Abstract

We propose and demonstrate an OCDMA-PON scheme with optical network unit (ONU) internetworking capability, which utilizes low-cost gain-switched Fabry–Pérot (GS-FP) lasers with external dual-wavelength injection as the pulse sources on the ONU side. The injection-generated optical pulses in two wavelengths from the same GS-FP laser are used separately for the PON uplink transmission and ONU internetworking. Experimental results based on a two-user OCDMA system confirm the feasibility of the proposed scheme. With OCDMA technologies, separate ONU-internetworking groups can be established using different optical codes. We also give experiment results to analyze the performance of the ONU-ONU transmission at different power of interference signals when two ONU-internetworking groups are present in the OCDMA-PON.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. A. Salehi, “Code division multiple access techniques in optical fiber networks—Part I: Fundamental principles,” IEEE Trans. Commun. 37(8), 824–833 (1989).
    [CrossRef]
  2. P. R. Prucnal, Optical Code Division Multiple Access: Fundamentals and Applications (Taylor & Francis, 2005).
  3. T. Hamanaka, X. Wang, N. Wada, A. Nishiki, and K.-I. Kitayama, “Ten-user truly asynchronous gigabit OCDMA transmission experiment with a 511-chip SSFBG en/decoder,” J. Lightwave Technol. 24(1), 95–102 (2006).
    [CrossRef]
  4. C.-S. Bres, I. Glesk, and P. R. Prucnal, “Demonstration of an eight-user 115-Gchip/s incoherent OCDMA system using supercontinuum generation and optical time gating,” IEEE Photon. Technol. Lett. 18(7), 889–891 (2006).
    [CrossRef]
  5. K.-I. Kitayama, X. Wang, and N. Wada, “OCDMA over WDM PON - solution path to gigabit-symmetric FTTH,” J. Lightwave Technol. 24(4), 1654–1662 (2006).
    [CrossRef]
  6. Z. A. El-Sahn, B. J. Shastri, M. Zeng, N. Kheder, D. V. Plant, and L. A. Rusch, “Experimental demonstration of a SAC-OCDMA PON with burst-mode reception: local versus centralized sources,” J. Lightwave Technol. 26(10), 1192–1203 (2008).
    [CrossRef]
  7. S. Yoshima, N. Nakagawa, N. Kataoka, N. Suzuki, M. Noda, M. Nogami, J. Nakagawa, and K.-I. Kitayama, “10 Gb/s-based PON over OCDMA uplink burst transmission using SSFBG encoder/multi-port decoder and burst-mode receiver,” J. Lightwave Technol. 28(4), 365–371 (2010).
    [CrossRef]
  8. M. Gharaei, S. Cordette, C. Lepers, I. Fsaifes, and P. Gallion, “Multiple optical private networks over EPON using optical CDMA technique,” in Optical Fiber Communication Conference, OSA Technical Digest (CD) (Optical Society of America, 2010), paper JThA34. http://www.opticsinfobase.org/abstract.cfm?URI=OFC-2010-JThA34
  9. C. J. Chae, S. T. Lee, G. Y. Kim, and H. Park, “A PON system suitable for internetworking optical network units using a fiber Bragg grating on the feeder fiber,” IEEE Photon. Technol. Lett. 11(12), 1686–1688 (1999).
    [CrossRef]
  10. Q. Zhao and C. K. Chan, “A wavelength-division-multiplexed passive optical network with flexible optical network unit internetworking capability,” J. Lightwave Technol. 25(8), 1970–1977 (2007).
    [CrossRef]
  11. J. Liu, Y. Lu, C. Guo, X. Hong, L. Xu, and S. He, “Demonstration of low-cost uplink transmission in a coherent OCDMA PON using gain-wwitched Fabry–Pérot lasers with external injection,” IEEE Photon. Technol. Lett. 22(8), 583–585 (2010).
    [CrossRef]
  12. Z. Zhang, C. Tian, M. R. Mokhtar, P. Petropoulos, D. J. Richardson, and M. Ibsen, “Rapidly reconfigurable optical phase encoder-decoders based on fiber Bragg gratings,” IEEE Photon. Technol. Lett. 18(11), 1216–1218 (2006).
    [CrossRef]
  13. S. M. Gemelos, I. M. White, D. Wonglumsom, K. Shrikhande, T. One, and L. G. Kazovsky, “WDM metropolitan area network based on CSMA/CA packet switching,” IEEE Photon. Technol. Lett. 11(11), 1512–1514 (1999).
    [CrossRef]
  14. Z. Xu, Y. J. Wen, W.-D. Zhong, C.-J. Chae, X.-F. Cheng, Y. Wang, C. Lu, and J. Shankar, “High-speed WDM-PON using CW injection-locked Fabry–Pérot laser diodes,” Opt. Express 15(6), 2953–2962 (2007).
    [CrossRef] [PubMed]
  15. Y. Matsui, S. Kutsuzawa, S. Arahira, and Y. Ogawa, “Generation of wavelength tunable gain-switched pulses from FP MQW lasers with external injection seeding,” IEEE Photon. Technol. Lett. 9(8), 1087–1089 (1997).
    [CrossRef]

2010

J. Liu, Y. Lu, C. Guo, X. Hong, L. Xu, and S. He, “Demonstration of low-cost uplink transmission in a coherent OCDMA PON using gain-wwitched Fabry–Pérot lasers with external injection,” IEEE Photon. Technol. Lett. 22(8), 583–585 (2010).
[CrossRef]

S. Yoshima, N. Nakagawa, N. Kataoka, N. Suzuki, M. Noda, M. Nogami, J. Nakagawa, and K.-I. Kitayama, “10 Gb/s-based PON over OCDMA uplink burst transmission using SSFBG encoder/multi-port decoder and burst-mode receiver,” J. Lightwave Technol. 28(4), 365–371 (2010).
[CrossRef]

2008

2007

2006

Z. Zhang, C. Tian, M. R. Mokhtar, P. Petropoulos, D. J. Richardson, and M. Ibsen, “Rapidly reconfigurable optical phase encoder-decoders based on fiber Bragg gratings,” IEEE Photon. Technol. Lett. 18(11), 1216–1218 (2006).
[CrossRef]

C.-S. Bres, I. Glesk, and P. R. Prucnal, “Demonstration of an eight-user 115-Gchip/s incoherent OCDMA system using supercontinuum generation and optical time gating,” IEEE Photon. Technol. Lett. 18(7), 889–891 (2006).
[CrossRef]

T. Hamanaka, X. Wang, N. Wada, A. Nishiki, and K.-I. Kitayama, “Ten-user truly asynchronous gigabit OCDMA transmission experiment with a 511-chip SSFBG en/decoder,” J. Lightwave Technol. 24(1), 95–102 (2006).
[CrossRef]

K.-I. Kitayama, X. Wang, and N. Wada, “OCDMA over WDM PON - solution path to gigabit-symmetric FTTH,” J. Lightwave Technol. 24(4), 1654–1662 (2006).
[CrossRef]

1999

S. M. Gemelos, I. M. White, D. Wonglumsom, K. Shrikhande, T. One, and L. G. Kazovsky, “WDM metropolitan area network based on CSMA/CA packet switching,” IEEE Photon. Technol. Lett. 11(11), 1512–1514 (1999).
[CrossRef]

C. J. Chae, S. T. Lee, G. Y. Kim, and H. Park, “A PON system suitable for internetworking optical network units using a fiber Bragg grating on the feeder fiber,” IEEE Photon. Technol. Lett. 11(12), 1686–1688 (1999).
[CrossRef]

1997

Y. Matsui, S. Kutsuzawa, S. Arahira, and Y. Ogawa, “Generation of wavelength tunable gain-switched pulses from FP MQW lasers with external injection seeding,” IEEE Photon. Technol. Lett. 9(8), 1087–1089 (1997).
[CrossRef]

1989

J. A. Salehi, “Code division multiple access techniques in optical fiber networks—Part I: Fundamental principles,” IEEE Trans. Commun. 37(8), 824–833 (1989).
[CrossRef]

Arahira, S.

Y. Matsui, S. Kutsuzawa, S. Arahira, and Y. Ogawa, “Generation of wavelength tunable gain-switched pulses from FP MQW lasers with external injection seeding,” IEEE Photon. Technol. Lett. 9(8), 1087–1089 (1997).
[CrossRef]

Bres, C.-S.

C.-S. Bres, I. Glesk, and P. R. Prucnal, “Demonstration of an eight-user 115-Gchip/s incoherent OCDMA system using supercontinuum generation and optical time gating,” IEEE Photon. Technol. Lett. 18(7), 889–891 (2006).
[CrossRef]

Chae, C. J.

C. J. Chae, S. T. Lee, G. Y. Kim, and H. Park, “A PON system suitable for internetworking optical network units using a fiber Bragg grating on the feeder fiber,” IEEE Photon. Technol. Lett. 11(12), 1686–1688 (1999).
[CrossRef]

Chae, C.-J.

Chan, C. K.

Cheng, X.-F.

El-Sahn, Z. A.

Gemelos, S. M.

S. M. Gemelos, I. M. White, D. Wonglumsom, K. Shrikhande, T. One, and L. G. Kazovsky, “WDM metropolitan area network based on CSMA/CA packet switching,” IEEE Photon. Technol. Lett. 11(11), 1512–1514 (1999).
[CrossRef]

Glesk, I.

C.-S. Bres, I. Glesk, and P. R. Prucnal, “Demonstration of an eight-user 115-Gchip/s incoherent OCDMA system using supercontinuum generation and optical time gating,” IEEE Photon. Technol. Lett. 18(7), 889–891 (2006).
[CrossRef]

Guo, C.

J. Liu, Y. Lu, C. Guo, X. Hong, L. Xu, and S. He, “Demonstration of low-cost uplink transmission in a coherent OCDMA PON using gain-wwitched Fabry–Pérot lasers with external injection,” IEEE Photon. Technol. Lett. 22(8), 583–585 (2010).
[CrossRef]

Hamanaka, T.

He, S.

J. Liu, Y. Lu, C. Guo, X. Hong, L. Xu, and S. He, “Demonstration of low-cost uplink transmission in a coherent OCDMA PON using gain-wwitched Fabry–Pérot lasers with external injection,” IEEE Photon. Technol. Lett. 22(8), 583–585 (2010).
[CrossRef]

Hong, X.

J. Liu, Y. Lu, C. Guo, X. Hong, L. Xu, and S. He, “Demonstration of low-cost uplink transmission in a coherent OCDMA PON using gain-wwitched Fabry–Pérot lasers with external injection,” IEEE Photon. Technol. Lett. 22(8), 583–585 (2010).
[CrossRef]

Ibsen, M.

Z. Zhang, C. Tian, M. R. Mokhtar, P. Petropoulos, D. J. Richardson, and M. Ibsen, “Rapidly reconfigurable optical phase encoder-decoders based on fiber Bragg gratings,” IEEE Photon. Technol. Lett. 18(11), 1216–1218 (2006).
[CrossRef]

Kataoka, N.

Kazovsky, L. G.

S. M. Gemelos, I. M. White, D. Wonglumsom, K. Shrikhande, T. One, and L. G. Kazovsky, “WDM metropolitan area network based on CSMA/CA packet switching,” IEEE Photon. Technol. Lett. 11(11), 1512–1514 (1999).
[CrossRef]

Kheder, N.

Kim, G. Y.

C. J. Chae, S. T. Lee, G. Y. Kim, and H. Park, “A PON system suitable for internetworking optical network units using a fiber Bragg grating on the feeder fiber,” IEEE Photon. Technol. Lett. 11(12), 1686–1688 (1999).
[CrossRef]

Kitayama, K.-I.

Kutsuzawa, S.

Y. Matsui, S. Kutsuzawa, S. Arahira, and Y. Ogawa, “Generation of wavelength tunable gain-switched pulses from FP MQW lasers with external injection seeding,” IEEE Photon. Technol. Lett. 9(8), 1087–1089 (1997).
[CrossRef]

Lee, S. T.

C. J. Chae, S. T. Lee, G. Y. Kim, and H. Park, “A PON system suitable for internetworking optical network units using a fiber Bragg grating on the feeder fiber,” IEEE Photon. Technol. Lett. 11(12), 1686–1688 (1999).
[CrossRef]

Liu, J.

J. Liu, Y. Lu, C. Guo, X. Hong, L. Xu, and S. He, “Demonstration of low-cost uplink transmission in a coherent OCDMA PON using gain-wwitched Fabry–Pérot lasers with external injection,” IEEE Photon. Technol. Lett. 22(8), 583–585 (2010).
[CrossRef]

Lu, C.

Lu, Y.

J. Liu, Y. Lu, C. Guo, X. Hong, L. Xu, and S. He, “Demonstration of low-cost uplink transmission in a coherent OCDMA PON using gain-wwitched Fabry–Pérot lasers with external injection,” IEEE Photon. Technol. Lett. 22(8), 583–585 (2010).
[CrossRef]

Matsui, Y.

Y. Matsui, S. Kutsuzawa, S. Arahira, and Y. Ogawa, “Generation of wavelength tunable gain-switched pulses from FP MQW lasers with external injection seeding,” IEEE Photon. Technol. Lett. 9(8), 1087–1089 (1997).
[CrossRef]

Mokhtar, M. R.

Z. Zhang, C. Tian, M. R. Mokhtar, P. Petropoulos, D. J. Richardson, and M. Ibsen, “Rapidly reconfigurable optical phase encoder-decoders based on fiber Bragg gratings,” IEEE Photon. Technol. Lett. 18(11), 1216–1218 (2006).
[CrossRef]

Nakagawa, J.

Nakagawa, N.

Nishiki, A.

Noda, M.

Nogami, M.

Ogawa, Y.

Y. Matsui, S. Kutsuzawa, S. Arahira, and Y. Ogawa, “Generation of wavelength tunable gain-switched pulses from FP MQW lasers with external injection seeding,” IEEE Photon. Technol. Lett. 9(8), 1087–1089 (1997).
[CrossRef]

One, T.

S. M. Gemelos, I. M. White, D. Wonglumsom, K. Shrikhande, T. One, and L. G. Kazovsky, “WDM metropolitan area network based on CSMA/CA packet switching,” IEEE Photon. Technol. Lett. 11(11), 1512–1514 (1999).
[CrossRef]

Park, H.

C. J. Chae, S. T. Lee, G. Y. Kim, and H. Park, “A PON system suitable for internetworking optical network units using a fiber Bragg grating on the feeder fiber,” IEEE Photon. Technol. Lett. 11(12), 1686–1688 (1999).
[CrossRef]

Petropoulos, P.

Z. Zhang, C. Tian, M. R. Mokhtar, P. Petropoulos, D. J. Richardson, and M. Ibsen, “Rapidly reconfigurable optical phase encoder-decoders based on fiber Bragg gratings,” IEEE Photon. Technol. Lett. 18(11), 1216–1218 (2006).
[CrossRef]

Plant, D. V.

Prucnal, P. R.

C.-S. Bres, I. Glesk, and P. R. Prucnal, “Demonstration of an eight-user 115-Gchip/s incoherent OCDMA system using supercontinuum generation and optical time gating,” IEEE Photon. Technol. Lett. 18(7), 889–891 (2006).
[CrossRef]

Richardson, D. J.

Z. Zhang, C. Tian, M. R. Mokhtar, P. Petropoulos, D. J. Richardson, and M. Ibsen, “Rapidly reconfigurable optical phase encoder-decoders based on fiber Bragg gratings,” IEEE Photon. Technol. Lett. 18(11), 1216–1218 (2006).
[CrossRef]

Rusch, L. A.

Salehi, J. A.

J. A. Salehi, “Code division multiple access techniques in optical fiber networks—Part I: Fundamental principles,” IEEE Trans. Commun. 37(8), 824–833 (1989).
[CrossRef]

Shankar, J.

Shastri, B. J.

Shrikhande, K.

S. M. Gemelos, I. M. White, D. Wonglumsom, K. Shrikhande, T. One, and L. G. Kazovsky, “WDM metropolitan area network based on CSMA/CA packet switching,” IEEE Photon. Technol. Lett. 11(11), 1512–1514 (1999).
[CrossRef]

Suzuki, N.

Tian, C.

Z. Zhang, C. Tian, M. R. Mokhtar, P. Petropoulos, D. J. Richardson, and M. Ibsen, “Rapidly reconfigurable optical phase encoder-decoders based on fiber Bragg gratings,” IEEE Photon. Technol. Lett. 18(11), 1216–1218 (2006).
[CrossRef]

Wada, N.

Wang, X.

Wang, Y.

Wen, Y. J.

White, I. M.

S. M. Gemelos, I. M. White, D. Wonglumsom, K. Shrikhande, T. One, and L. G. Kazovsky, “WDM metropolitan area network based on CSMA/CA packet switching,” IEEE Photon. Technol. Lett. 11(11), 1512–1514 (1999).
[CrossRef]

Wonglumsom, D.

S. M. Gemelos, I. M. White, D. Wonglumsom, K. Shrikhande, T. One, and L. G. Kazovsky, “WDM metropolitan area network based on CSMA/CA packet switching,” IEEE Photon. Technol. Lett. 11(11), 1512–1514 (1999).
[CrossRef]

Xu, L.

J. Liu, Y. Lu, C. Guo, X. Hong, L. Xu, and S. He, “Demonstration of low-cost uplink transmission in a coherent OCDMA PON using gain-wwitched Fabry–Pérot lasers with external injection,” IEEE Photon. Technol. Lett. 22(8), 583–585 (2010).
[CrossRef]

Xu, Z.

Yoshima, S.

Zeng, M.

Zhang, Z.

Z. Zhang, C. Tian, M. R. Mokhtar, P. Petropoulos, D. J. Richardson, and M. Ibsen, “Rapidly reconfigurable optical phase encoder-decoders based on fiber Bragg gratings,” IEEE Photon. Technol. Lett. 18(11), 1216–1218 (2006).
[CrossRef]

Zhao, Q.

Zhong, W.-D.

IEEE Photon. Technol. Lett.

C. J. Chae, S. T. Lee, G. Y. Kim, and H. Park, “A PON system suitable for internetworking optical network units using a fiber Bragg grating on the feeder fiber,” IEEE Photon. Technol. Lett. 11(12), 1686–1688 (1999).
[CrossRef]

J. Liu, Y. Lu, C. Guo, X. Hong, L. Xu, and S. He, “Demonstration of low-cost uplink transmission in a coherent OCDMA PON using gain-wwitched Fabry–Pérot lasers with external injection,” IEEE Photon. Technol. Lett. 22(8), 583–585 (2010).
[CrossRef]

Z. Zhang, C. Tian, M. R. Mokhtar, P. Petropoulos, D. J. Richardson, and M. Ibsen, “Rapidly reconfigurable optical phase encoder-decoders based on fiber Bragg gratings,” IEEE Photon. Technol. Lett. 18(11), 1216–1218 (2006).
[CrossRef]

S. M. Gemelos, I. M. White, D. Wonglumsom, K. Shrikhande, T. One, and L. G. Kazovsky, “WDM metropolitan area network based on CSMA/CA packet switching,” IEEE Photon. Technol. Lett. 11(11), 1512–1514 (1999).
[CrossRef]

Y. Matsui, S. Kutsuzawa, S. Arahira, and Y. Ogawa, “Generation of wavelength tunable gain-switched pulses from FP MQW lasers with external injection seeding,” IEEE Photon. Technol. Lett. 9(8), 1087–1089 (1997).
[CrossRef]

C.-S. Bres, I. Glesk, and P. R. Prucnal, “Demonstration of an eight-user 115-Gchip/s incoherent OCDMA system using supercontinuum generation and optical time gating,” IEEE Photon. Technol. Lett. 18(7), 889–891 (2006).
[CrossRef]

IEEE Trans. Commun.

J. A. Salehi, “Code division multiple access techniques in optical fiber networks—Part I: Fundamental principles,” IEEE Trans. Commun. 37(8), 824–833 (1989).
[CrossRef]

J. Lightwave Technol.

Opt. Express

Other

P. R. Prucnal, Optical Code Division Multiple Access: Fundamentals and Applications (Taylor & Francis, 2005).

M. Gharaei, S. Cordette, C. Lepers, I. Fsaifes, and P. Gallion, “Multiple optical private networks over EPON using optical CDMA technique,” in Optical Fiber Communication Conference, OSA Technical Digest (CD) (Optical Society of America, 2010), paper JThA34. http://www.opticsinfobase.org/abstract.cfm?URI=OFC-2010-JThA34

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Proposed OCDMA PON scheme supporting multiple ONU-internetworking groups. GS-FP laser: gain switched Fabry-Pérot laser; D-Enc/Dec: en/decoder for downlink transmission; U-Enc/Dec: en/decoder for uplink transmission; O-Enc/Dec: en/decoder for ONU-ONU transmission; Tx: Transmitter; Rx: Receiver; Mod.: modulator; O-Group: ONU-internetworking group.

Fig. 2
Fig. 2

Experimental setup. PPG: programmable pattern generator; MZM: EDFA: erbium-doped fiber amplifier; ENC/DEC_DL: en/decoder for downlink signals; ENC/DEC_UL: en/decoder for uplink signals; ENC/DEC_ONU-ONU: en/decoder for ONU-ONU transmitting signals; DL: optical delay line; VOA: variable optical attenuator; BERT: bit error rate tester.

Fig. 3
Fig. 3

(a) spectrum for the GS-FP laser (w/o injection locking); (b) spectrum for the GS-FP laser (with injection locking); (c) spectra of downlink, uplink and ONU-ONU transmitting channel(tested at Point A, B and C in Fig. 2); (d) waveforms of the 10-GHz optical pulse trains.

Fig. 4
Fig. 4

Eye diagrams. (a) decoded downlink signal in btb case, one user; (b) decoded uplink signal in btb case, one user; (c) decoded ONU-ONU transmitting signal in btb case, one ONU-internetworking group; (d) decoded downlink signal after 20-km transmission, two users; (e) decoded uplink signal after 20-km transmission, two users; (f) decoded ONU-ONU transmitting signal after 6-km transmission, two ONU-internetworking groups.

Fig. 5
Fig. 5

Measured BER curves.

Fig. 6
Fig. 6

Measured power penalty at BER = 10−9 against the received power difference between two ONU-internetworking groups. The minus sign in the x-axis means that the power of the interfering group is smaller than that of the desired group.

Metrics