Abstract

We propose a novel 16-quadrature amplitude modulation (QAM) transmitter based on two cascaded IQ modulators driven by four separate binary electrical signals. The proposed 16-QAM transmitter features scalable configuration and stable performance with simple bias-control. Generation of 16-QAM signals at 40 Gbaud is experimentally demonstrated for the first time and visualized with a high speed constellation analyzer. The proposed modulator is also compared to two other schemes. We investigate the modulator bandwidth requirements and tolerance to accumulated chromatic dispersion through numerical simulations, and the minimum theoretical insertion attenuation is calculated analytically.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Sano, H. Masuda, T. Kobayashi, M. Fujiwara, K. Horikoshi, E. Yoshida, Y. Miyamoto, M. Matsui, M. Mizoguchi, H. Yamazaki, Y. Sakamaki, and H. Ishii, “69.1-Tb/s (432 x 171-Gb/s) C- and Extended L-Band Transmission over 240 Km Using PDM-16-QAM Modulation and Digital Coherent Detection,” in Optical Fiber Communication Conference, OSA Technical Digest (CD) (Optical Society of America, 2010), paper PDPB7. http://www.opticsinfobase.org/abstract.cfm?URI=OFC-2010-PDPB7
  2. Y. K. Huang, E. Ip, M.-F. Huang, B. Zhu, P. N. Ji, Y. Shao, D. W. Peckham, R. Lingle, Y. Aono, T. Tajima, and T. Wang, “10x456-Gb/s DP-16QAM transmission over 8x100 km of ULAF using coherent detection with a 30-GHz Analog-to-Digital Converter,” in Proc. OECC, paper PD3, 2010.
  3. M. Nakazawa, S. Okamoto, T. Omiya, K. Kasai, and M. Yoshida, “256 QAM (64 Gbit/s) Coherent Optical Transmission over 160 km with an Optical Bandwidth of 5.4 GHz,” in Optical Fiber Communication Conference, OSA Technical Digest (CD) (Optical Society of America, 2010), paper OMJ5. http://www.opticsinfobase.org/abstract.cfm?URI=OFC-2010-OMJ5
  4. K.-P. Ho and H.-W. Cuei, “Generation of Arbitrary Quadrature Signals using One Dual-Drive Modulator,” J. Lightwave Technol. 23(2), 764–770 (2005), http://www.opticsinfobase.org/JLT/abstract.cfm?URI=JLT-23-2-764 .
    [CrossRef]
  5. P. J. Winzer, A. H. Gnauck, C. R. Doerr, M. Magarini, and L. L. Buhl, “Spectrally Efficient Long-Haul Optical Networking Using 112-Gb/s Polarization-Multiplexed 16-QAM,” J. Lightwave Technol. 28(4), 547–556 (2010), http://www.opticsinfobase.org/JLT/abstract.cfm?URI=JLT-28-4-547 .
    [CrossRef]
  6. Y. Mori, C. Zhang, K. Igarashi, K. Katoh, and K. Kikuchi, “Unrepeated 200-km transmission of 40-Gbit/s 16-QAM signals using digital coherent receiver,” Opt. Express 17(3), 1435–1441 (2009), http://www.opticsinfobase.org/abstract.cfm?URI=oe-17-3-1435 .
    [CrossRef] [PubMed]
  7. T. Sakamoto, A. Chiba, and T. Kawanishi, “50-Gb/s 16 QAM by a quad-parallel Mach-Zehnder modulator,” in Proc. ECOC 2007, paper PD2.8, 2007.
  8. H. Yamazaki, T. Yamada, T. Goh, Y. Sakamaki, and A. Kaneko, 64QAM modulator with a hybrid configuration of silica PLCs and LiNbO3 phase modulators for 100-Gb/s applications,” in Proc. ECOC 2009, paper 2.2.1, 2009.
  9. X. Zhou, and J. Yu, “200-Gb/s PDM-16QAM generation using a new synthesizing method,” in Proc. ECOC 2009, paper 10.3.5, 2009.
  10. X. Zhou and J. Yu, “Multi-Level, Multi-Dimensional Coding for High-Speed and High-Spectral-Efficiency Optical Transmission,” J. Lightwave Technol. 27(16), 3641–3653 (2009), http://www.opticsinfobase.org/abstract.cfm?URI=JLT-27-16-3641 .
    [CrossRef]
  11. M. Seimetz, “Transmitter design,” in High-order modulation for optical fiber transmission, (Springer, 2009), pp. 28.
  12. M. Seimetz, “Performance of Coherent Optical Square-16-QAM-Systems Based on IQ-Transmitters and Homodyne Receivers with Digital Phase Estimation,” in Optical Fiber Communication Conference and Exposition and The National Fiber Optic Engineers Conference, Technical Digest (CD) (Optical Society of America, 2006), paper NWA4. http://www.opticsinfobase.org/abstract.cfm?URI=NFOEC-2006-NWA4

2010

2009

2005

Buhl, L. L.

Cuei, H.-W.

Doerr, C. R.

Gnauck, A. H.

Ho, K.-P.

Igarashi, K.

Katoh, K.

Kikuchi, K.

Magarini, M.

Mori, Y.

Winzer, P. J.

Yu, J.

Zhang, C.

Zhou, X.

J. Lightwave Technol.

Opt. Express

Other

T. Sakamoto, A. Chiba, and T. Kawanishi, “50-Gb/s 16 QAM by a quad-parallel Mach-Zehnder modulator,” in Proc. ECOC 2007, paper PD2.8, 2007.

H. Yamazaki, T. Yamada, T. Goh, Y. Sakamaki, and A. Kaneko, 64QAM modulator with a hybrid configuration of silica PLCs and LiNbO3 phase modulators for 100-Gb/s applications,” in Proc. ECOC 2009, paper 2.2.1, 2009.

X. Zhou, and J. Yu, “200-Gb/s PDM-16QAM generation using a new synthesizing method,” in Proc. ECOC 2009, paper 10.3.5, 2009.

M. Seimetz, “Transmitter design,” in High-order modulation for optical fiber transmission, (Springer, 2009), pp. 28.

M. Seimetz, “Performance of Coherent Optical Square-16-QAM-Systems Based on IQ-Transmitters and Homodyne Receivers with Digital Phase Estimation,” in Optical Fiber Communication Conference and Exposition and The National Fiber Optic Engineers Conference, Technical Digest (CD) (Optical Society of America, 2006), paper NWA4. http://www.opticsinfobase.org/abstract.cfm?URI=NFOEC-2006-NWA4

A. Sano, H. Masuda, T. Kobayashi, M. Fujiwara, K. Horikoshi, E. Yoshida, Y. Miyamoto, M. Matsui, M. Mizoguchi, H. Yamazaki, Y. Sakamaki, and H. Ishii, “69.1-Tb/s (432 x 171-Gb/s) C- and Extended L-Band Transmission over 240 Km Using PDM-16-QAM Modulation and Digital Coherent Detection,” in Optical Fiber Communication Conference, OSA Technical Digest (CD) (Optical Society of America, 2010), paper PDPB7. http://www.opticsinfobase.org/abstract.cfm?URI=OFC-2010-PDPB7

Y. K. Huang, E. Ip, M.-F. Huang, B. Zhu, P. N. Ji, Y. Shao, D. W. Peckham, R. Lingle, Y. Aono, T. Tajima, and T. Wang, “10x456-Gb/s DP-16QAM transmission over 8x100 km of ULAF using coherent detection with a 30-GHz Analog-to-Digital Converter,” in Proc. OECC, paper PD3, 2010.

M. Nakazawa, S. Okamoto, T. Omiya, K. Kasai, and M. Yoshida, “256 QAM (64 Gbit/s) Coherent Optical Transmission over 160 km with an Optical Bandwidth of 5.4 GHz,” in Optical Fiber Communication Conference, OSA Technical Digest (CD) (Optical Society of America, 2010), paper OMJ5. http://www.opticsinfobase.org/abstract.cfm?URI=OFC-2010-OMJ5

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Operation principle of the proposed 16-QAM transmitter using two tandem IQ modulators.

Fig. 2
Fig. 2

Transmitter configurations (upper) and simulated constellation diagrams (lower) of generated 16-QAM using (a) IP, (b) TIQ, and (c) 3C transmitters.

Fig. 3
Fig. 3

Required OSNR for SER = 10−3 of 40-Gbaud 16-QAM as a function of (a) modulation bandwidth, and (b) accumulated chromatic dispersion. Solid lines: without optimization in the driving voltages, dashed line: with optimization in the driving voltages, square-marked: IP scheme, diamond-marked: 3C scheme, circle-marked: TIQ scheme.

Fig. 4
Fig. 4

Simulated constellation diagrams for three schemes with (a) 0-ps/nm accumulated chromatic dispersion and 20-GHz modulation bandwidth; (b) 12-ps/nm accumulated chromatic dispersion and 25-GHz modulation bandwidth. (a-i), (b-i): IP scheme; (a-ii), (b-ii): TIQ scheme; (a-iii), (b-iii): 3C scheme.

Fig. 5
Fig. 5

Experimental Setup; inset: optical spectrum of 40-Gbaud16-QAM.

Fig. 6
Fig. 6

Measured constellations for back-to-back at (a) 28 Gbaud and (b) 40 Gbaud.

Fig. 7
Fig. 7

Measured eye diagrams of the in-phase component of (a) 28-Gbaud and (b) 40-Gbaud 16-QAM.

Fig. 8
Fig. 8

Measured constellation of 28-Gbaud 16-QAM after transmission over (a) 1.8-km and (b) 3-km SSMF (grey line: averaged transitions, black dots: acquired symbols without averaging); inset: simulation results with fiber dispersion.

Metrics