Abstract

The linewidth, the threshold, and frequency shift of the stimulated Rayleigh scattering (STRS) in single mode fiber (SMF-28e), large effective area fiber (LEAF) and polarization maintaining fiber (PMF) have been studied using heterodyne detection to separate the Brillouin scattering with a fiber laser for the first time to the best of our knowledge. Experimental results show that the linewidth of STRS and spontaneous Rayleigh scattering are ~9 kHz, ~10 kHz, and ~11 kHz, and ~25 kHz, ~30 kHz, and ~27 kHz for SMF-28e, LEAF and PMF, respectively. The threshold power for STRS for 2km SMF-28e, 7km LEAF, and 100m PMF are 11dBm, 4.5dBm and 16.5dBm, respectively. The measured Rayleigh gain coefficient is a 2 × 10−13 m/W for SMF-28e. Also, weak frequency shift could be observed when input power is large enough before SBS occurred. Because of the properties of narrower bandwidth and lower threshold power of STRS in fibers, some of applications, such as narrower filter, could be realized.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. P. Agrawal, Nonlinear Fiber Optics (Academic, California, 1995).
  2. E. P. Ippen and R. H. Stolen, “Stimulated Brillouin Scattering in Optical Fibers,” Appl. Phys. Lett. 21(11), 539–541 (1972).
    [CrossRef]
  3. G. J. Cowle, D. Yu. Stepanov, and Y. T. Chieng, “Brillouin/Erbium fiber lasers,” J. Lightwave Technol. 15(7), 1198–1204 (1997).
    [CrossRef]
  4. S. Norcia, S. Tonda-Goldstein, D. Dolfi, J. P. Huignard, and R. Frey, “Efficient single-mode Brillouin fiber laser for low-noise optical carrier reduction of microwave signals,” Opt. Lett. 28(20), 1888–1890 (2003).
    [CrossRef] [PubMed]
  5. Y. Mizuno, W. Zou, Z. He, and K. Hotate, “Proposal of Brillouin optical correlation-domain reflectometry (BOCDR),” Opt. Express 16(16), 12148–12153 (2008).
    [CrossRef] [PubMed]
  6. H. J. Kong, S. K. Lee, D. W. Lee, and H. Guo, “Phase control of a stimulated Brillouin scattering phase conjugate mirror,” Appl. Phys. Lett. 86(5), 131116 (2005).
  7. Y. K. Dong, X. Bao, and L. Chen, “Distributed temperature sensing based on birefringence effect on transient Brillouin grating in a polarization-maintaining photonic crystal fiber,” Opt. Lett. 34(17), 2590–2592 (2009).
    [CrossRef] [PubMed]
  8. Z. Y. Zhang and X. Y. Bao, “Continuous and Damped Vibration Detection Based on Fiber Diversity Detection Sensor by Rayleigh Backscattering,” J. Lightwave Technol. 26(7), 832–838 (2008).
    [CrossRef]
  9. R. J. Robert, N. William, S. B. James, M. Scott, and J. S. Benjamin, “Distributed sensing using Rayleigh scatter in polarization-maintaining fibres for transverse load sensing,” Meas. Sci. Technol. 21(9), 094019 (2010).
    [CrossRef]
  10. Z. Pan, C. Yu, and A. E. Willner, “Optical performance monitoring for the next generation optical communication networks,” Opt. Fiber Technol. 16(1), 20–45 (2010).
    [CrossRef]
  11. D. H. Rank, C. W. Cho, N. D. Foltz, and T. A. Wiggins, “Stimulated Thermal Rayleigh Scattering,” Phys. Rev. Lett. 19(15), 828–830 (1967).
    [CrossRef]
  12. T. A. Wiggins, C. W. Cho, D. R. Dietz, and N. D. Foltz, “Stimulated Thermal Rayleigh Scattering in Gases,” Phys. Rev. Lett. 20(16), 831–834 (1968).
    [CrossRef]
  13. R. M. Herman and M. A. Gray, “Theoretical Prediction of the Stimulated Thermal Rayleigh Scattering in Liquids,” Phys. Rev. Lett. 19(15), 824–828 (1967).
    [CrossRef]
  14. M. E. Mack, “Stimulated Thermal Light Scattering in the Picosecond Regime,” Phys. Rev. Lett. 22(1), 13–15 (1969).
    [CrossRef]
  15. K. Tai, A. Hasegawa, and A. Tomita, “Observation of modulational instability in optical fibers,” Phys. Rev. Lett. 56(2), 135–138 (1986).
    [CrossRef] [PubMed]
  16. D. Derickson, Fiber Optic Test and Measurement (Prentice Hall PTR, New Jersey, 1998).
  17. R. W. Boyd, Nonlinear Optics (Academic, California, 2008).
  18. U. C. Paek and C. R. Kurkjian, “Calculation of Cooling Rate and Induced Stresses in Drawing of Optical Fibers,” J. Am. Ceram. Soc. 58(7-8), 330–335 (1975).
    [CrossRef]

2010

R. J. Robert, N. William, S. B. James, M. Scott, and J. S. Benjamin, “Distributed sensing using Rayleigh scatter in polarization-maintaining fibres for transverse load sensing,” Meas. Sci. Technol. 21(9), 094019 (2010).
[CrossRef]

Z. Pan, C. Yu, and A. E. Willner, “Optical performance monitoring for the next generation optical communication networks,” Opt. Fiber Technol. 16(1), 20–45 (2010).
[CrossRef]

2009

2008

2005

H. J. Kong, S. K. Lee, D. W. Lee, and H. Guo, “Phase control of a stimulated Brillouin scattering phase conjugate mirror,” Appl. Phys. Lett. 86(5), 131116 (2005).

2003

1997

G. J. Cowle, D. Yu. Stepanov, and Y. T. Chieng, “Brillouin/Erbium fiber lasers,” J. Lightwave Technol. 15(7), 1198–1204 (1997).
[CrossRef]

1986

K. Tai, A. Hasegawa, and A. Tomita, “Observation of modulational instability in optical fibers,” Phys. Rev. Lett. 56(2), 135–138 (1986).
[CrossRef] [PubMed]

1975

U. C. Paek and C. R. Kurkjian, “Calculation of Cooling Rate and Induced Stresses in Drawing of Optical Fibers,” J. Am. Ceram. Soc. 58(7-8), 330–335 (1975).
[CrossRef]

1972

E. P. Ippen and R. H. Stolen, “Stimulated Brillouin Scattering in Optical Fibers,” Appl. Phys. Lett. 21(11), 539–541 (1972).
[CrossRef]

1969

M. E. Mack, “Stimulated Thermal Light Scattering in the Picosecond Regime,” Phys. Rev. Lett. 22(1), 13–15 (1969).
[CrossRef]

1968

T. A. Wiggins, C. W. Cho, D. R. Dietz, and N. D. Foltz, “Stimulated Thermal Rayleigh Scattering in Gases,” Phys. Rev. Lett. 20(16), 831–834 (1968).
[CrossRef]

1967

R. M. Herman and M. A. Gray, “Theoretical Prediction of the Stimulated Thermal Rayleigh Scattering in Liquids,” Phys. Rev. Lett. 19(15), 824–828 (1967).
[CrossRef]

D. H. Rank, C. W. Cho, N. D. Foltz, and T. A. Wiggins, “Stimulated Thermal Rayleigh Scattering,” Phys. Rev. Lett. 19(15), 828–830 (1967).
[CrossRef]

Bao, X.

Bao, X. Y.

Benjamin, J. S.

R. J. Robert, N. William, S. B. James, M. Scott, and J. S. Benjamin, “Distributed sensing using Rayleigh scatter in polarization-maintaining fibres for transverse load sensing,” Meas. Sci. Technol. 21(9), 094019 (2010).
[CrossRef]

Chen, L.

Chieng, Y. T.

G. J. Cowle, D. Yu. Stepanov, and Y. T. Chieng, “Brillouin/Erbium fiber lasers,” J. Lightwave Technol. 15(7), 1198–1204 (1997).
[CrossRef]

Cho, C. W.

T. A. Wiggins, C. W. Cho, D. R. Dietz, and N. D. Foltz, “Stimulated Thermal Rayleigh Scattering in Gases,” Phys. Rev. Lett. 20(16), 831–834 (1968).
[CrossRef]

D. H. Rank, C. W. Cho, N. D. Foltz, and T. A. Wiggins, “Stimulated Thermal Rayleigh Scattering,” Phys. Rev. Lett. 19(15), 828–830 (1967).
[CrossRef]

Cowle, G. J.

G. J. Cowle, D. Yu. Stepanov, and Y. T. Chieng, “Brillouin/Erbium fiber lasers,” J. Lightwave Technol. 15(7), 1198–1204 (1997).
[CrossRef]

Dietz, D. R.

T. A. Wiggins, C. W. Cho, D. R. Dietz, and N. D. Foltz, “Stimulated Thermal Rayleigh Scattering in Gases,” Phys. Rev. Lett. 20(16), 831–834 (1968).
[CrossRef]

Dolfi, D.

Dong, Y. K.

Foltz, N. D.

T. A. Wiggins, C. W. Cho, D. R. Dietz, and N. D. Foltz, “Stimulated Thermal Rayleigh Scattering in Gases,” Phys. Rev. Lett. 20(16), 831–834 (1968).
[CrossRef]

D. H. Rank, C. W. Cho, N. D. Foltz, and T. A. Wiggins, “Stimulated Thermal Rayleigh Scattering,” Phys. Rev. Lett. 19(15), 828–830 (1967).
[CrossRef]

Frey, R.

Gray, M. A.

R. M. Herman and M. A. Gray, “Theoretical Prediction of the Stimulated Thermal Rayleigh Scattering in Liquids,” Phys. Rev. Lett. 19(15), 824–828 (1967).
[CrossRef]

Guo, H.

H. J. Kong, S. K. Lee, D. W. Lee, and H. Guo, “Phase control of a stimulated Brillouin scattering phase conjugate mirror,” Appl. Phys. Lett. 86(5), 131116 (2005).

Hasegawa, A.

K. Tai, A. Hasegawa, and A. Tomita, “Observation of modulational instability in optical fibers,” Phys. Rev. Lett. 56(2), 135–138 (1986).
[CrossRef] [PubMed]

He, Z.

Herman, R. M.

R. M. Herman and M. A. Gray, “Theoretical Prediction of the Stimulated Thermal Rayleigh Scattering in Liquids,” Phys. Rev. Lett. 19(15), 824–828 (1967).
[CrossRef]

Hotate, K.

Huignard, J. P.

Ippen, E. P.

E. P. Ippen and R. H. Stolen, “Stimulated Brillouin Scattering in Optical Fibers,” Appl. Phys. Lett. 21(11), 539–541 (1972).
[CrossRef]

James, S. B.

R. J. Robert, N. William, S. B. James, M. Scott, and J. S. Benjamin, “Distributed sensing using Rayleigh scatter in polarization-maintaining fibres for transverse load sensing,” Meas. Sci. Technol. 21(9), 094019 (2010).
[CrossRef]

Kong, H. J.

H. J. Kong, S. K. Lee, D. W. Lee, and H. Guo, “Phase control of a stimulated Brillouin scattering phase conjugate mirror,” Appl. Phys. Lett. 86(5), 131116 (2005).

Kurkjian, C. R.

U. C. Paek and C. R. Kurkjian, “Calculation of Cooling Rate and Induced Stresses in Drawing of Optical Fibers,” J. Am. Ceram. Soc. 58(7-8), 330–335 (1975).
[CrossRef]

Lee, D. W.

H. J. Kong, S. K. Lee, D. W. Lee, and H. Guo, “Phase control of a stimulated Brillouin scattering phase conjugate mirror,” Appl. Phys. Lett. 86(5), 131116 (2005).

Lee, S. K.

H. J. Kong, S. K. Lee, D. W. Lee, and H. Guo, “Phase control of a stimulated Brillouin scattering phase conjugate mirror,” Appl. Phys. Lett. 86(5), 131116 (2005).

Mack, M. E.

M. E. Mack, “Stimulated Thermal Light Scattering in the Picosecond Regime,” Phys. Rev. Lett. 22(1), 13–15 (1969).
[CrossRef]

Mizuno, Y.

Norcia, S.

Paek, U. C.

U. C. Paek and C. R. Kurkjian, “Calculation of Cooling Rate and Induced Stresses in Drawing of Optical Fibers,” J. Am. Ceram. Soc. 58(7-8), 330–335 (1975).
[CrossRef]

Pan, Z.

Z. Pan, C. Yu, and A. E. Willner, “Optical performance monitoring for the next generation optical communication networks,” Opt. Fiber Technol. 16(1), 20–45 (2010).
[CrossRef]

Rank, D. H.

D. H. Rank, C. W. Cho, N. D. Foltz, and T. A. Wiggins, “Stimulated Thermal Rayleigh Scattering,” Phys. Rev. Lett. 19(15), 828–830 (1967).
[CrossRef]

Robert, R. J.

R. J. Robert, N. William, S. B. James, M. Scott, and J. S. Benjamin, “Distributed sensing using Rayleigh scatter in polarization-maintaining fibres for transverse load sensing,” Meas. Sci. Technol. 21(9), 094019 (2010).
[CrossRef]

Scott, M.

R. J. Robert, N. William, S. B. James, M. Scott, and J. S. Benjamin, “Distributed sensing using Rayleigh scatter in polarization-maintaining fibres for transverse load sensing,” Meas. Sci. Technol. 21(9), 094019 (2010).
[CrossRef]

Stepanov, D. Yu.

G. J. Cowle, D. Yu. Stepanov, and Y. T. Chieng, “Brillouin/Erbium fiber lasers,” J. Lightwave Technol. 15(7), 1198–1204 (1997).
[CrossRef]

Stolen, R. H.

E. P. Ippen and R. H. Stolen, “Stimulated Brillouin Scattering in Optical Fibers,” Appl. Phys. Lett. 21(11), 539–541 (1972).
[CrossRef]

Tai, K.

K. Tai, A. Hasegawa, and A. Tomita, “Observation of modulational instability in optical fibers,” Phys. Rev. Lett. 56(2), 135–138 (1986).
[CrossRef] [PubMed]

Tomita, A.

K. Tai, A. Hasegawa, and A. Tomita, “Observation of modulational instability in optical fibers,” Phys. Rev. Lett. 56(2), 135–138 (1986).
[CrossRef] [PubMed]

Tonda-Goldstein, S.

Wiggins, T. A.

T. A. Wiggins, C. W. Cho, D. R. Dietz, and N. D. Foltz, “Stimulated Thermal Rayleigh Scattering in Gases,” Phys. Rev. Lett. 20(16), 831–834 (1968).
[CrossRef]

D. H. Rank, C. W. Cho, N. D. Foltz, and T. A. Wiggins, “Stimulated Thermal Rayleigh Scattering,” Phys. Rev. Lett. 19(15), 828–830 (1967).
[CrossRef]

William, N.

R. J. Robert, N. William, S. B. James, M. Scott, and J. S. Benjamin, “Distributed sensing using Rayleigh scatter in polarization-maintaining fibres for transverse load sensing,” Meas. Sci. Technol. 21(9), 094019 (2010).
[CrossRef]

Willner, A. E.

Z. Pan, C. Yu, and A. E. Willner, “Optical performance monitoring for the next generation optical communication networks,” Opt. Fiber Technol. 16(1), 20–45 (2010).
[CrossRef]

Yu, C.

Z. Pan, C. Yu, and A. E. Willner, “Optical performance monitoring for the next generation optical communication networks,” Opt. Fiber Technol. 16(1), 20–45 (2010).
[CrossRef]

Zhang, Z. Y.

Zou, W.

Appl. Phys. Lett.

E. P. Ippen and R. H. Stolen, “Stimulated Brillouin Scattering in Optical Fibers,” Appl. Phys. Lett. 21(11), 539–541 (1972).
[CrossRef]

H. J. Kong, S. K. Lee, D. W. Lee, and H. Guo, “Phase control of a stimulated Brillouin scattering phase conjugate mirror,” Appl. Phys. Lett. 86(5), 131116 (2005).

J. Am. Ceram. Soc.

U. C. Paek and C. R. Kurkjian, “Calculation of Cooling Rate and Induced Stresses in Drawing of Optical Fibers,” J. Am. Ceram. Soc. 58(7-8), 330–335 (1975).
[CrossRef]

J. Lightwave Technol.

Meas. Sci. Technol.

R. J. Robert, N. William, S. B. James, M. Scott, and J. S. Benjamin, “Distributed sensing using Rayleigh scatter in polarization-maintaining fibres for transverse load sensing,” Meas. Sci. Technol. 21(9), 094019 (2010).
[CrossRef]

Opt. Express

Opt. Fiber Technol.

Z. Pan, C. Yu, and A. E. Willner, “Optical performance monitoring for the next generation optical communication networks,” Opt. Fiber Technol. 16(1), 20–45 (2010).
[CrossRef]

Opt. Lett.

Phys. Rev. Lett.

D. H. Rank, C. W. Cho, N. D. Foltz, and T. A. Wiggins, “Stimulated Thermal Rayleigh Scattering,” Phys. Rev. Lett. 19(15), 828–830 (1967).
[CrossRef]

T. A. Wiggins, C. W. Cho, D. R. Dietz, and N. D. Foltz, “Stimulated Thermal Rayleigh Scattering in Gases,” Phys. Rev. Lett. 20(16), 831–834 (1968).
[CrossRef]

R. M. Herman and M. A. Gray, “Theoretical Prediction of the Stimulated Thermal Rayleigh Scattering in Liquids,” Phys. Rev. Lett. 19(15), 824–828 (1967).
[CrossRef]

M. E. Mack, “Stimulated Thermal Light Scattering in the Picosecond Regime,” Phys. Rev. Lett. 22(1), 13–15 (1969).
[CrossRef]

K. Tai, A. Hasegawa, and A. Tomita, “Observation of modulational instability in optical fibers,” Phys. Rev. Lett. 56(2), 135–138 (1986).
[CrossRef] [PubMed]

Other

D. Derickson, Fiber Optic Test and Measurement (Prentice Hall PTR, New Jersey, 1998).

R. W. Boyd, Nonlinear Optics (Academic, California, 2008).

G. P. Agrawal, Nonlinear Fiber Optics (Academic, California, 1995).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Measurement of Rayleigh scattering in optical fibers. Laser: Fiber laser; EDFA: erbium-doped fiber amplifier; PC1 and PC2: polarization controller, PBS: polarization beam splitter; PM Circulator: polarization maintaining circulator; AOM: acoustic-optic modulator; PD: photon detector; ESA: electrical spectrum analyzer.

Fig. 2
Fig. 2

Evolution of spectra, 3dB bandwidth changing, and contrast of Rayleigh scattering signal for 2km SMF-28e, 7km LEAF, and 100m PMF. (a), (c) and (e): Rayleigh spectra evolution for SMF-28e, LEAF and PMF, respectively. (b), (d) and (f): 3dB bandwidth and contrast of Rayleigh scattering for SMF-28e, LEAF and PMF, respectively.

Fig. 3
Fig. 3

(a). Measurement system of frequency shift of Rayleigh signal in optical fibers, Laser: fiber laser; EDFA: erbium-doped fiber amplifier; PM Circulator: polarization maintaining circulator; PC: polarization controller, PBS: polarization beam splitter; AOM: acoustic-optic modulator; PD: photon detector; ESA: electrical spectrum analyzer. (b).Frequency shift experimental results.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

δ S T R S = η 2 κ π ρ c p | k | 2
g R ( max ) = ω γ e 2 ( γ 1 ) 4 ρ n 2 c 2 v 2 + ω γ e γ a Ω B τ R 2 ρ n 2 c 2 v 2

Metrics