Abstract

We propose and demonstrate an OCDMA-PON scheme with optical network unit (ONU) internetworking capability, which utilizes low-cost gain-switched Fabry–Pérot (GS-FP) lasers with external dual-wavelength injection as the pulse sources on the ONU side. The injection-generated optical pulses in two wavelengths from the same GS-FP laser are used separately for the PON uplink transmission and ONU internetworking. Experimental results based on a two-user OCDMA system confirm the feasibility of the proposed scheme. With OCDMA technologies, separate ONU-internetworking groups can be established using different optical codes. We also give experiment results to analyze the performance of the ONU-ONU transmission at different power of interference signals when two ONU-internetworking groups are present in the OCDMA-PON.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. A. Salehi, “Code division multiple access techniques in optical fiber networks—Part I: Fundamental principles,” IEEE Trans. Commun. 37(8), 824–833 (1989).
    [CrossRef]
  2. P. R. Prucnal, Optical Code Division Multiple Access: Fundamentals and Applications (Taylor & Francis, 2005).
  3. T. Hamanaka, X. Wang, N. Wada, A. Nishiki, and K.-I. Kitayama, “Ten-user truly asynchronous gigabit OCDMA transmission experiment with a 511-chip SSFBG en/decoder,” J. Lightwave Technol. 24(1), 95–102 (2006).
    [CrossRef]
  4. C.-S. Bres, I. Glesk, and P. R. Prucnal, “Demonstration of an eight-user 115-Gchip/s incoherent OCDMA system using supercontinuum generation and optical time gating,” IEEE Photon. Technol. Lett. 18(7), 889–891 (2006).
    [CrossRef]
  5. K.-I. Kitayama, X. Wang, and N. Wada, “OCDMA over WDM PON - solution path to gigabit-symmetric FTTH,” J. Lightwave Technol. 24(4), 1654–1662 (2006).
    [CrossRef]
  6. Z. A. El-Sahn, B. J. Shastri, M. Zeng, N. Kheder, D. V. Plant, and L. A. Rusch, “Experimental demonstration of a SAC-OCDMA PON with burst-mode reception: local versus centralized sources,” J. Lightwave Technol. 26(10), 1192–1203 (2008).
    [CrossRef]
  7. S. Yoshima, N. Nakagawa, N. Kataoka, N. Suzuki, M. Noda, M. Nogami, J. Nakagawa, and K.-I. Kitayama, “10 Gb/s-based PON over OCDMA uplink burst transmission using SSFBG encoder/multi-port decoder and burst-mode receiver,” J. Lightwave Technol. 28(4), 365–371 (2010).
    [CrossRef]
  8. M. Gharaei, S. Cordette, C. Lepers, I. Fsaifes, and P. Gallion, “Multiple optical private networks over EPON using optical CDMA technique,” in Optical Fiber Communication Conference, OSA Technical Digest (CD) (Optical Society of America, 2010), paper JThA34. http://www.opticsinfobase.org/abstract.cfm?URI=OFC-2010-JThA34
  9. C. J. Chae, S. T. Lee, G. Y. Kim, and H. Park, “A PON system suitable for internetworking optical network units using a fiber Bragg grating on the feeder fiber,” IEEE Photon. Technol. Lett. 11(12), 1686–1688 (1999).
    [CrossRef]
  10. Q. Zhao and C. K. Chan, “A wavelength-division-multiplexed passive optical network with flexible optical network unit internetworking capability,” J. Lightwave Technol. 25(8), 1970–1977 (2007).
    [CrossRef]
  11. J. Liu, Y. Lu, C. Guo, X. Hong, L. Xu, and S. He, “Demonstration of low-cost uplink transmission in a coherent OCDMA PON using gain-wwitched Fabry–Pérot lasers with external injection,” IEEE Photon. Technol. Lett. 22(8), 583–585 (2010).
    [CrossRef]
  12. Z. Zhang, C. Tian, M. R. Mokhtar, P. Petropoulos, D. J. Richardson, and M. Ibsen, “Rapidly reconfigurable optical phase encoder-decoders based on fiber Bragg gratings,” IEEE Photon. Technol. Lett. 18(11), 1216–1218 (2006).
    [CrossRef]
  13. S. M. Gemelos, I. M. White, D. Wonglumsom, K. Shrikhande, T. One, and L. G. Kazovsky, “WDM metropolitan area network based on CSMA/CA packet switching,” IEEE Photon. Technol. Lett. 11(11), 1512–1514 (1999).
    [CrossRef]
  14. Z. Xu, Y. J. Wen, W.-D. Zhong, C.-J. Chae, X.-F. Cheng, Y. Wang, C. Lu, and J. Shankar, “High-speed WDM-PON using CW injection-locked Fabry–Pérot laser diodes,” Opt. Express 15(6), 2953–2962 (2007).
    [CrossRef] [PubMed]
  15. Y. Matsui, S. Kutsuzawa, S. Arahira, and Y. Ogawa, “Generation of wavelength tunable gain-switched pulses from FP MQW lasers with external injection seeding,” IEEE Photon. Technol. Lett. 9(8), 1087–1089 (1997).
    [CrossRef]

2010

S. Yoshima, N. Nakagawa, N. Kataoka, N. Suzuki, M. Noda, M. Nogami, J. Nakagawa, and K.-I. Kitayama, “10 Gb/s-based PON over OCDMA uplink burst transmission using SSFBG encoder/multi-port decoder and burst-mode receiver,” J. Lightwave Technol. 28(4), 365–371 (2010).
[CrossRef]

J. Liu, Y. Lu, C. Guo, X. Hong, L. Xu, and S. He, “Demonstration of low-cost uplink transmission in a coherent OCDMA PON using gain-wwitched Fabry–Pérot lasers with external injection,” IEEE Photon. Technol. Lett. 22(8), 583–585 (2010).
[CrossRef]

2008

2007

2006

T. Hamanaka, X. Wang, N. Wada, A. Nishiki, and K.-I. Kitayama, “Ten-user truly asynchronous gigabit OCDMA transmission experiment with a 511-chip SSFBG en/decoder,” J. Lightwave Technol. 24(1), 95–102 (2006).
[CrossRef]

C.-S. Bres, I. Glesk, and P. R. Prucnal, “Demonstration of an eight-user 115-Gchip/s incoherent OCDMA system using supercontinuum generation and optical time gating,” IEEE Photon. Technol. Lett. 18(7), 889–891 (2006).
[CrossRef]

K.-I. Kitayama, X. Wang, and N. Wada, “OCDMA over WDM PON - solution path to gigabit-symmetric FTTH,” J. Lightwave Technol. 24(4), 1654–1662 (2006).
[CrossRef]

Z. Zhang, C. Tian, M. R. Mokhtar, P. Petropoulos, D. J. Richardson, and M. Ibsen, “Rapidly reconfigurable optical phase encoder-decoders based on fiber Bragg gratings,” IEEE Photon. Technol. Lett. 18(11), 1216–1218 (2006).
[CrossRef]

1999

S. M. Gemelos, I. M. White, D. Wonglumsom, K. Shrikhande, T. One, and L. G. Kazovsky, “WDM metropolitan area network based on CSMA/CA packet switching,” IEEE Photon. Technol. Lett. 11(11), 1512–1514 (1999).
[CrossRef]

C. J. Chae, S. T. Lee, G. Y. Kim, and H. Park, “A PON system suitable for internetworking optical network units using a fiber Bragg grating on the feeder fiber,” IEEE Photon. Technol. Lett. 11(12), 1686–1688 (1999).
[CrossRef]

1997

Y. Matsui, S. Kutsuzawa, S. Arahira, and Y. Ogawa, “Generation of wavelength tunable gain-switched pulses from FP MQW lasers with external injection seeding,” IEEE Photon. Technol. Lett. 9(8), 1087–1089 (1997).
[CrossRef]

1989

J. A. Salehi, “Code division multiple access techniques in optical fiber networks—Part I: Fundamental principles,” IEEE Trans. Commun. 37(8), 824–833 (1989).
[CrossRef]

Arahira, S.

Y. Matsui, S. Kutsuzawa, S. Arahira, and Y. Ogawa, “Generation of wavelength tunable gain-switched pulses from FP MQW lasers with external injection seeding,” IEEE Photon. Technol. Lett. 9(8), 1087–1089 (1997).
[CrossRef]

Bres, C.-S.

C.-S. Bres, I. Glesk, and P. R. Prucnal, “Demonstration of an eight-user 115-Gchip/s incoherent OCDMA system using supercontinuum generation and optical time gating,” IEEE Photon. Technol. Lett. 18(7), 889–891 (2006).
[CrossRef]

Chae, C. J.

C. J. Chae, S. T. Lee, G. Y. Kim, and H. Park, “A PON system suitable for internetworking optical network units using a fiber Bragg grating on the feeder fiber,” IEEE Photon. Technol. Lett. 11(12), 1686–1688 (1999).
[CrossRef]

Chae, C.-J.

Chan, C. K.

Cheng, X.-F.

El-Sahn, Z. A.

Gemelos, S. M.

S. M. Gemelos, I. M. White, D. Wonglumsom, K. Shrikhande, T. One, and L. G. Kazovsky, “WDM metropolitan area network based on CSMA/CA packet switching,” IEEE Photon. Technol. Lett. 11(11), 1512–1514 (1999).
[CrossRef]

Glesk, I.

C.-S. Bres, I. Glesk, and P. R. Prucnal, “Demonstration of an eight-user 115-Gchip/s incoherent OCDMA system using supercontinuum generation and optical time gating,” IEEE Photon. Technol. Lett. 18(7), 889–891 (2006).
[CrossRef]

Guo, C.

J. Liu, Y. Lu, C. Guo, X. Hong, L. Xu, and S. He, “Demonstration of low-cost uplink transmission in a coherent OCDMA PON using gain-wwitched Fabry–Pérot lasers with external injection,” IEEE Photon. Technol. Lett. 22(8), 583–585 (2010).
[CrossRef]

Hamanaka, T.

He, S.

J. Liu, Y. Lu, C. Guo, X. Hong, L. Xu, and S. He, “Demonstration of low-cost uplink transmission in a coherent OCDMA PON using gain-wwitched Fabry–Pérot lasers with external injection,” IEEE Photon. Technol. Lett. 22(8), 583–585 (2010).
[CrossRef]

Hong, X.

J. Liu, Y. Lu, C. Guo, X. Hong, L. Xu, and S. He, “Demonstration of low-cost uplink transmission in a coherent OCDMA PON using gain-wwitched Fabry–Pérot lasers with external injection,” IEEE Photon. Technol. Lett. 22(8), 583–585 (2010).
[CrossRef]

Ibsen, M.

Z. Zhang, C. Tian, M. R. Mokhtar, P. Petropoulos, D. J. Richardson, and M. Ibsen, “Rapidly reconfigurable optical phase encoder-decoders based on fiber Bragg gratings,” IEEE Photon. Technol. Lett. 18(11), 1216–1218 (2006).
[CrossRef]

Kataoka, N.

Kazovsky, L. G.

S. M. Gemelos, I. M. White, D. Wonglumsom, K. Shrikhande, T. One, and L. G. Kazovsky, “WDM metropolitan area network based on CSMA/CA packet switching,” IEEE Photon. Technol. Lett. 11(11), 1512–1514 (1999).
[CrossRef]

Kheder, N.

Kim, G. Y.

C. J. Chae, S. T. Lee, G. Y. Kim, and H. Park, “A PON system suitable for internetworking optical network units using a fiber Bragg grating on the feeder fiber,” IEEE Photon. Technol. Lett. 11(12), 1686–1688 (1999).
[CrossRef]

Kitayama, K.-I.

Kutsuzawa, S.

Y. Matsui, S. Kutsuzawa, S. Arahira, and Y. Ogawa, “Generation of wavelength tunable gain-switched pulses from FP MQW lasers with external injection seeding,” IEEE Photon. Technol. Lett. 9(8), 1087–1089 (1997).
[CrossRef]

Lee, S. T.

C. J. Chae, S. T. Lee, G. Y. Kim, and H. Park, “A PON system suitable for internetworking optical network units using a fiber Bragg grating on the feeder fiber,” IEEE Photon. Technol. Lett. 11(12), 1686–1688 (1999).
[CrossRef]

Liu, J.

J. Liu, Y. Lu, C. Guo, X. Hong, L. Xu, and S. He, “Demonstration of low-cost uplink transmission in a coherent OCDMA PON using gain-wwitched Fabry–Pérot lasers with external injection,” IEEE Photon. Technol. Lett. 22(8), 583–585 (2010).
[CrossRef]

Lu, C.

Lu, Y.

J. Liu, Y. Lu, C. Guo, X. Hong, L. Xu, and S. He, “Demonstration of low-cost uplink transmission in a coherent OCDMA PON using gain-wwitched Fabry–Pérot lasers with external injection,” IEEE Photon. Technol. Lett. 22(8), 583–585 (2010).
[CrossRef]

Matsui, Y.

Y. Matsui, S. Kutsuzawa, S. Arahira, and Y. Ogawa, “Generation of wavelength tunable gain-switched pulses from FP MQW lasers with external injection seeding,” IEEE Photon. Technol. Lett. 9(8), 1087–1089 (1997).
[CrossRef]

Mokhtar, M. R.

Z. Zhang, C. Tian, M. R. Mokhtar, P. Petropoulos, D. J. Richardson, and M. Ibsen, “Rapidly reconfigurable optical phase encoder-decoders based on fiber Bragg gratings,” IEEE Photon. Technol. Lett. 18(11), 1216–1218 (2006).
[CrossRef]

Nakagawa, J.

Nakagawa, N.

Nishiki, A.

Noda, M.

Nogami, M.

Ogawa, Y.

Y. Matsui, S. Kutsuzawa, S. Arahira, and Y. Ogawa, “Generation of wavelength tunable gain-switched pulses from FP MQW lasers with external injection seeding,” IEEE Photon. Technol. Lett. 9(8), 1087–1089 (1997).
[CrossRef]

One, T.

S. M. Gemelos, I. M. White, D. Wonglumsom, K. Shrikhande, T. One, and L. G. Kazovsky, “WDM metropolitan area network based on CSMA/CA packet switching,” IEEE Photon. Technol. Lett. 11(11), 1512–1514 (1999).
[CrossRef]

Park, H.

C. J. Chae, S. T. Lee, G. Y. Kim, and H. Park, “A PON system suitable for internetworking optical network units using a fiber Bragg grating on the feeder fiber,” IEEE Photon. Technol. Lett. 11(12), 1686–1688 (1999).
[CrossRef]

Petropoulos, P.

Z. Zhang, C. Tian, M. R. Mokhtar, P. Petropoulos, D. J. Richardson, and M. Ibsen, “Rapidly reconfigurable optical phase encoder-decoders based on fiber Bragg gratings,” IEEE Photon. Technol. Lett. 18(11), 1216–1218 (2006).
[CrossRef]

Plant, D. V.

Prucnal, P. R.

C.-S. Bres, I. Glesk, and P. R. Prucnal, “Demonstration of an eight-user 115-Gchip/s incoherent OCDMA system using supercontinuum generation and optical time gating,” IEEE Photon. Technol. Lett. 18(7), 889–891 (2006).
[CrossRef]

Richardson, D. J.

Z. Zhang, C. Tian, M. R. Mokhtar, P. Petropoulos, D. J. Richardson, and M. Ibsen, “Rapidly reconfigurable optical phase encoder-decoders based on fiber Bragg gratings,” IEEE Photon. Technol. Lett. 18(11), 1216–1218 (2006).
[CrossRef]

Rusch, L. A.

Salehi, J. A.

J. A. Salehi, “Code division multiple access techniques in optical fiber networks—Part I: Fundamental principles,” IEEE Trans. Commun. 37(8), 824–833 (1989).
[CrossRef]

Shankar, J.

Shastri, B. J.

Shrikhande, K.

S. M. Gemelos, I. M. White, D. Wonglumsom, K. Shrikhande, T. One, and L. G. Kazovsky, “WDM metropolitan area network based on CSMA/CA packet switching,” IEEE Photon. Technol. Lett. 11(11), 1512–1514 (1999).
[CrossRef]

Suzuki, N.

Tian, C.

Z. Zhang, C. Tian, M. R. Mokhtar, P. Petropoulos, D. J. Richardson, and M. Ibsen, “Rapidly reconfigurable optical phase encoder-decoders based on fiber Bragg gratings,” IEEE Photon. Technol. Lett. 18(11), 1216–1218 (2006).
[CrossRef]

Wada, N.

Wang, X.

Wang, Y.

Wen, Y. J.

White, I. M.

S. M. Gemelos, I. M. White, D. Wonglumsom, K. Shrikhande, T. One, and L. G. Kazovsky, “WDM metropolitan area network based on CSMA/CA packet switching,” IEEE Photon. Technol. Lett. 11(11), 1512–1514 (1999).
[CrossRef]

Wonglumsom, D.

S. M. Gemelos, I. M. White, D. Wonglumsom, K. Shrikhande, T. One, and L. G. Kazovsky, “WDM metropolitan area network based on CSMA/CA packet switching,” IEEE Photon. Technol. Lett. 11(11), 1512–1514 (1999).
[CrossRef]

Xu, L.

J. Liu, Y. Lu, C. Guo, X. Hong, L. Xu, and S. He, “Demonstration of low-cost uplink transmission in a coherent OCDMA PON using gain-wwitched Fabry–Pérot lasers with external injection,” IEEE Photon. Technol. Lett. 22(8), 583–585 (2010).
[CrossRef]

Xu, Z.

Yoshima, S.

Zeng, M.

Zhang, Z.

Z. Zhang, C. Tian, M. R. Mokhtar, P. Petropoulos, D. J. Richardson, and M. Ibsen, “Rapidly reconfigurable optical phase encoder-decoders based on fiber Bragg gratings,” IEEE Photon. Technol. Lett. 18(11), 1216–1218 (2006).
[CrossRef]

Zhao, Q.

Zhong, W.-D.

IEEE Photon. Technol. Lett.

C.-S. Bres, I. Glesk, and P. R. Prucnal, “Demonstration of an eight-user 115-Gchip/s incoherent OCDMA system using supercontinuum generation and optical time gating,” IEEE Photon. Technol. Lett. 18(7), 889–891 (2006).
[CrossRef]

C. J. Chae, S. T. Lee, G. Y. Kim, and H. Park, “A PON system suitable for internetworking optical network units using a fiber Bragg grating on the feeder fiber,” IEEE Photon. Technol. Lett. 11(12), 1686–1688 (1999).
[CrossRef]

J. Liu, Y. Lu, C. Guo, X. Hong, L. Xu, and S. He, “Demonstration of low-cost uplink transmission in a coherent OCDMA PON using gain-wwitched Fabry–Pérot lasers with external injection,” IEEE Photon. Technol. Lett. 22(8), 583–585 (2010).
[CrossRef]

Z. Zhang, C. Tian, M. R. Mokhtar, P. Petropoulos, D. J. Richardson, and M. Ibsen, “Rapidly reconfigurable optical phase encoder-decoders based on fiber Bragg gratings,” IEEE Photon. Technol. Lett. 18(11), 1216–1218 (2006).
[CrossRef]

S. M. Gemelos, I. M. White, D. Wonglumsom, K. Shrikhande, T. One, and L. G. Kazovsky, “WDM metropolitan area network based on CSMA/CA packet switching,” IEEE Photon. Technol. Lett. 11(11), 1512–1514 (1999).
[CrossRef]

Y. Matsui, S. Kutsuzawa, S. Arahira, and Y. Ogawa, “Generation of wavelength tunable gain-switched pulses from FP MQW lasers with external injection seeding,” IEEE Photon. Technol. Lett. 9(8), 1087–1089 (1997).
[CrossRef]

IEEE Trans. Commun.

J. A. Salehi, “Code division multiple access techniques in optical fiber networks—Part I: Fundamental principles,” IEEE Trans. Commun. 37(8), 824–833 (1989).
[CrossRef]

J. Lightwave Technol.

Opt. Express

Other

M. Gharaei, S. Cordette, C. Lepers, I. Fsaifes, and P. Gallion, “Multiple optical private networks over EPON using optical CDMA technique,” in Optical Fiber Communication Conference, OSA Technical Digest (CD) (Optical Society of America, 2010), paper JThA34. http://www.opticsinfobase.org/abstract.cfm?URI=OFC-2010-JThA34

P. R. Prucnal, Optical Code Division Multiple Access: Fundamentals and Applications (Taylor & Francis, 2005).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Proposed OCDMA PON scheme supporting multiple ONU-internetworking groups. GS-FP laser: gain switched Fabry-Pérot laser; D-Enc/Dec: en/decoder for downlink transmission; U-Enc/Dec: en/decoder for uplink transmission; O-Enc/Dec: en/decoder for ONU-ONU transmission; Tx: Transmitter; Rx: Receiver; Mod.: modulator; O-Group: ONU-internetworking group.

Fig. 2
Fig. 2

Experimental setup. PPG: programmable pattern generator; MZM: EDFA: erbium-doped fiber amplifier; ENC/DEC_DL: en/decoder for downlink signals; ENC/DEC_UL: en/decoder for uplink signals; ENC/DEC_ONU-ONU: en/decoder for ONU-ONU transmitting signals; DL: optical delay line; VOA: variable optical attenuator; BERT: bit error rate tester.

Fig. 3
Fig. 3

(a) spectrum for the GS-FP laser (w/o injection locking); (b) spectrum for the GS-FP laser (with injection locking); (c) spectra of downlink, uplink and ONU-ONU transmitting channel(tested at Point A, B and C in Fig. 2); (d) waveforms of the 10-GHz optical pulse trains.

Fig. 4
Fig. 4

Eye diagrams. (a) decoded downlink signal in btb case, one user; (b) decoded uplink signal in btb case, one user; (c) decoded ONU-ONU transmitting signal in btb case, one ONU-internetworking group; (d) decoded downlink signal after 20-km transmission, two users; (e) decoded uplink signal after 20-km transmission, two users; (f) decoded ONU-ONU transmitting signal after 6-km transmission, two ONU-internetworking groups.

Fig. 5
Fig. 5

Measured BER curves.

Fig. 6
Fig. 6

Measured power penalty at BER = 10−9 against the received power difference between two ONU-internetworking groups. The minus sign in the x-axis means that the power of the interfering group is smaller than that of the desired group.

Metrics