric Mach-Zehnder interferometer (MZI) with 3 ring resonators coupled to the arms of the MZI. The transmission spectra of this device depict a rapid roll-off on the band edges, where the 20-dB bandwidth is measured to be 142 GHz. This device is optimized for operation in the C-band with a channel crosstalk as low as −20 dB. The device also has full reconfiguration capability to compensate for fabrication imperfections.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. P. Agrawal, “Fiber-optic communication systems,” 3rd ed. (Wiley, 2002).
  2. M. Haurylau, G. Q. Chen, H. Chen, J. D. Zhang, N. A. Nelson, D. H. Albonesi, E. G. Friedman, and P. M. Fauchet, “On-chip optical interconnect roadmap: challenges and critical directions,” IEEE J. Sel. Top. Quantum Electron. 12(6), 1699–1705 (2006).
    [CrossRef]
  3. A. S. Liu, R. Jones, L. Liao, D. Samara-Rubio, D. Rubin, O. Cohen, R. Nicolaescu, and M. Paniccia, “A high-speed silicon optical modulator based on a metal-oxide-semiconductor capacitor,” Nature 427(6975), 615–618 (2004).
    [CrossRef] [PubMed]
  4. S. Manipatruni, Q. Xu, B. Schmidt, J. Shakya, and M. Lipson, “High speed carrier injection 18 Gb/s silicon micro-ring electro-optic modulator,” in The 20th Annual Meeting of the IEEE Lasers and Electro-Optics Society (IEEE,2007), 537–538.
  5. W. M. J. Green, M. J. Rooks, L. Sekaric, and Y. A. Vlasov, “Ultra-compact, low RF power, 10 Gb/s silicon Mach–Zehnder modulator,” Opt. Express 15(25), 17106–17113 (2007).
    [CrossRef] [PubMed]
  6. T. Yin, R. Cohen, M. M. Morse, G. Sarid, Y. Chetrit, D. Rubin, and M. J. Paniccia, “31 GHz Ge n-i-p waveguide photodetectors on silicon-on-insulator substrate,” Opt. Express 15(21), 13965–13971 (2007).
    [CrossRef] [PubMed]
  7. Y. M. Kang, H. D. Liu, M. Morse, M. J. Paniccia, M. Zadka, S. Litski, G. Sarid, A. Pauchard, Y. H. Kuo, H. W. Chen, W. S. Zaoui, J. E. Bowers, A. Beling, D. C. McIntosh, X. G. Zheng, and J. C. Campbell, “Monolithic germanium/silicon avalanche photodiodes with 340 GHz gain-bandwidth product,” Nat. Photonics 3(1), 59–63 (2009).
    [CrossRef]
  8. L. Chen and M. Lipson, “Ultra-low capacitance and high speed germanium photodetectors on silicon,” Opt. Express 17(10), 7901–7906 (2009).
    [CrossRef] [PubMed]
  9. S. Assefa, F. N. A. Xia, and Y. A. Vlasov, “Reinventing germanium avalanche photodetector for nanophotonic on-chip optical interconnects,” Nature 464(7285), 80–84 (2010).
    [CrossRef] [PubMed]
  10. S. Cao, J. Chen, J. N. Damask, C. R. Doerr, L. Guiziou, G. Harvey, Y. Hibino, H. Li, S. Suzuki, K. Y. Wu, and P. Xie, “Interleaver technology: comparisons and applications requirements,” J. Lightwave Technol. 22(1), 281–289 (2004).
    [CrossRef]
  11. K. Jinguji, “Synthesis of coherent two-port optical delay-line circuit with ring waveguides,” J. Lightwave Technol. 14(8), 1882–1898 (1996).
    [CrossRef]
  12. K. Jinguji and M. Oguma, “Optical half-band filters,” J. Lightwave Technol. 18(2), 252–259 (2000).
    [CrossRef]
  13. M. Oguma, T. Kitoh, Y. Inoue, T. Mizuno, T. Shibata, M. Kohtoku, and Y. Hibino, “Compact and low-loss interleave filter employing lattice-form structure and silica-based waveguide,” J. Lightwave Technol. 22(3), 895–902 (2004).
    [CrossRef]
  14. J. F. Song, Q. Fang, S. H. Tao, M. B. Yu, G. Q. Lo, and D. L. Kwong, “Passive ring-assisted Mach–Zehnder interleaver on silicon-on-insulator,” Opt. Express 16(12), 8359–8365 (2008).
    [CrossRef] [PubMed]
  15. J. F. Song, S. H. Tao, Q. Fang, T. Y. Liow, M. B. Yu, G. Q. Lo, and D. L. Kwong, “Thermo-optical enhanced silicon wire interleavers,” IEEE Photon. Technol. Lett. 20(24), 2165–2167 (2008).
    [CrossRef]
  16. J. F. Song, H. Zhao, Q. Fang, S. H. Tao, T. Y. Liow, M. B. Yu, G. Q. Lo, and D. L. Kwong, “Effective thermo-optical enhanced cross-ring resonator MZI interleavers on SOI,” Opt. Express 16(26), 21476–21482 (2008).
    [CrossRef] [PubMed]
  17. S. Darmawan, Y. M. Landobasa, P. Dumon, R. Baets, and M. K. Chin, “Nested-ring Mach–Zehnder interferometer in silicon-on-insulator,” IEEE Photon. Technol. Lett. 20(1), 9–11 (2008).
    [CrossRef]
  18. R. Essiambre and P. J. Winzer, “Transport challenges in optically-routed networks,” Proc. SPIE 6021, 694–704 (2005).
  19. JDSU Communications Components, “Bandsplitters 200 GHz Channel Spacing” (JDS Uniphase Corporation, 2010). http://www.jdsu.com/product-literature/bandsplitter200_ds_cc_ae.pdf .
  20. K. Oda, N. Takato, H. Toba, and K. Nosu, “A wideband guided-wave periodic multi demultiplexer with a ring resonator for optical FDM transmission-systems,” J. Lightwave Technol. 6(6), 1016–1023 (1988).
    [CrossRef]
  21. C. K. Madsen, and J. H. Zhao, Optical Filter Design and Analysis: A Signal Processing Approach (Wiley, 1999).
  22. Z. P. Wang, S. J. Chang, C. Y. Ni, and Y. J. Chen, “A high-performance ultracompact optical interleaver based on double-ring assisted Mach-Zehnder interferometer,” IEEE Photon. Technol. Lett. 19(14), 1072–1074 (2007).
    [CrossRef]
  23. A. Yariv, “Critical coupling and its control in optical waveguide-ring resonator systems,” IEEE Photon. Technol. Lett. 14(4), 483–485 (2002).
    [CrossRef]
  24. H. Takahashi, P. Carlsson, K. Nishimura, and M. Usami, “Analysis of negative group delay response of all-pass ring resonator with Mach–Zehnder interferometer,” IEEE Photon. Technol. Lett. 16(9), 2063–2065 (2004).
    [CrossRef]
  25. W. M. J. Green, R. K. Lee, G. A. Derose, A. Scherer, and A. Yariv, “Hybrid InGaAsP-InP Mach–Zehnder racetrack resonator for thermooptic switching and coupling control,” Opt. Express 13(5), 1651–1659 (2005).
    [CrossRef] [PubMed]
  26. W. D. Sacher and J. K. S. Poon, “Characteristics of microring resonators with waveguide-resonator coupling modulation,” J. Lightwave Technol. 27(17), 3800–3811 (2009).
    [CrossRef]
  27. H. L. R. Lira, S. Manipatruni, and M. Lipson, “Broadband hitless silicon electro-optic switch for on-chip optical networks,” Opt. Express 17(25), 22271–22280 (2009).
    [CrossRef]
  28. N. Sherwood-Droz, H. Wang, L. Chen, B. G. Lee, A. Biberman, K. Bergman, and M. Lipson, “Optical 4x4 hitless slicon router for optical networks-on-chip (NoC),” Opt. Express 16(20), 15915–15922 (2008).
    [CrossRef] [PubMed]
  29. K. Jinguji, N. Takato, A. Sugita, and M. Kawachi, “Mach–Zehnder interferometer type optical wave-guide coupler with wavelength-flattened coupling ratio,” Electron. Lett. 26(17), 1326–1327 (1990).
    [CrossRef]
  30. J. Van Campenhout, W. M. J. Green, S. Assefa, and Y. A. Vlasov, “Low-power, 2 x 2 silicon electro-optic switch with 110-nm bandwidth for broadband reconfigurable optical networks,” Opt. Express 17(26), 24020–24029 (2009).
    [CrossRef]

2010

S. Assefa, F. N. A. Xia, and Y. A. Vlasov, “Reinventing germanium avalanche photodetector for nanophotonic on-chip optical interconnects,” Nature 464(7285), 80–84 (2010).
[CrossRef] [PubMed]

2009

2008

2007

2006

M. Haurylau, G. Q. Chen, H. Chen, J. D. Zhang, N. A. Nelson, D. H. Albonesi, E. G. Friedman, and P. M. Fauchet, “On-chip optical interconnect roadmap: challenges and critical directions,” IEEE J. Sel. Top. Quantum Electron. 12(6), 1699–1705 (2006).
[CrossRef]

2005

2004

H. Takahashi, P. Carlsson, K. Nishimura, and M. Usami, “Analysis of negative group delay response of all-pass ring resonator with Mach–Zehnder interferometer,” IEEE Photon. Technol. Lett. 16(9), 2063–2065 (2004).
[CrossRef]

M. Oguma, T. Kitoh, Y. Inoue, T. Mizuno, T. Shibata, M. Kohtoku, and Y. Hibino, “Compact and low-loss interleave filter employing lattice-form structure and silica-based waveguide,” J. Lightwave Technol. 22(3), 895–902 (2004).
[CrossRef]

A. S. Liu, R. Jones, L. Liao, D. Samara-Rubio, D. Rubin, O. Cohen, R. Nicolaescu, and M. Paniccia, “A high-speed silicon optical modulator based on a metal-oxide-semiconductor capacitor,” Nature 427(6975), 615–618 (2004).
[CrossRef] [PubMed]

S. Cao, J. Chen, J. N. Damask, C. R. Doerr, L. Guiziou, G. Harvey, Y. Hibino, H. Li, S. Suzuki, K. Y. Wu, and P. Xie, “Interleaver technology: comparisons and applications requirements,” J. Lightwave Technol. 22(1), 281–289 (2004).
[CrossRef]

2002

A. Yariv, “Critical coupling and its control in optical waveguide-ring resonator systems,” IEEE Photon. Technol. Lett. 14(4), 483–485 (2002).
[CrossRef]

2000

1996

K. Jinguji, “Synthesis of coherent two-port optical delay-line circuit with ring waveguides,” J. Lightwave Technol. 14(8), 1882–1898 (1996).
[CrossRef]

1990

K. Jinguji, N. Takato, A. Sugita, and M. Kawachi, “Mach–Zehnder interferometer type optical wave-guide coupler with wavelength-flattened coupling ratio,” Electron. Lett. 26(17), 1326–1327 (1990).
[CrossRef]

1988

K. Oda, N. Takato, H. Toba, and K. Nosu, “A wideband guided-wave periodic multi demultiplexer with a ring resonator for optical FDM transmission-systems,” J. Lightwave Technol. 6(6), 1016–1023 (1988).
[CrossRef]

Albonesi, D. H.

M. Haurylau, G. Q. Chen, H. Chen, J. D. Zhang, N. A. Nelson, D. H. Albonesi, E. G. Friedman, and P. M. Fauchet, “On-chip optical interconnect roadmap: challenges and critical directions,” IEEE J. Sel. Top. Quantum Electron. 12(6), 1699–1705 (2006).
[CrossRef]

Assefa, S.

S. Assefa, F. N. A. Xia, and Y. A. Vlasov, “Reinventing germanium avalanche photodetector for nanophotonic on-chip optical interconnects,” Nature 464(7285), 80–84 (2010).
[CrossRef] [PubMed]

J. Van Campenhout, W. M. J. Green, S. Assefa, and Y. A. Vlasov, “Low-power, 2 x 2 silicon electro-optic switch with 110-nm bandwidth for broadband reconfigurable optical networks,” Opt. Express 17(26), 24020–24029 (2009).
[CrossRef]

Baets, R.

S. Darmawan, Y. M. Landobasa, P. Dumon, R. Baets, and M. K. Chin, “Nested-ring Mach–Zehnder interferometer in silicon-on-insulator,” IEEE Photon. Technol. Lett. 20(1), 9–11 (2008).
[CrossRef]

Beling, A.

Y. M. Kang, H. D. Liu, M. Morse, M. J. Paniccia, M. Zadka, S. Litski, G. Sarid, A. Pauchard, Y. H. Kuo, H. W. Chen, W. S. Zaoui, J. E. Bowers, A. Beling, D. C. McIntosh, X. G. Zheng, and J. C. Campbell, “Monolithic germanium/silicon avalanche photodiodes with 340 GHz gain-bandwidth product,” Nat. Photonics 3(1), 59–63 (2009).
[CrossRef]

Bergman, K.

Biberman, A.

Bowers, J. E.

Y. M. Kang, H. D. Liu, M. Morse, M. J. Paniccia, M. Zadka, S. Litski, G. Sarid, A. Pauchard, Y. H. Kuo, H. W. Chen, W. S. Zaoui, J. E. Bowers, A. Beling, D. C. McIntosh, X. G. Zheng, and J. C. Campbell, “Monolithic germanium/silicon avalanche photodiodes with 340 GHz gain-bandwidth product,” Nat. Photonics 3(1), 59–63 (2009).
[CrossRef]

Campbell, J. C.

Y. M. Kang, H. D. Liu, M. Morse, M. J. Paniccia, M. Zadka, S. Litski, G. Sarid, A. Pauchard, Y. H. Kuo, H. W. Chen, W. S. Zaoui, J. E. Bowers, A. Beling, D. C. McIntosh, X. G. Zheng, and J. C. Campbell, “Monolithic germanium/silicon avalanche photodiodes with 340 GHz gain-bandwidth product,” Nat. Photonics 3(1), 59–63 (2009).
[CrossRef]

Cao, S.

Carlsson, P.

H. Takahashi, P. Carlsson, K. Nishimura, and M. Usami, “Analysis of negative group delay response of all-pass ring resonator with Mach–Zehnder interferometer,” IEEE Photon. Technol. Lett. 16(9), 2063–2065 (2004).
[CrossRef]

Chang, S. J.

Z. P. Wang, S. J. Chang, C. Y. Ni, and Y. J. Chen, “A high-performance ultracompact optical interleaver based on double-ring assisted Mach-Zehnder interferometer,” IEEE Photon. Technol. Lett. 19(14), 1072–1074 (2007).
[CrossRef]

Chen, G. Q.

M. Haurylau, G. Q. Chen, H. Chen, J. D. Zhang, N. A. Nelson, D. H. Albonesi, E. G. Friedman, and P. M. Fauchet, “On-chip optical interconnect roadmap: challenges and critical directions,” IEEE J. Sel. Top. Quantum Electron. 12(6), 1699–1705 (2006).
[CrossRef]

Chen, H.

M. Haurylau, G. Q. Chen, H. Chen, J. D. Zhang, N. A. Nelson, D. H. Albonesi, E. G. Friedman, and P. M. Fauchet, “On-chip optical interconnect roadmap: challenges and critical directions,” IEEE J. Sel. Top. Quantum Electron. 12(6), 1699–1705 (2006).
[CrossRef]

Chen, H. W.

Y. M. Kang, H. D. Liu, M. Morse, M. J. Paniccia, M. Zadka, S. Litski, G. Sarid, A. Pauchard, Y. H. Kuo, H. W. Chen, W. S. Zaoui, J. E. Bowers, A. Beling, D. C. McIntosh, X. G. Zheng, and J. C. Campbell, “Monolithic germanium/silicon avalanche photodiodes with 340 GHz gain-bandwidth product,” Nat. Photonics 3(1), 59–63 (2009).
[CrossRef]

Chen, J.

Chen, L.

Chen, Y. J.

Z. P. Wang, S. J. Chang, C. Y. Ni, and Y. J. Chen, “A high-performance ultracompact optical interleaver based on double-ring assisted Mach-Zehnder interferometer,” IEEE Photon. Technol. Lett. 19(14), 1072–1074 (2007).
[CrossRef]

Chetrit, Y.

Chin, M. K.

S. Darmawan, Y. M. Landobasa, P. Dumon, R. Baets, and M. K. Chin, “Nested-ring Mach–Zehnder interferometer in silicon-on-insulator,” IEEE Photon. Technol. Lett. 20(1), 9–11 (2008).
[CrossRef]

Cohen, O.

A. S. Liu, R. Jones, L. Liao, D. Samara-Rubio, D. Rubin, O. Cohen, R. Nicolaescu, and M. Paniccia, “A high-speed silicon optical modulator based on a metal-oxide-semiconductor capacitor,” Nature 427(6975), 615–618 (2004).
[CrossRef] [PubMed]

Cohen, R.

Damask, J. N.

Darmawan, S.

S. Darmawan, Y. M. Landobasa, P. Dumon, R. Baets, and M. K. Chin, “Nested-ring Mach–Zehnder interferometer in silicon-on-insulator,” IEEE Photon. Technol. Lett. 20(1), 9–11 (2008).
[CrossRef]

Derose, G. A.

Doerr, C. R.

Dumon, P.

S. Darmawan, Y. M. Landobasa, P. Dumon, R. Baets, and M. K. Chin, “Nested-ring Mach–Zehnder interferometer in silicon-on-insulator,” IEEE Photon. Technol. Lett. 20(1), 9–11 (2008).
[CrossRef]

Essiambre, R.

R. Essiambre and P. J. Winzer, “Transport challenges in optically-routed networks,” Proc. SPIE 6021, 694–704 (2005).

Fang, Q.

Fauchet, P. M.

M. Haurylau, G. Q. Chen, H. Chen, J. D. Zhang, N. A. Nelson, D. H. Albonesi, E. G. Friedman, and P. M. Fauchet, “On-chip optical interconnect roadmap: challenges and critical directions,” IEEE J. Sel. Top. Quantum Electron. 12(6), 1699–1705 (2006).
[CrossRef]

Friedman, E. G.

M. Haurylau, G. Q. Chen, H. Chen, J. D. Zhang, N. A. Nelson, D. H. Albonesi, E. G. Friedman, and P. M. Fauchet, “On-chip optical interconnect roadmap: challenges and critical directions,” IEEE J. Sel. Top. Quantum Electron. 12(6), 1699–1705 (2006).
[CrossRef]

Green, W. M. J.

Guiziou, L.

Harvey, G.

Haurylau, M.

M. Haurylau, G. Q. Chen, H. Chen, J. D. Zhang, N. A. Nelson, D. H. Albonesi, E. G. Friedman, and P. M. Fauchet, “On-chip optical interconnect roadmap: challenges and critical directions,” IEEE J. Sel. Top. Quantum Electron. 12(6), 1699–1705 (2006).
[CrossRef]

Hibino, Y.

Inoue, Y.

Jinguji, K.

K. Jinguji and M. Oguma, “Optical half-band filters,” J. Lightwave Technol. 18(2), 252–259 (2000).
[CrossRef]

K. Jinguji, “Synthesis of coherent two-port optical delay-line circuit with ring waveguides,” J. Lightwave Technol. 14(8), 1882–1898 (1996).
[CrossRef]

K. Jinguji, N. Takato, A. Sugita, and M. Kawachi, “Mach–Zehnder interferometer type optical wave-guide coupler with wavelength-flattened coupling ratio,” Electron. Lett. 26(17), 1326–1327 (1990).
[CrossRef]

Jones, R.

A. S. Liu, R. Jones, L. Liao, D. Samara-Rubio, D. Rubin, O. Cohen, R. Nicolaescu, and M. Paniccia, “A high-speed silicon optical modulator based on a metal-oxide-semiconductor capacitor,” Nature 427(6975), 615–618 (2004).
[CrossRef] [PubMed]

Kang, Y. M.

Y. M. Kang, H. D. Liu, M. Morse, M. J. Paniccia, M. Zadka, S. Litski, G. Sarid, A. Pauchard, Y. H. Kuo, H. W. Chen, W. S. Zaoui, J. E. Bowers, A. Beling, D. C. McIntosh, X. G. Zheng, and J. C. Campbell, “Monolithic germanium/silicon avalanche photodiodes with 340 GHz gain-bandwidth product,” Nat. Photonics 3(1), 59–63 (2009).
[CrossRef]

Kawachi, M.

K. Jinguji, N. Takato, A. Sugita, and M. Kawachi, “Mach–Zehnder interferometer type optical wave-guide coupler with wavelength-flattened coupling ratio,” Electron. Lett. 26(17), 1326–1327 (1990).
[CrossRef]

Kitoh, T.

Kohtoku, M.

Kuo, Y. H.

Y. M. Kang, H. D. Liu, M. Morse, M. J. Paniccia, M. Zadka, S. Litski, G. Sarid, A. Pauchard, Y. H. Kuo, H. W. Chen, W. S. Zaoui, J. E. Bowers, A. Beling, D. C. McIntosh, X. G. Zheng, and J. C. Campbell, “Monolithic germanium/silicon avalanche photodiodes with 340 GHz gain-bandwidth product,” Nat. Photonics 3(1), 59–63 (2009).
[CrossRef]

Kwong, D. L.

Landobasa, Y. M.

S. Darmawan, Y. M. Landobasa, P. Dumon, R. Baets, and M. K. Chin, “Nested-ring Mach–Zehnder interferometer in silicon-on-insulator,” IEEE Photon. Technol. Lett. 20(1), 9–11 (2008).
[CrossRef]

Lee, B. G.

Lee, R. K.

Li, H.

Liao, L.

A. S. Liu, R. Jones, L. Liao, D. Samara-Rubio, D. Rubin, O. Cohen, R. Nicolaescu, and M. Paniccia, “A high-speed silicon optical modulator based on a metal-oxide-semiconductor capacitor,” Nature 427(6975), 615–618 (2004).
[CrossRef] [PubMed]

Liow, T. Y.

J. F. Song, S. H. Tao, Q. Fang, T. Y. Liow, M. B. Yu, G. Q. Lo, and D. L. Kwong, “Thermo-optical enhanced silicon wire interleavers,” IEEE Photon. Technol. Lett. 20(24), 2165–2167 (2008).
[CrossRef]

J. F. Song, H. Zhao, Q. Fang, S. H. Tao, T. Y. Liow, M. B. Yu, G. Q. Lo, and D. L. Kwong, “Effective thermo-optical enhanced cross-ring resonator MZI interleavers on SOI,” Opt. Express 16(26), 21476–21482 (2008).
[CrossRef] [PubMed]

Lipson, M.

Lira, H. L. R.

Litski, S.

Y. M. Kang, H. D. Liu, M. Morse, M. J. Paniccia, M. Zadka, S. Litski, G. Sarid, A. Pauchard, Y. H. Kuo, H. W. Chen, W. S. Zaoui, J. E. Bowers, A. Beling, D. C. McIntosh, X. G. Zheng, and J. C. Campbell, “Monolithic germanium/silicon avalanche photodiodes with 340 GHz gain-bandwidth product,” Nat. Photonics 3(1), 59–63 (2009).
[CrossRef]

Liu, A. S.

A. S. Liu, R. Jones, L. Liao, D. Samara-Rubio, D. Rubin, O. Cohen, R. Nicolaescu, and M. Paniccia, “A high-speed silicon optical modulator based on a metal-oxide-semiconductor capacitor,” Nature 427(6975), 615–618 (2004).
[CrossRef] [PubMed]

Liu, H. D.

Y. M. Kang, H. D. Liu, M. Morse, M. J. Paniccia, M. Zadka, S. Litski, G. Sarid, A. Pauchard, Y. H. Kuo, H. W. Chen, W. S. Zaoui, J. E. Bowers, A. Beling, D. C. McIntosh, X. G. Zheng, and J. C. Campbell, “Monolithic germanium/silicon avalanche photodiodes with 340 GHz gain-bandwidth product,” Nat. Photonics 3(1), 59–63 (2009).
[CrossRef]

Lo, G. Q.

Manipatruni, S.

McIntosh, D. C.

Y. M. Kang, H. D. Liu, M. Morse, M. J. Paniccia, M. Zadka, S. Litski, G. Sarid, A. Pauchard, Y. H. Kuo, H. W. Chen, W. S. Zaoui, J. E. Bowers, A. Beling, D. C. McIntosh, X. G. Zheng, and J. C. Campbell, “Monolithic germanium/silicon avalanche photodiodes with 340 GHz gain-bandwidth product,” Nat. Photonics 3(1), 59–63 (2009).
[CrossRef]

Mizuno, T.

Morse, M.

Y. M. Kang, H. D. Liu, M. Morse, M. J. Paniccia, M. Zadka, S. Litski, G. Sarid, A. Pauchard, Y. H. Kuo, H. W. Chen, W. S. Zaoui, J. E. Bowers, A. Beling, D. C. McIntosh, X. G. Zheng, and J. C. Campbell, “Monolithic germanium/silicon avalanche photodiodes with 340 GHz gain-bandwidth product,” Nat. Photonics 3(1), 59–63 (2009).
[CrossRef]

Morse, M. M.

Nelson, N. A.

M. Haurylau, G. Q. Chen, H. Chen, J. D. Zhang, N. A. Nelson, D. H. Albonesi, E. G. Friedman, and P. M. Fauchet, “On-chip optical interconnect roadmap: challenges and critical directions,” IEEE J. Sel. Top. Quantum Electron. 12(6), 1699–1705 (2006).
[CrossRef]

Ni, C. Y.

Z. P. Wang, S. J. Chang, C. Y. Ni, and Y. J. Chen, “A high-performance ultracompact optical interleaver based on double-ring assisted Mach-Zehnder interferometer,” IEEE Photon. Technol. Lett. 19(14), 1072–1074 (2007).
[CrossRef]

Nicolaescu, R.

A. S. Liu, R. Jones, L. Liao, D. Samara-Rubio, D. Rubin, O. Cohen, R. Nicolaescu, and M. Paniccia, “A high-speed silicon optical modulator based on a metal-oxide-semiconductor capacitor,” Nature 427(6975), 615–618 (2004).
[CrossRef] [PubMed]

Nishimura, K.

H. Takahashi, P. Carlsson, K. Nishimura, and M. Usami, “Analysis of negative group delay response of all-pass ring resonator with Mach–Zehnder interferometer,” IEEE Photon. Technol. Lett. 16(9), 2063–2065 (2004).
[CrossRef]

Nosu, K.

K. Oda, N. Takato, H. Toba, and K. Nosu, “A wideband guided-wave periodic multi demultiplexer with a ring resonator for optical FDM transmission-systems,” J. Lightwave Technol. 6(6), 1016–1023 (1988).
[CrossRef]

Oda, K.

K. Oda, N. Takato, H. Toba, and K. Nosu, “A wideband guided-wave periodic multi demultiplexer with a ring resonator for optical FDM transmission-systems,” J. Lightwave Technol. 6(6), 1016–1023 (1988).
[CrossRef]

Oguma, M.

Paniccia, M.

A. S. Liu, R. Jones, L. Liao, D. Samara-Rubio, D. Rubin, O. Cohen, R. Nicolaescu, and M. Paniccia, “A high-speed silicon optical modulator based on a metal-oxide-semiconductor capacitor,” Nature 427(6975), 615–618 (2004).
[CrossRef] [PubMed]

Paniccia, M. J.

Y. M. Kang, H. D. Liu, M. Morse, M. J. Paniccia, M. Zadka, S. Litski, G. Sarid, A. Pauchard, Y. H. Kuo, H. W. Chen, W. S. Zaoui, J. E. Bowers, A. Beling, D. C. McIntosh, X. G. Zheng, and J. C. Campbell, “Monolithic germanium/silicon avalanche photodiodes with 340 GHz gain-bandwidth product,” Nat. Photonics 3(1), 59–63 (2009).
[CrossRef]

T. Yin, R. Cohen, M. M. Morse, G. Sarid, Y. Chetrit, D. Rubin, and M. J. Paniccia, “31 GHz Ge n-i-p waveguide photodetectors on silicon-on-insulator substrate,” Opt. Express 15(21), 13965–13971 (2007).
[CrossRef] [PubMed]

Pauchard, A.

Y. M. Kang, H. D. Liu, M. Morse, M. J. Paniccia, M. Zadka, S. Litski, G. Sarid, A. Pauchard, Y. H. Kuo, H. W. Chen, W. S. Zaoui, J. E. Bowers, A. Beling, D. C. McIntosh, X. G. Zheng, and J. C. Campbell, “Monolithic germanium/silicon avalanche photodiodes with 340 GHz gain-bandwidth product,” Nat. Photonics 3(1), 59–63 (2009).
[CrossRef]

Poon, J. K. S.

Rooks, M. J.

Rubin, D.

T. Yin, R. Cohen, M. M. Morse, G. Sarid, Y. Chetrit, D. Rubin, and M. J. Paniccia, “31 GHz Ge n-i-p waveguide photodetectors on silicon-on-insulator substrate,” Opt. Express 15(21), 13965–13971 (2007).
[CrossRef] [PubMed]

A. S. Liu, R. Jones, L. Liao, D. Samara-Rubio, D. Rubin, O. Cohen, R. Nicolaescu, and M. Paniccia, “A high-speed silicon optical modulator based on a metal-oxide-semiconductor capacitor,” Nature 427(6975), 615–618 (2004).
[CrossRef] [PubMed]

Sacher, W. D.

Samara-Rubio, D.

A. S. Liu, R. Jones, L. Liao, D. Samara-Rubio, D. Rubin, O. Cohen, R. Nicolaescu, and M. Paniccia, “A high-speed silicon optical modulator based on a metal-oxide-semiconductor capacitor,” Nature 427(6975), 615–618 (2004).
[CrossRef] [PubMed]

Sarid, G.

Y. M. Kang, H. D. Liu, M. Morse, M. J. Paniccia, M. Zadka, S. Litski, G. Sarid, A. Pauchard, Y. H. Kuo, H. W. Chen, W. S. Zaoui, J. E. Bowers, A. Beling, D. C. McIntosh, X. G. Zheng, and J. C. Campbell, “Monolithic germanium/silicon avalanche photodiodes with 340 GHz gain-bandwidth product,” Nat. Photonics 3(1), 59–63 (2009).
[CrossRef]

T. Yin, R. Cohen, M. M. Morse, G. Sarid, Y. Chetrit, D. Rubin, and M. J. Paniccia, “31 GHz Ge n-i-p waveguide photodetectors on silicon-on-insulator substrate,” Opt. Express 15(21), 13965–13971 (2007).
[CrossRef] [PubMed]

Scherer, A.

Sekaric, L.

Sherwood-Droz, N.

Shibata, T.

Song, J. F.

Sugita, A.

K. Jinguji, N. Takato, A. Sugita, and M. Kawachi, “Mach–Zehnder interferometer type optical wave-guide coupler with wavelength-flattened coupling ratio,” Electron. Lett. 26(17), 1326–1327 (1990).
[CrossRef]

Suzuki, S.

Takahashi, H.

H. Takahashi, P. Carlsson, K. Nishimura, and M. Usami, “Analysis of negative group delay response of all-pass ring resonator with Mach–Zehnder interferometer,” IEEE Photon. Technol. Lett. 16(9), 2063–2065 (2004).
[CrossRef]

Takato, N.

K. Jinguji, N. Takato, A. Sugita, and M. Kawachi, “Mach–Zehnder interferometer type optical wave-guide coupler with wavelength-flattened coupling ratio,” Electron. Lett. 26(17), 1326–1327 (1990).
[CrossRef]

K. Oda, N. Takato, H. Toba, and K. Nosu, “A wideband guided-wave periodic multi demultiplexer with a ring resonator for optical FDM transmission-systems,” J. Lightwave Technol. 6(6), 1016–1023 (1988).
[CrossRef]

Tao, S. H.

Toba, H.

K. Oda, N. Takato, H. Toba, and K. Nosu, “A wideband guided-wave periodic multi demultiplexer with a ring resonator for optical FDM transmission-systems,” J. Lightwave Technol. 6(6), 1016–1023 (1988).
[CrossRef]

Usami, M.

H. Takahashi, P. Carlsson, K. Nishimura, and M. Usami, “Analysis of negative group delay response of all-pass ring resonator with Mach–Zehnder interferometer,” IEEE Photon. Technol. Lett. 16(9), 2063–2065 (2004).
[CrossRef]

Van Campenhout, J.

Vlasov, Y. A.

Wang, H.

Wang, Z. P.

Z. P. Wang, S. J. Chang, C. Y. Ni, and Y. J. Chen, “A high-performance ultracompact optical interleaver based on double-ring assisted Mach-Zehnder interferometer,” IEEE Photon. Technol. Lett. 19(14), 1072–1074 (2007).
[CrossRef]

Winzer, P. J.

R. Essiambre and P. J. Winzer, “Transport challenges in optically-routed networks,” Proc. SPIE 6021, 694–704 (2005).

Wu, K. Y.

Xia, F. N. A.

S. Assefa, F. N. A. Xia, and Y. A. Vlasov, “Reinventing germanium avalanche photodetector for nanophotonic on-chip optical interconnects,” Nature 464(7285), 80–84 (2010).
[CrossRef] [PubMed]

Xie, P.

Yariv, A.

Yin, T.

Yu, M. B.

Zadka, M.

Y. M. Kang, H. D. Liu, M. Morse, M. J. Paniccia, M. Zadka, S. Litski, G. Sarid, A. Pauchard, Y. H. Kuo, H. W. Chen, W. S. Zaoui, J. E. Bowers, A. Beling, D. C. McIntosh, X. G. Zheng, and J. C. Campbell, “Monolithic germanium/silicon avalanche photodiodes with 340 GHz gain-bandwidth product,” Nat. Photonics 3(1), 59–63 (2009).
[CrossRef]

Zaoui, W. S.

Y. M. Kang, H. D. Liu, M. Morse, M. J. Paniccia, M. Zadka, S. Litski, G. Sarid, A. Pauchard, Y. H. Kuo, H. W. Chen, W. S. Zaoui, J. E. Bowers, A. Beling, D. C. McIntosh, X. G. Zheng, and J. C. Campbell, “Monolithic germanium/silicon avalanche photodiodes with 340 GHz gain-bandwidth product,” Nat. Photonics 3(1), 59–63 (2009).
[CrossRef]

Zhang, J. D.

M. Haurylau, G. Q. Chen, H. Chen, J. D. Zhang, N. A. Nelson, D. H. Albonesi, E. G. Friedman, and P. M. Fauchet, “On-chip optical interconnect roadmap: challenges and critical directions,” IEEE J. Sel. Top. Quantum Electron. 12(6), 1699–1705 (2006).
[CrossRef]

Zhao, H.

Zheng, X. G.

Y. M. Kang, H. D. Liu, M. Morse, M. J. Paniccia, M. Zadka, S. Litski, G. Sarid, A. Pauchard, Y. H. Kuo, H. W. Chen, W. S. Zaoui, J. E. Bowers, A. Beling, D. C. McIntosh, X. G. Zheng, and J. C. Campbell, “Monolithic germanium/silicon avalanche photodiodes with 340 GHz gain-bandwidth product,” Nat. Photonics 3(1), 59–63 (2009).
[CrossRef]

Electron. Lett.

K. Jinguji, N. Takato, A. Sugita, and M. Kawachi, “Mach–Zehnder interferometer type optical wave-guide coupler with wavelength-flattened coupling ratio,” Electron. Lett. 26(17), 1326–1327 (1990).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron.

M. Haurylau, G. Q. Chen, H. Chen, J. D. Zhang, N. A. Nelson, D. H. Albonesi, E. G. Friedman, and P. M. Fauchet, “On-chip optical interconnect roadmap: challenges and critical directions,” IEEE J. Sel. Top. Quantum Electron. 12(6), 1699–1705 (2006).
[CrossRef]

IEEE Photon. Technol. Lett.

J. F. Song, S. H. Tao, Q. Fang, T. Y. Liow, M. B. Yu, G. Q. Lo, and D. L. Kwong, “Thermo-optical enhanced silicon wire interleavers,” IEEE Photon. Technol. Lett. 20(24), 2165–2167 (2008).
[CrossRef]

S. Darmawan, Y. M. Landobasa, P. Dumon, R. Baets, and M. K. Chin, “Nested-ring Mach–Zehnder interferometer in silicon-on-insulator,” IEEE Photon. Technol. Lett. 20(1), 9–11 (2008).
[CrossRef]

Z. P. Wang, S. J. Chang, C. Y. Ni, and Y. J. Chen, “A high-performance ultracompact optical interleaver based on double-ring assisted Mach-Zehnder interferometer,” IEEE Photon. Technol. Lett. 19(14), 1072–1074 (2007).
[CrossRef]

A. Yariv, “Critical coupling and its control in optical waveguide-ring resonator systems,” IEEE Photon. Technol. Lett. 14(4), 483–485 (2002).
[CrossRef]

H. Takahashi, P. Carlsson, K. Nishimura, and M. Usami, “Analysis of negative group delay response of all-pass ring resonator with Mach–Zehnder interferometer,” IEEE Photon. Technol. Lett. 16(9), 2063–2065 (2004).
[CrossRef]

J. Lightwave Technol.

Nat. Photonics

Y. M. Kang, H. D. Liu, M. Morse, M. J. Paniccia, M. Zadka, S. Litski, G. Sarid, A. Pauchard, Y. H. Kuo, H. W. Chen, W. S. Zaoui, J. E. Bowers, A. Beling, D. C. McIntosh, X. G. Zheng, and J. C. Campbell, “Monolithic germanium/silicon avalanche photodiodes with 340 GHz gain-bandwidth product,” Nat. Photonics 3(1), 59–63 (2009).
[CrossRef]

Nature

S. Assefa, F. N. A. Xia, and Y. A. Vlasov, “Reinventing germanium avalanche photodetector for nanophotonic on-chip optical interconnects,” Nature 464(7285), 80–84 (2010).
[CrossRef] [PubMed]

A. S. Liu, R. Jones, L. Liao, D. Samara-Rubio, D. Rubin, O. Cohen, R. Nicolaescu, and M. Paniccia, “A high-speed silicon optical modulator based on a metal-oxide-semiconductor capacitor,” Nature 427(6975), 615–618 (2004).
[CrossRef] [PubMed]

Opt. Express

W. M. J. Green, M. J. Rooks, L. Sekaric, and Y. A. Vlasov, “Ultra-compact, low RF power, 10 Gb/s silicon Mach–Zehnder modulator,” Opt. Express 15(25), 17106–17113 (2007).
[CrossRef] [PubMed]

T. Yin, R. Cohen, M. M. Morse, G. Sarid, Y. Chetrit, D. Rubin, and M. J. Paniccia, “31 GHz Ge n-i-p waveguide photodetectors on silicon-on-insulator substrate,” Opt. Express 15(21), 13965–13971 (2007).
[CrossRef] [PubMed]

L. Chen and M. Lipson, “Ultra-low capacitance and high speed germanium photodetectors on silicon,” Opt. Express 17(10), 7901–7906 (2009).
[CrossRef] [PubMed]

J. F. Song, Q. Fang, S. H. Tao, M. B. Yu, G. Q. Lo, and D. L. Kwong, “Passive ring-assisted Mach–Zehnder interleaver on silicon-on-insulator,” Opt. Express 16(12), 8359–8365 (2008).
[CrossRef] [PubMed]

J. F. Song, H. Zhao, Q. Fang, S. H. Tao, T. Y. Liow, M. B. Yu, G. Q. Lo, and D. L. Kwong, “Effective thermo-optical enhanced cross-ring resonator MZI interleavers on SOI,” Opt. Express 16(26), 21476–21482 (2008).
[CrossRef] [PubMed]

H. L. R. Lira, S. Manipatruni, and M. Lipson, “Broadband hitless silicon electro-optic switch for on-chip optical networks,” Opt. Express 17(25), 22271–22280 (2009).
[CrossRef]

N. Sherwood-Droz, H. Wang, L. Chen, B. G. Lee, A. Biberman, K. Bergman, and M. Lipson, “Optical 4x4 hitless slicon router for optical networks-on-chip (NoC),” Opt. Express 16(20), 15915–15922 (2008).
[CrossRef] [PubMed]

W. M. J. Green, R. K. Lee, G. A. Derose, A. Scherer, and A. Yariv, “Hybrid InGaAsP-InP Mach–Zehnder racetrack resonator for thermooptic switching and coupling control,” Opt. Express 13(5), 1651–1659 (2005).
[CrossRef] [PubMed]

J. Van Campenhout, W. M. J. Green, S. Assefa, and Y. A. Vlasov, “Low-power, 2 x 2 silicon electro-optic switch with 110-nm bandwidth for broadband reconfigurable optical networks,” Opt. Express 17(26), 24020–24029 (2009).
[CrossRef]

Proc. SPIE

R. Essiambre and P. J. Winzer, “Transport challenges in optically-routed networks,” Proc. SPIE 6021, 694–704 (2005).

Other

JDSU Communications Components, “Bandsplitters 200 GHz Channel Spacing” (JDS Uniphase Corporation, 2010). http://www.jdsu.com/product-literature/bandsplitter200_ds_cc_ae.pdf .

G. P. Agrawal, “Fiber-optic communication systems,” 3rd ed. (Wiley, 2002).

S. Manipatruni, Q. Xu, B. Schmidt, J. Shakya, and M. Lipson, “High speed carrier injection 18 Gb/s silicon micro-ring electro-optic modulator,” in The 20th Annual Meeting of the IEEE Lasers and Electro-Optics Society (IEEE,2007), 537–538.

C. K. Madsen, and J. H. Zhao, Optical Filter Design and Analysis: A Signal Processing Approach (Wiley, 1999).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Filtering function of an interleaver. (a) Multiplexing and demultiplexing of a comb of WDM signals. (b) Transmission spectra of the interleaver, illustrating the terminologies used in this paper.

Fig. 2
Fig. 2

Schematic of ring-assisted MZI interleavers. (a) Single ring-assisted MZI interleaver. (b) Double ring-assisted MZI interleaver. (c) Triple ring-assisted MZI interleaver. (d) Calculated cross port transmission spectra of an optimal single ring (κ 1 = 0.89), optimal double ring (κ 1 = 0.97, and κ 2 = 0.62), and optimal triple ring (κ 1 = 0.96, κ 2 = 0.68, and κ 3 = 0.25) assisted MZI interleaver.

Fig. 3
Fig. 3

Impact of ring loss on the cross port transmission spectra of an optimal triple ring-assisted MZI interleaver

Fig. 4
Fig. 4

Triple ring-assisted MZI interleaver. (a) Contour plot of the channel crosstalk as a function of κ 1 and κ 2, with the value of κ 3 optimized to be 0.25 for a passband bandwidth requirement of 0.55 FSR. (b) Simulated transmission spectra of the interleaver with κ 1 = 0.96 and κ 2 = 0.68, indicated by the white cross in the contour plot. (c) κ 1 = 0.8 and κ 2 = 0.68, indicated by the black cross.

Fig. 5
Fig. 5

Fully reconfigurable triple ring-assisted MZI interleaver. (a) Schematic of the tunable MZI coupler. (b) Fully reconfigurable triple ring-assisted MZI interleaver. All the blue coupling regions of the device are replaced with tunable MZI couplers. The rings are also replaced with racetrack resonators. A NiCr heater is placed on each arm of the MZI to tune the coupling by thermo-optic effect. A NiCr heater is also placed on each racetrack resonator and the asymmetric MZI path difference to tune the effective phase of the device.

Fig. 6
Fig. 6

Final fabricated device. (a) Optical microscope picture. (b) Scanning electron microscope (SEM) picture of the racetrack resonator coupled to the arm of the MZI.

Fig. 7
Fig. 7

Operation of the fabricated device in the ideal coupling regime. (a) Transmission spectra of the bar and cross port. (b) Zoom-in of the section in (a).

Fig. 8
Fig. 8

Operation of the fabricated device in the non-ideal coupling regime. (a) Transmission spectra of the bar and cross port. (b) Zoom-in of the section in (a).

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

H b a r ( z ) = 1 2 [ ( ρ 1 + z 2 1 + ρ 1 z 2 ) z 1 ] ,
H c r o s s ( z ) = j 2 [ ( ρ 1 + z 2 1 + ρ 1 z 2 ) + z 1 ] ,
H b a r ( z ) = 1 2 [ ( ρ 1 + z 2 1 + ρ 1 z 2 ) ( ρ 3 + z 2 1 + ρ 3 z 2 ) ( ρ 2 + z 2 1 + ρ 2 z 2 ) z 1 ] ,
H c r o s s ( z ) = j 2 [ ( ρ 1 + z 2 1 + ρ 1 z 2 ) ( ρ 3 + z 2 1 + ρ 3 z 2 ) + ( ρ 2 + z 2 1 + ρ 2 z 2 ) z 1 ] ,

Metrics