Abstract

Gain-switched by a 1.914-µm Tm:YLF crystal laser, a two-stage Tm3+ fiber laser has been achieved 100-W level ~2-µm pulsed laser output with a slope efficiency of ~52%. With the 6-m length of Tm fiber, the laser wavelength was centered at 2020 nm with a bandwidth of ~25 nm. Based on an acousto-optic switch, the pulse repetition rate can be modulated from 500 Hz to 50 kHz, and the laser pulse width can be tuned between 75 ns and ~1 µs. The maximum pulse energy was over 10 mJ, and the maximum pulse peak power was 138 kW. By using the fiber-coiling-induced mode-filtering effect, laser beam quality of M2 = 1.01 was obtained. Further scaling the pulse energy and average power from such kind of gain-switched fiber lasers was also discussed.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. Lai, W. Xie, R. Wu, Y. Lim, E. Lau, L. Chia, and P. Phua, “A 150- 2-micron diode-pumped Tm:YAG laser,” OSA Trends Opt. Photo. 68, paper WE6, 2002.
  2. M. Schellhorn, S. Ngcobo, C. Bollig, M. Esser, D. Preussler, and K. Nyangaza, “High-power diode-pumped Tm:YLF slab laser,” in Lasers and Electro-Optics 2009 and the European Quantum Electronics Conference. CLEO Europe - EQEC pp. 1–1 (2009).
  3. S. D. Jackson and T. A. King, “High-power diode-cladding-pumped Tm-doped silica fiber laser,” Opt. Lett. 23(18), 1462–1464 (1998).
    [CrossRef]
  4. S. Jiang, J. Wu, Zh Yao and J. Zong, “104 W Highly Efficient Thulium Doped Germanate Glass Fiber Laser,” Adv. Solid-State Photon. MF3 (2007).
  5. E. Slobodtchikov and P. F. Moulton, “Efficient, High-Power, Tm-doped Silica Fiber Laser,” Adv. Solid-State Photon. MF2 (2007).
  6. G. D. Goodno, L. D. Book, and J. E. Rothenberg, “600-W, Single-Mode, Single-Frequency Thulium Fiber Laser Amplifier,” Proc. SPIE 7195, 71950Y–1~10 (2009).
  7. P. F. Moulton, G. A. Rines, E. V. Slobodtchikov, K. F. Wall, G. Frith, B. Samson, and A. L. G. Carter, “Tm-Doped Fiber Lasers: Fundamentals and Power Scaling,” IEEE J. Sel. Top. Quantum Electron. 15(1), 85–92 (2009).
    [CrossRef]
  8. http://www.qpeak.com/Aboutus/news.shtml .
  9. J. Yu, B. C. Trieu, E. A. Modlin, U. N. Singh, M. J. Kavaya, S. Chen, Y. Bai, P. J. Petzar, and M. Petros, “1 J/pulse Q-switched 2 µm solid-state laser,” Opt. Lett. 31(4), 462–464 (2006).
    [CrossRef] [PubMed]
  10. B. C. Dickinson, S. D. Jackson, and T. A. King, “10 mJ total output from a gain-switched Tm-doped fibre laser,” Opt. Commun. 182(1-3), 199–203 (2000).
    [CrossRef]
  11. G. Imeshev and M. E. Fermann, “230-kW peak power femtosecond pulses from a high power tunable source based on amplification in Tm-doped fiber,” Opt. Express 13(19), 7424–7431 (2005).
    [CrossRef] [PubMed]
  12. M. Eichhorn and S. D. Jackson, “Actively Q-switched Tm3+-doped and Tm3+,Ho3+-codoped Silica Fiber Lasers,” in Conference on Lasers and Electro-Optics and Quantum Electronics and Laser Science Conference 2008, (San Jose, CA, 2008).
  13. M. Eichhorn and S. D. Jackson, “High-pulse-energy actively Q-switched Tm3+-doped silica 2 µm fiber laser pumped at 792 nm,” Opt. Lett. 32(19), 2780–2782 (2007).
    [CrossRef] [PubMed]
  14. M. Eichhorn and S. D. Jackson, “High-pulse-energy, actively Q-switched Tm3+,Ho3+ -codoped silica 2 µm fiber laser,” Opt. Lett. 33(10), 1044–1046 (2008).
    [CrossRef] [PubMed]
  15. D. Creeden, P. Budni, P. A. Ketteridge, T. M. Pollak, E. P. Chicklis, G. Frith, and B. Samson, “High Power Pulse Amplification in Tm-Doped Fiber,” in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference and Photonic Applications Systems Technologies, OSA Technical Digest (CD), Optical Society of America, paper CFD1(Washington DC, 2008).
  16. D. Creeden, P. A. Ketteridge, P. A. Budni, S. D. Setzler, Y. E. Young, J. C. McCarthy, K. Zawilski, P. G. Schunemann, T. M. Pollak, E. P. Chicklis, and M. Jiang, “Mid-infrared ZnGeP2 parametric oscillator directly pumped by a pulsed 2 microm Tm-doped fiber laser,” Opt. Lett. 33(4), 315–317 (2008).
    [CrossRef] [PubMed]
  17. R. J. De Young and N. P. Barnes, “Profiling atmospheric water vapor using a fiber laser lidar system,” Appl. Opt. 49(4), 562–567 (2010).
    [CrossRef] [PubMed]
  18. B. C. Dickinson, S. D. Jackson, and T. A. King, “10 mJ total output from a gain-switched Tm-doped fibre laser,” Opt. Commun. 182(1-3), 199–203 (2000).
    [CrossRef]
  19. Y. J. Zhang, B. Q. Yao, Y. L. Ju, and Y. Zh. Wang, “Gain-switched Tm3+-doped double-clad silica fiber laser,” Opt. Express 13(4), 1085–1089 (2005).
    [CrossRef] [PubMed]
  20. S. D. Jackson and T. A. King, “Efficient Gain-Switched Operation of a Tm-Doped Silica Fiber Laser,” IEEE J. Quantum Electron. 34(5), 779–789 (1998).
    [CrossRef]
  21. M. Jiang and P. Tayebati, “Stable 10 ns, kilowatt peak-power pulse generation from a gain-switched Tm-doped fiber laser,” Opt. Lett. 32(13), 1797–1799 (2007).
    [CrossRef] [PubMed]
  22. Y. L. Tang and J. Q. Xu, “Effects of excited-state absorption on self-pulsing in Tm3+-doped fiber lasers,” J. Opt. Soc. Am. B 27(2), 179–186 (2010).
    [CrossRef]
  23. G. Frith, D. G. Lancaster, and S. D. Jackson, “85 W Tm3+-doped silica fibre laser,” Electron. Lett. 41(12), 687–688 (2005).
    [CrossRef]
  24. S. D. Jackson, “Cross relaxation and energy transfer upconversion processes relevant to the functioning of 2 μm Tm3+-doped silica fibre lasers,” Opt. Commun. 230(1-3), 197–203 (2004).
    [CrossRef]
  25. E. C. Honea, R. J. Beach, S. B. Sutton, J. A. Speth, S. C. Mitchell, J. A. Skidmore, M. A. Emanuel, and S. A. Payne, “115-W Tm:YAG diode-pumped solid-state laser,” IEEE J. Sel. Top. Quantum Electron. 33(9), 1592–1600 (1997).
    [CrossRef]
  26. J. Limpert, S. Hofer, A. Liem, H. Zellmer, A. Tunnermann, S. Knoke, and H. Voelckel, “100-W average-power, high-energy nanosecond fiber amplifier,” Appl. Phys. B 75(4-5), 477–479 (2002).
    [CrossRef]
  27. B. C. Stuart, M. D. Feit, S. Herman, A. M. Rubenchik, B. W. Shore, and M. D. Perry, “Nanosecond-to-femtosecond laser-induced breakdown in dielectrics,” Phys. Rev. B Condens. Matter 53(4), 1749–1761 (1996).
    [CrossRef] [PubMed]
  28. W. Koechner, Solid-state laser engineering, 5th ed., (Springer-Verlag, Berlin, 1995), p. 685.
  29. C. D. Brooks and F. Di Teodoro, “1-mJ energy, 1-MW peak-power, 10-W average-power, spectrally narrow, diffraction-limited pulses from a photonic-crystal fiber amplifier,” Opt. Express 13(22), 8999–9002 (2005).
    [CrossRef] [PubMed]
  30. F. Di Teodoro and C. D. Brooks, “1.1 MW peak-power, 7 W average-power, high-spectral-brightness, diffraction-limited pulses from a photonic crystal fiber amplifier,” Opt. Lett. 30(20), 2694–2696 (2005).
    [CrossRef] [PubMed]
  31. J. Q. Xu, M. Prabhu, J. R. Lu, K. I. Ueda, and D. Xing, “Efficient double-clad thulium-doped fiber laser with a ring cavity,” Appl. Opt. 40(12), 1983–1988 (2001).
    [CrossRef]
  32. M.-Y. Cheng, Y.-Ch. Chang, A. Galvanauskas, P. Mamidipudi, R. Changkakoti, and P. Gatchell, “High-energy and high-peak-power nanosecond pulse generation with beam quality control in 200-µm core highly multimode Yb-doped fiber amplifiers,” Opt. Lett. 30(4), 358–360 (2005).
    [CrossRef] [PubMed]

2010 (2)

2009 (1)

P. F. Moulton, G. A. Rines, E. V. Slobodtchikov, K. F. Wall, G. Frith, B. Samson, and A. L. G. Carter, “Tm-Doped Fiber Lasers: Fundamentals and Power Scaling,” IEEE J. Sel. Top. Quantum Electron. 15(1), 85–92 (2009).
[CrossRef]

2008 (2)

2007 (2)

2006 (1)

2005 (6)

2004 (1)

S. D. Jackson, “Cross relaxation and energy transfer upconversion processes relevant to the functioning of 2 μm Tm3+-doped silica fibre lasers,” Opt. Commun. 230(1-3), 197–203 (2004).
[CrossRef]

2002 (1)

J. Limpert, S. Hofer, A. Liem, H. Zellmer, A. Tunnermann, S. Knoke, and H. Voelckel, “100-W average-power, high-energy nanosecond fiber amplifier,” Appl. Phys. B 75(4-5), 477–479 (2002).
[CrossRef]

2001 (1)

2000 (2)

B. C. Dickinson, S. D. Jackson, and T. A. King, “10 mJ total output from a gain-switched Tm-doped fibre laser,” Opt. Commun. 182(1-3), 199–203 (2000).
[CrossRef]

B. C. Dickinson, S. D. Jackson, and T. A. King, “10 mJ total output from a gain-switched Tm-doped fibre laser,” Opt. Commun. 182(1-3), 199–203 (2000).
[CrossRef]

1998 (2)

S. D. Jackson and T. A. King, “Efficient Gain-Switched Operation of a Tm-Doped Silica Fiber Laser,” IEEE J. Quantum Electron. 34(5), 779–789 (1998).
[CrossRef]

S. D. Jackson and T. A. King, “High-power diode-cladding-pumped Tm-doped silica fiber laser,” Opt. Lett. 23(18), 1462–1464 (1998).
[CrossRef]

1997 (1)

E. C. Honea, R. J. Beach, S. B. Sutton, J. A. Speth, S. C. Mitchell, J. A. Skidmore, M. A. Emanuel, and S. A. Payne, “115-W Tm:YAG diode-pumped solid-state laser,” IEEE J. Sel. Top. Quantum Electron. 33(9), 1592–1600 (1997).
[CrossRef]

1996 (1)

B. C. Stuart, M. D. Feit, S. Herman, A. M. Rubenchik, B. W. Shore, and M. D. Perry, “Nanosecond-to-femtosecond laser-induced breakdown in dielectrics,” Phys. Rev. B Condens. Matter 53(4), 1749–1761 (1996).
[CrossRef] [PubMed]

Bai, Y.

Barnes, N. P.

Beach, R. J.

E. C. Honea, R. J. Beach, S. B. Sutton, J. A. Speth, S. C. Mitchell, J. A. Skidmore, M. A. Emanuel, and S. A. Payne, “115-W Tm:YAG diode-pumped solid-state laser,” IEEE J. Sel. Top. Quantum Electron. 33(9), 1592–1600 (1997).
[CrossRef]

Brooks, C. D.

Budni, P. A.

Carter, A. L. G.

P. F. Moulton, G. A. Rines, E. V. Slobodtchikov, K. F. Wall, G. Frith, B. Samson, and A. L. G. Carter, “Tm-Doped Fiber Lasers: Fundamentals and Power Scaling,” IEEE J. Sel. Top. Quantum Electron. 15(1), 85–92 (2009).
[CrossRef]

Chang, Y.-Ch.

Changkakoti, R.

Chen, S.

Cheng, M.-Y.

Chicklis, E. P.

Creeden, D.

De Young, R. J.

Di Teodoro, F.

Dickinson, B. C.

B. C. Dickinson, S. D. Jackson, and T. A. King, “10 mJ total output from a gain-switched Tm-doped fibre laser,” Opt. Commun. 182(1-3), 199–203 (2000).
[CrossRef]

B. C. Dickinson, S. D. Jackson, and T. A. King, “10 mJ total output from a gain-switched Tm-doped fibre laser,” Opt. Commun. 182(1-3), 199–203 (2000).
[CrossRef]

Eichhorn, M.

Emanuel, M. A.

E. C. Honea, R. J. Beach, S. B. Sutton, J. A. Speth, S. C. Mitchell, J. A. Skidmore, M. A. Emanuel, and S. A. Payne, “115-W Tm:YAG diode-pumped solid-state laser,” IEEE J. Sel. Top. Quantum Electron. 33(9), 1592–1600 (1997).
[CrossRef]

Feit, M. D.

B. C. Stuart, M. D. Feit, S. Herman, A. M. Rubenchik, B. W. Shore, and M. D. Perry, “Nanosecond-to-femtosecond laser-induced breakdown in dielectrics,” Phys. Rev. B Condens. Matter 53(4), 1749–1761 (1996).
[CrossRef] [PubMed]

Fermann, M. E.

Frith, G.

P. F. Moulton, G. A. Rines, E. V. Slobodtchikov, K. F. Wall, G. Frith, B. Samson, and A. L. G. Carter, “Tm-Doped Fiber Lasers: Fundamentals and Power Scaling,” IEEE J. Sel. Top. Quantum Electron. 15(1), 85–92 (2009).
[CrossRef]

G. Frith, D. G. Lancaster, and S. D. Jackson, “85 W Tm3+-doped silica fibre laser,” Electron. Lett. 41(12), 687–688 (2005).
[CrossRef]

Galvanauskas, A.

Gatchell, P.

Herman, S.

B. C. Stuart, M. D. Feit, S. Herman, A. M. Rubenchik, B. W. Shore, and M. D. Perry, “Nanosecond-to-femtosecond laser-induced breakdown in dielectrics,” Phys. Rev. B Condens. Matter 53(4), 1749–1761 (1996).
[CrossRef] [PubMed]

Hofer, S.

J. Limpert, S. Hofer, A. Liem, H. Zellmer, A. Tunnermann, S. Knoke, and H. Voelckel, “100-W average-power, high-energy nanosecond fiber amplifier,” Appl. Phys. B 75(4-5), 477–479 (2002).
[CrossRef]

Honea, E. C.

E. C. Honea, R. J. Beach, S. B. Sutton, J. A. Speth, S. C. Mitchell, J. A. Skidmore, M. A. Emanuel, and S. A. Payne, “115-W Tm:YAG diode-pumped solid-state laser,” IEEE J. Sel. Top. Quantum Electron. 33(9), 1592–1600 (1997).
[CrossRef]

Imeshev, G.

Jackson, S. D.

M. Eichhorn and S. D. Jackson, “High-pulse-energy, actively Q-switched Tm3+,Ho3+ -codoped silica 2 µm fiber laser,” Opt. Lett. 33(10), 1044–1046 (2008).
[CrossRef] [PubMed]

M. Eichhorn and S. D. Jackson, “High-pulse-energy actively Q-switched Tm3+-doped silica 2 µm fiber laser pumped at 792 nm,” Opt. Lett. 32(19), 2780–2782 (2007).
[CrossRef] [PubMed]

G. Frith, D. G. Lancaster, and S. D. Jackson, “85 W Tm3+-doped silica fibre laser,” Electron. Lett. 41(12), 687–688 (2005).
[CrossRef]

S. D. Jackson, “Cross relaxation and energy transfer upconversion processes relevant to the functioning of 2 μm Tm3+-doped silica fibre lasers,” Opt. Commun. 230(1-3), 197–203 (2004).
[CrossRef]

B. C. Dickinson, S. D. Jackson, and T. A. King, “10 mJ total output from a gain-switched Tm-doped fibre laser,” Opt. Commun. 182(1-3), 199–203 (2000).
[CrossRef]

B. C. Dickinson, S. D. Jackson, and T. A. King, “10 mJ total output from a gain-switched Tm-doped fibre laser,” Opt. Commun. 182(1-3), 199–203 (2000).
[CrossRef]

S. D. Jackson and T. A. King, “Efficient Gain-Switched Operation of a Tm-Doped Silica Fiber Laser,” IEEE J. Quantum Electron. 34(5), 779–789 (1998).
[CrossRef]

S. D. Jackson and T. A. King, “High-power diode-cladding-pumped Tm-doped silica fiber laser,” Opt. Lett. 23(18), 1462–1464 (1998).
[CrossRef]

Jiang, M.

Ju, Y. L.

Kavaya, M. J.

Ketteridge, P. A.

King, T. A.

B. C. Dickinson, S. D. Jackson, and T. A. King, “10 mJ total output from a gain-switched Tm-doped fibre laser,” Opt. Commun. 182(1-3), 199–203 (2000).
[CrossRef]

B. C. Dickinson, S. D. Jackson, and T. A. King, “10 mJ total output from a gain-switched Tm-doped fibre laser,” Opt. Commun. 182(1-3), 199–203 (2000).
[CrossRef]

S. D. Jackson and T. A. King, “High-power diode-cladding-pumped Tm-doped silica fiber laser,” Opt. Lett. 23(18), 1462–1464 (1998).
[CrossRef]

S. D. Jackson and T. A. King, “Efficient Gain-Switched Operation of a Tm-Doped Silica Fiber Laser,” IEEE J. Quantum Electron. 34(5), 779–789 (1998).
[CrossRef]

Knoke, S.

J. Limpert, S. Hofer, A. Liem, H. Zellmer, A. Tunnermann, S. Knoke, and H. Voelckel, “100-W average-power, high-energy nanosecond fiber amplifier,” Appl. Phys. B 75(4-5), 477–479 (2002).
[CrossRef]

Lancaster, D. G.

G. Frith, D. G. Lancaster, and S. D. Jackson, “85 W Tm3+-doped silica fibre laser,” Electron. Lett. 41(12), 687–688 (2005).
[CrossRef]

Liem, A.

J. Limpert, S. Hofer, A. Liem, H. Zellmer, A. Tunnermann, S. Knoke, and H. Voelckel, “100-W average-power, high-energy nanosecond fiber amplifier,” Appl. Phys. B 75(4-5), 477–479 (2002).
[CrossRef]

Limpert, J.

J. Limpert, S. Hofer, A. Liem, H. Zellmer, A. Tunnermann, S. Knoke, and H. Voelckel, “100-W average-power, high-energy nanosecond fiber amplifier,” Appl. Phys. B 75(4-5), 477–479 (2002).
[CrossRef]

Lu, J. R.

Mamidipudi, P.

McCarthy, J. C.

Mitchell, S. C.

E. C. Honea, R. J. Beach, S. B. Sutton, J. A. Speth, S. C. Mitchell, J. A. Skidmore, M. A. Emanuel, and S. A. Payne, “115-W Tm:YAG diode-pumped solid-state laser,” IEEE J. Sel. Top. Quantum Electron. 33(9), 1592–1600 (1997).
[CrossRef]

Modlin, E. A.

Moulton, P. F.

P. F. Moulton, G. A. Rines, E. V. Slobodtchikov, K. F. Wall, G. Frith, B. Samson, and A. L. G. Carter, “Tm-Doped Fiber Lasers: Fundamentals and Power Scaling,” IEEE J. Sel. Top. Quantum Electron. 15(1), 85–92 (2009).
[CrossRef]

Payne, S. A.

E. C. Honea, R. J. Beach, S. B. Sutton, J. A. Speth, S. C. Mitchell, J. A. Skidmore, M. A. Emanuel, and S. A. Payne, “115-W Tm:YAG diode-pumped solid-state laser,” IEEE J. Sel. Top. Quantum Electron. 33(9), 1592–1600 (1997).
[CrossRef]

Perry, M. D.

B. C. Stuart, M. D. Feit, S. Herman, A. M. Rubenchik, B. W. Shore, and M. D. Perry, “Nanosecond-to-femtosecond laser-induced breakdown in dielectrics,” Phys. Rev. B Condens. Matter 53(4), 1749–1761 (1996).
[CrossRef] [PubMed]

Petros, M.

Petzar, P. J.

Pollak, T. M.

Prabhu, M.

Rines, G. A.

P. F. Moulton, G. A. Rines, E. V. Slobodtchikov, K. F. Wall, G. Frith, B. Samson, and A. L. G. Carter, “Tm-Doped Fiber Lasers: Fundamentals and Power Scaling,” IEEE J. Sel. Top. Quantum Electron. 15(1), 85–92 (2009).
[CrossRef]

Rubenchik, A. M.

B. C. Stuart, M. D. Feit, S. Herman, A. M. Rubenchik, B. W. Shore, and M. D. Perry, “Nanosecond-to-femtosecond laser-induced breakdown in dielectrics,” Phys. Rev. B Condens. Matter 53(4), 1749–1761 (1996).
[CrossRef] [PubMed]

Samson, B.

P. F. Moulton, G. A. Rines, E. V. Slobodtchikov, K. F. Wall, G. Frith, B. Samson, and A. L. G. Carter, “Tm-Doped Fiber Lasers: Fundamentals and Power Scaling,” IEEE J. Sel. Top. Quantum Electron. 15(1), 85–92 (2009).
[CrossRef]

Schunemann, P. G.

Setzler, S. D.

Shore, B. W.

B. C. Stuart, M. D. Feit, S. Herman, A. M. Rubenchik, B. W. Shore, and M. D. Perry, “Nanosecond-to-femtosecond laser-induced breakdown in dielectrics,” Phys. Rev. B Condens. Matter 53(4), 1749–1761 (1996).
[CrossRef] [PubMed]

Singh, U. N.

Skidmore, J. A.

E. C. Honea, R. J. Beach, S. B. Sutton, J. A. Speth, S. C. Mitchell, J. A. Skidmore, M. A. Emanuel, and S. A. Payne, “115-W Tm:YAG diode-pumped solid-state laser,” IEEE J. Sel. Top. Quantum Electron. 33(9), 1592–1600 (1997).
[CrossRef]

Slobodtchikov, E. V.

P. F. Moulton, G. A. Rines, E. V. Slobodtchikov, K. F. Wall, G. Frith, B. Samson, and A. L. G. Carter, “Tm-Doped Fiber Lasers: Fundamentals and Power Scaling,” IEEE J. Sel. Top. Quantum Electron. 15(1), 85–92 (2009).
[CrossRef]

Speth, J. A.

E. C. Honea, R. J. Beach, S. B. Sutton, J. A. Speth, S. C. Mitchell, J. A. Skidmore, M. A. Emanuel, and S. A. Payne, “115-W Tm:YAG diode-pumped solid-state laser,” IEEE J. Sel. Top. Quantum Electron. 33(9), 1592–1600 (1997).
[CrossRef]

Stuart, B. C.

B. C. Stuart, M. D. Feit, S. Herman, A. M. Rubenchik, B. W. Shore, and M. D. Perry, “Nanosecond-to-femtosecond laser-induced breakdown in dielectrics,” Phys. Rev. B Condens. Matter 53(4), 1749–1761 (1996).
[CrossRef] [PubMed]

Sutton, S. B.

E. C. Honea, R. J. Beach, S. B. Sutton, J. A. Speth, S. C. Mitchell, J. A. Skidmore, M. A. Emanuel, and S. A. Payne, “115-W Tm:YAG diode-pumped solid-state laser,” IEEE J. Sel. Top. Quantum Electron. 33(9), 1592–1600 (1997).
[CrossRef]

Tang, Y. L.

Tayebati, P.

Trieu, B. C.

Tunnermann, A.

J. Limpert, S. Hofer, A. Liem, H. Zellmer, A. Tunnermann, S. Knoke, and H. Voelckel, “100-W average-power, high-energy nanosecond fiber amplifier,” Appl. Phys. B 75(4-5), 477–479 (2002).
[CrossRef]

Ueda, K. I.

Voelckel, H.

J. Limpert, S. Hofer, A. Liem, H. Zellmer, A. Tunnermann, S. Knoke, and H. Voelckel, “100-W average-power, high-energy nanosecond fiber amplifier,” Appl. Phys. B 75(4-5), 477–479 (2002).
[CrossRef]

Wall, K. F.

P. F. Moulton, G. A. Rines, E. V. Slobodtchikov, K. F. Wall, G. Frith, B. Samson, and A. L. G. Carter, “Tm-Doped Fiber Lasers: Fundamentals and Power Scaling,” IEEE J. Sel. Top. Quantum Electron. 15(1), 85–92 (2009).
[CrossRef]

Wang, Y. Zh.

Xing, D.

Xu, J. Q.

Yao, B. Q.

Young, Y. E.

Yu, J.

Zawilski, K.

Zellmer, H.

J. Limpert, S. Hofer, A. Liem, H. Zellmer, A. Tunnermann, S. Knoke, and H. Voelckel, “100-W average-power, high-energy nanosecond fiber amplifier,” Appl. Phys. B 75(4-5), 477–479 (2002).
[CrossRef]

Zhang, Y. J.

Appl. Opt. (2)

Appl. Phys. B (1)

J. Limpert, S. Hofer, A. Liem, H. Zellmer, A. Tunnermann, S. Knoke, and H. Voelckel, “100-W average-power, high-energy nanosecond fiber amplifier,” Appl. Phys. B 75(4-5), 477–479 (2002).
[CrossRef]

Electron. Lett. (1)

G. Frith, D. G. Lancaster, and S. D. Jackson, “85 W Tm3+-doped silica fibre laser,” Electron. Lett. 41(12), 687–688 (2005).
[CrossRef]

IEEE J. Quantum Electron. (1)

S. D. Jackson and T. A. King, “Efficient Gain-Switched Operation of a Tm-Doped Silica Fiber Laser,” IEEE J. Quantum Electron. 34(5), 779–789 (1998).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (2)

E. C. Honea, R. J. Beach, S. B. Sutton, J. A. Speth, S. C. Mitchell, J. A. Skidmore, M. A. Emanuel, and S. A. Payne, “115-W Tm:YAG diode-pumped solid-state laser,” IEEE J. Sel. Top. Quantum Electron. 33(9), 1592–1600 (1997).
[CrossRef]

P. F. Moulton, G. A. Rines, E. V. Slobodtchikov, K. F. Wall, G. Frith, B. Samson, and A. L. G. Carter, “Tm-Doped Fiber Lasers: Fundamentals and Power Scaling,” IEEE J. Sel. Top. Quantum Electron. 15(1), 85–92 (2009).
[CrossRef]

J. Opt. Soc. Am. B (1)

Opt. Commun. (3)

B. C. Dickinson, S. D. Jackson, and T. A. King, “10 mJ total output from a gain-switched Tm-doped fibre laser,” Opt. Commun. 182(1-3), 199–203 (2000).
[CrossRef]

B. C. Dickinson, S. D. Jackson, and T. A. King, “10 mJ total output from a gain-switched Tm-doped fibre laser,” Opt. Commun. 182(1-3), 199–203 (2000).
[CrossRef]

S. D. Jackson, “Cross relaxation and energy transfer upconversion processes relevant to the functioning of 2 μm Tm3+-doped silica fibre lasers,” Opt. Commun. 230(1-3), 197–203 (2004).
[CrossRef]

Opt. Express (3)

Opt. Lett. (8)

J. Yu, B. C. Trieu, E. A. Modlin, U. N. Singh, M. J. Kavaya, S. Chen, Y. Bai, P. J. Petzar, and M. Petros, “1 J/pulse Q-switched 2 µm solid-state laser,” Opt. Lett. 31(4), 462–464 (2006).
[CrossRef] [PubMed]

M. Jiang and P. Tayebati, “Stable 10 ns, kilowatt peak-power pulse generation from a gain-switched Tm-doped fiber laser,” Opt. Lett. 32(13), 1797–1799 (2007).
[CrossRef] [PubMed]

M. Eichhorn and S. D. Jackson, “High-pulse-energy actively Q-switched Tm3+-doped silica 2 µm fiber laser pumped at 792 nm,” Opt. Lett. 32(19), 2780–2782 (2007).
[CrossRef] [PubMed]

D. Creeden, P. A. Ketteridge, P. A. Budni, S. D. Setzler, Y. E. Young, J. C. McCarthy, K. Zawilski, P. G. Schunemann, T. M. Pollak, E. P. Chicklis, and M. Jiang, “Mid-infrared ZnGeP2 parametric oscillator directly pumped by a pulsed 2 microm Tm-doped fiber laser,” Opt. Lett. 33(4), 315–317 (2008).
[CrossRef] [PubMed]

M. Eichhorn and S. D. Jackson, “High-pulse-energy, actively Q-switched Tm3+,Ho3+ -codoped silica 2 µm fiber laser,” Opt. Lett. 33(10), 1044–1046 (2008).
[CrossRef] [PubMed]

F. Di Teodoro and C. D. Brooks, “1.1 MW peak-power, 7 W average-power, high-spectral-brightness, diffraction-limited pulses from a photonic crystal fiber amplifier,” Opt. Lett. 30(20), 2694–2696 (2005).
[CrossRef] [PubMed]

M.-Y. Cheng, Y.-Ch. Chang, A. Galvanauskas, P. Mamidipudi, R. Changkakoti, and P. Gatchell, “High-energy and high-peak-power nanosecond pulse generation with beam quality control in 200-µm core highly multimode Yb-doped fiber amplifiers,” Opt. Lett. 30(4), 358–360 (2005).
[CrossRef] [PubMed]

S. D. Jackson and T. A. King, “High-power diode-cladding-pumped Tm-doped silica fiber laser,” Opt. Lett. 23(18), 1462–1464 (1998).
[CrossRef]

Phys. Rev. B Condens. Matter (1)

B. C. Stuart, M. D. Feit, S. Herman, A. M. Rubenchik, B. W. Shore, and M. D. Perry, “Nanosecond-to-femtosecond laser-induced breakdown in dielectrics,” Phys. Rev. B Condens. Matter 53(4), 1749–1761 (1996).
[CrossRef] [PubMed]

Other (9)

W. Koechner, Solid-state laser engineering, 5th ed., (Springer-Verlag, Berlin, 1995), p. 685.

M. Eichhorn and S. D. Jackson, “Actively Q-switched Tm3+-doped and Tm3+,Ho3+-codoped Silica Fiber Lasers,” in Conference on Lasers and Electro-Optics and Quantum Electronics and Laser Science Conference 2008, (San Jose, CA, 2008).

D. Creeden, P. Budni, P. A. Ketteridge, T. M. Pollak, E. P. Chicklis, G. Frith, and B. Samson, “High Power Pulse Amplification in Tm-Doped Fiber,” in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference and Photonic Applications Systems Technologies, OSA Technical Digest (CD), Optical Society of America, paper CFD1(Washington DC, 2008).

S. Jiang, J. Wu, Zh Yao and J. Zong, “104 W Highly Efficient Thulium Doped Germanate Glass Fiber Laser,” Adv. Solid-State Photon. MF3 (2007).

E. Slobodtchikov and P. F. Moulton, “Efficient, High-Power, Tm-doped Silica Fiber Laser,” Adv. Solid-State Photon. MF2 (2007).

G. D. Goodno, L. D. Book, and J. E. Rothenberg, “600-W, Single-Mode, Single-Frequency Thulium Fiber Laser Amplifier,” Proc. SPIE 7195, 71950Y–1~10 (2009).

http://www.qpeak.com/Aboutus/news.shtml .

K. Lai, W. Xie, R. Wu, Y. Lim, E. Lau, L. Chia, and P. Phua, “A 150- 2-micron diode-pumped Tm:YAG laser,” OSA Trends Opt. Photo. 68, paper WE6, 2002.

M. Schellhorn, S. Ngcobo, C. Bollig, M. Esser, D. Preussler, and K. Nyangaza, “High-power diode-pumped Tm:YLF slab laser,” in Lasers and Electro-Optics 2009 and the European Quantum Electronics Conference. CLEO Europe - EQEC pp. 1–1 (2009).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Experimental setup of the combined gain-switched Tm3+-fiber laser. LD: laser diode; AR: anti-reflection; HR: high reflection; AO: acousto-optical; L1: aspheric lens with f = 11 mm; L2: convex lens with f = 40 mm; M1& M2: dichroic mirrors.

Fig. 2
Fig. 2

Amplified output power from the first-stage Tm fiber CGSFL system at repetition rate of 10 kHz.

Fig. 3
Fig. 3

Amplified output power from the two-stage CGSFL system at repetition rate of 50 kHz.

Fig. 4
Fig. 4

Maximum average output power and pulse energy of the CGSFL system as a function of repetition rate.

Fig. 5
Fig. 5

Characteristics of the switch pulse and the fiber laser pulse at different power levels. (a)-(d) were measured after the first-stage CGSFL and (e) was measured after the second-stage CGSFL.

Fig. 6
Fig. 6

Laser spectra (blue line) of the switch pulse (a), and that of the fiber laser pulse at different power levels of the CGSFL system. Magenta line in (a) shows the fluorescence spectrum of the Tm fiber used. (b)-(f) were measured after the first-stage CGSFL and (g) was measured after the second-stage CGSFL.

Fig. 7
Fig. 7

Laser spectra of the 2-m one-stage CGSFL system at different power levels.

Fig. 8
Fig. 8

Laser beam radius as a function of distance from the waist location (z = 0).

Metrics