Abstract

We report on the development of a tunable Raman fiber ring laser especially designed for the investigation of the 3Σg1Δg transition of molecular oxygen. Singlet oxygen (1Δg) is a reactive species of importance in the fields of biology, photochemistry, and phototherapy. Tunability of the Raman fiber ring laser is achieved without the use of an intracavity tunable bandpass filter and the laser thus achieves a slope efficiency only obtained up to now in Perot-Fabry cavities. A measurement of the action spectrum of a singlet oxygen trap is made in air-saturated ethanol and acetone to demonstrate the practical application of the tunable Raman fiber ring laser for the investigation of the 3Σg1Δg transition of molecular oxygen.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. D. Mermelstein, C. Headley, J.-C. Bouteiller, P. Steinvurzel, C. Horn, K. Feder, and B. J. Eggleton, “Configurable three-wavelength Raman fiber laser for Raman amplification and dynamic gain flattening,” IEEE Photon. Technol. Lett. 13, 1286–1288 (2001).
    [CrossRef]
  2. B. A. Cumberland, S. V. Popov, J. R. Taylor, O. I. Medvedkov, S. A. Vasiliev, and E. M. Dianov, “2.1 µm continuous-wave Raman laser in GeO2 fiber,” Opt. Lett. 32, 1848–1850 (2007).
    [CrossRef] [PubMed]
  3. A. S. Kurkov, E. M. Dianov, V. M. Paramonov, A. N. Gur’yanov, A. Yu. Laptev, V. F. Khopin, A. A. Umnikov, N. I. Vechkanov, O. I. Medvedkov, S. A. Vasil’ev, M. M. Bubnov, O. N. Egorova, S. L. Semenov, and E. V. Pershina, “High-power fibre Raman lasers emiting in the 1.24-1.34µm range,” Quantum Electron. 30, 791–793 (2000).
    [CrossRef]
  4. D. A. Chestnut, and J. R. Taylor, “Wavelength-versatile subpicosecond pulsed lasers using Raman gain in figureof-eight fiber geometries,” Opt. Lett. 30, 2982–2984 (2005).
    [CrossRef] [PubMed]
  5. C. Aguergaray, D. Mchin, V. Kruglov, and J. D. Harvey, “Experimental realization of a Modelocked parabolic Raman fiber oscillator,” Opt. Express 18, 8680 (2010).
    [CrossRef]
  6. E. Bélanger, M. Bernier, and D. Faucher, “D. Cȏté, and R. Vallée, “High-power and widely tunable all-fiber Raman laser,” J. Lightwave Technol. 26, 1696–1701 (2008).
    [CrossRef]
  7. A. S. Kurkov, V. M. Paramonov, O. I. Medvedkov, I. D. Zalevskii, and S. E. Goncharov, “Fiber Raman laser at 1450 nm for medical applications,” Laser Phys. 18, 1234–1237 (2008).
    [CrossRef]
  8. A. S. Yusupov, S. E. Goncharov, I. D. Zalevskii, V. M. Paramonov, and A. S. Kurkov, “Raman fiber laser for the drug-free photodynamic therapy,” Laser Phys. 20, 357–359 (2010).
    [CrossRef]
  9. P. C. Reeves-Hall, and J. R. Taylor, “Wavelength tunable CW Raman fibre ring laser operating at 1486-1551 nm,” Electron. Lett. 37, 491–492 (2001).
    [CrossRef]
  10. D. Georgiev, V. P. Gapontsev, A. G. Dronov, M. Y. Vyatkin, A. B. Rulkov, S. V. Popov, and J. R. Taylor, “Watts level frequency doubling of a narrow line linearly polarized Raman fiber laser to 589 nm,” Opt. Express 13, 6772–6776 (2005).
    [CrossRef] [PubMed]
  11. S. A. Babin, D. V. Churkin, S. I. Kablukov, M. A. Rybakov, and A. A. Vlasov, “All-fiber widely tunable Raman fiber laser with controlled output spectrum,” Opt. Express 15, 8438–8443 (2007).
    [CrossRef] [PubMed]
  12. T. J. Dougherty, C. J. Gomer, B. W. Henderson, G. Jori, D. Kessel, M. Korbelik, J. Moan, and Q. Peng, “Photodynamic Therapy,” J. Natl. Cancer Inst. 90, 889–905 (1998).
    [CrossRef]
  13. D. E. J. G. J. Dolmans, D. Fukumura, and R. K. Jain, “Photodynamic therapy for cancer,” Nature 3, 380–387 (2003).
  14. A. G. Griesbeck, A. Bartoschek, J. Neudrfl, and C. Miara, “Stereoselectivity in Ene Reactions with 1O2:Matrix Effects in Polymer Supports, Photo-oxygenation of Organic Salts and Asymetric Synthesis,” Photochem. Photobiol. 82, 1233–1240 (2006).
    [CrossRef] [PubMed]
  15. C. Long, and D. R. Kearns, “Selection rules for the intermolecular enhancement of spin forbidden transitions in molecular oxygen,” J. Chem. Phys. 59, 5729–5736 (1973).
    [CrossRef]
  16. A. P. Losev, I. N. Nichiporovich, I. M. Byteva, N. N. Drozdov, and I. F. Al Jghgami, “The perturbing effect of solvents on the luminescence rate constant of singlet molecular oxygen,” Chem. Phys. Lett. 181, 45–50 (1991).
    [CrossRef]
  17. P. R. Ogilby, “Solvent Effects on the radiative transitions of singlet oxygen,” Acc. Chem. Res. 32, 512–519 (1999).
    [CrossRef]
  18. A. A. Krasnovsky, Jr., N. N. Drozdova, V. Ivanov, and R. V. Ambartzumian, “Activation of Molecular Oxygen by Infrared Laser Radiation in Pigment-Free Aerobic Systems,” Biochemistry (Mosc.) 68, 963–966 (2003).
    [CrossRef]
  19. A. A. Krasnovsky, Jr., and R. V. Ambartzumian, “Tetracene oxygenation caused by infrared excitation of molecular oxygen in air-saturated solutions: the photoreaction action spectrum and spectroscopic parameter of the 1Δg ←−3 Σ−g transition in oxygen molecules,” Chem. Phys. Lett. 400, 531–535 (2004).
    [CrossRef]
  20. A. A. Krasnovsky, Jr., N. N. Drozdova, Ya. V. Roumbal, A. V. Ivanov, and R. V. Ambartzumian, “Biophotonics of molecular oxygen: activation efficiencies upon direct and photosensitized excitation,” Chin. Opt. Lett. 3, S1–S4 (2005).
  21. A. A. Krasnovsky, Jr., Ya. V. Roumbal, A. V. Ivanov, and R. V. Ambartzumian, “Solvent dependence of the steady-state rate of 1O2 generation upon excitation of dissolved oxygen by cw 1267 nm laser radiation in airsaturated solutions: Estimates of the absorbance and molar absorption coefficients of oxygen at the excitation wavelength,” Chem. Phys. Lett. 430, 260–264 (2006).
    [CrossRef]
  22. A. A. Krasnovsky, Jr., Ya. V. Roumbal, and A. A. Strizhakov, “Rates of 1O2 (1Δg) production upon direct laser excitation of molecular oxygen by 1270 nm laser radiation in air-saturated alcohols and micellar aqueous dispersions,” Chem. Phys. Lett. 458, 195–199 (2008).
    [CrossRef]
  23. R. K. Jain, C. Lin, R. H. Stolen, W. Pleibel, and P. Kaiser, “A high-efficiency tunable CW Raman oscillator,” Appl. Phys. Lett. 30, 162–164 (1977).
    [CrossRef]
  24. C. Lin, R. H. Stolen, W. G. French, and T. G. Malone, “A cw tunable near-infrared (1.085-1.175-µm) Raman oscillator,” Opt. Lett. 30, 96–97 (1977).
    [CrossRef]
  25. G. Qin, M. Liao, T. Suzuki, A. Mori, and Y. Ohishi, “Widely tunable ring-cavity tellurite fiber Raman laser,” Opt. Lett. 33, 2014–2016 (2008).
    [CrossRef] [PubMed]
  26. Y. Han, C. Kim, J. U. Kang, U. Paek, and Y. Chung, “Multiwavelength Raman fiber-ring laser based on tunable cascaded long-period fiber gratings,” IEEE Photon. Technol. Lett. 15, 383–385 (2003).
    [CrossRef]
  27. Y. Han, S. B. Lee, C. Kim, and M. Y. Jeong, “Voltage-tuned multiwavelength Raman ring laser with high tunability based on a single fiber Bragg grating,” Appl. Opt. 47, 6099–6102 (2008).
    [CrossRef] [PubMed]
  28. S. V. Chernikov, N. S. Platonov, D. V. Gapontsev, D. Chang, M. J. Guy, and J. R. Taylor, “Raman fibre ring laser operating at 1.24 µm,” Electron. Lett. 34, 680–681 (1998).
    [CrossRef]

2010 (2)

A. S. Yusupov, S. E. Goncharov, I. D. Zalevskii, V. M. Paramonov, and A. S. Kurkov, “Raman fiber laser for the drug-free photodynamic therapy,” Laser Phys. 20, 357–359 (2010).
[CrossRef]

C. Aguergaray, D. Mchin, V. Kruglov, and J. D. Harvey, “Experimental realization of a Modelocked parabolic Raman fiber oscillator,” Opt. Express 18, 8680 (2010).
[CrossRef]

2008 (5)

E. Bélanger, M. Bernier, and D. Faucher, “D. Cȏté, and R. Vallée, “High-power and widely tunable all-fiber Raman laser,” J. Lightwave Technol. 26, 1696–1701 (2008).
[CrossRef]

G. Qin, M. Liao, T. Suzuki, A. Mori, and Y. Ohishi, “Widely tunable ring-cavity tellurite fiber Raman laser,” Opt. Lett. 33, 2014–2016 (2008).
[CrossRef] [PubMed]

Y. Han, S. B. Lee, C. Kim, and M. Y. Jeong, “Voltage-tuned multiwavelength Raman ring laser with high tunability based on a single fiber Bragg grating,” Appl. Opt. 47, 6099–6102 (2008).
[CrossRef] [PubMed]

A. S. Kurkov, V. M. Paramonov, O. I. Medvedkov, I. D. Zalevskii, and S. E. Goncharov, “Fiber Raman laser at 1450 nm for medical applications,” Laser Phys. 18, 1234–1237 (2008).
[CrossRef]

A. A. Krasnovsky, Jr., Ya. V. Roumbal, and A. A. Strizhakov, “Rates of 1O2 (1Δg) production upon direct laser excitation of molecular oxygen by 1270 nm laser radiation in air-saturated alcohols and micellar aqueous dispersions,” Chem. Phys. Lett. 458, 195–199 (2008).
[CrossRef]

2007 (2)

2006 (2)

A. A. Krasnovsky, Jr., Ya. V. Roumbal, A. V. Ivanov, and R. V. Ambartzumian, “Solvent dependence of the steady-state rate of 1O2 generation upon excitation of dissolved oxygen by cw 1267 nm laser radiation in airsaturated solutions: Estimates of the absorbance and molar absorption coefficients of oxygen at the excitation wavelength,” Chem. Phys. Lett. 430, 260–264 (2006).
[CrossRef]

A. G. Griesbeck, A. Bartoschek, J. Neudrfl, and C. Miara, “Stereoselectivity in Ene Reactions with 1O2:Matrix Effects in Polymer Supports, Photo-oxygenation of Organic Salts and Asymetric Synthesis,” Photochem. Photobiol. 82, 1233–1240 (2006).
[CrossRef] [PubMed]

2005 (3)

2004 (1)

A. A. Krasnovsky, Jr., and R. V. Ambartzumian, “Tetracene oxygenation caused by infrared excitation of molecular oxygen in air-saturated solutions: the photoreaction action spectrum and spectroscopic parameter of the 1Δg ←−3 Σ−g transition in oxygen molecules,” Chem. Phys. Lett. 400, 531–535 (2004).
[CrossRef]

2003 (3)

A. A. Krasnovsky, Jr., N. N. Drozdova, V. Ivanov, and R. V. Ambartzumian, “Activation of Molecular Oxygen by Infrared Laser Radiation in Pigment-Free Aerobic Systems,” Biochemistry (Mosc.) 68, 963–966 (2003).
[CrossRef]

Y. Han, C. Kim, J. U. Kang, U. Paek, and Y. Chung, “Multiwavelength Raman fiber-ring laser based on tunable cascaded long-period fiber gratings,” IEEE Photon. Technol. Lett. 15, 383–385 (2003).
[CrossRef]

D. E. J. G. J. Dolmans, D. Fukumura, and R. K. Jain, “Photodynamic therapy for cancer,” Nature 3, 380–387 (2003).

2001 (2)

P. C. Reeves-Hall, and J. R. Taylor, “Wavelength tunable CW Raman fibre ring laser operating at 1486-1551 nm,” Electron. Lett. 37, 491–492 (2001).
[CrossRef]

M. D. Mermelstein, C. Headley, J.-C. Bouteiller, P. Steinvurzel, C. Horn, K. Feder, and B. J. Eggleton, “Configurable three-wavelength Raman fiber laser for Raman amplification and dynamic gain flattening,” IEEE Photon. Technol. Lett. 13, 1286–1288 (2001).
[CrossRef]

2000 (1)

A. S. Kurkov, E. M. Dianov, V. M. Paramonov, A. N. Gur’yanov, A. Yu. Laptev, V. F. Khopin, A. A. Umnikov, N. I. Vechkanov, O. I. Medvedkov, S. A. Vasil’ev, M. M. Bubnov, O. N. Egorova, S. L. Semenov, and E. V. Pershina, “High-power fibre Raman lasers emiting in the 1.24-1.34µm range,” Quantum Electron. 30, 791–793 (2000).
[CrossRef]

1999 (1)

P. R. Ogilby, “Solvent Effects on the radiative transitions of singlet oxygen,” Acc. Chem. Res. 32, 512–519 (1999).
[CrossRef]

1998 (2)

S. V. Chernikov, N. S. Platonov, D. V. Gapontsev, D. Chang, M. J. Guy, and J. R. Taylor, “Raman fibre ring laser operating at 1.24 µm,” Electron. Lett. 34, 680–681 (1998).
[CrossRef]

T. J. Dougherty, C. J. Gomer, B. W. Henderson, G. Jori, D. Kessel, M. Korbelik, J. Moan, and Q. Peng, “Photodynamic Therapy,” J. Natl. Cancer Inst. 90, 889–905 (1998).
[CrossRef]

1991 (1)

A. P. Losev, I. N. Nichiporovich, I. M. Byteva, N. N. Drozdov, and I. F. Al Jghgami, “The perturbing effect of solvents on the luminescence rate constant of singlet molecular oxygen,” Chem. Phys. Lett. 181, 45–50 (1991).
[CrossRef]

1977 (2)

C. Lin, R. H. Stolen, W. G. French, and T. G. Malone, “A cw tunable near-infrared (1.085-1.175-µm) Raman oscillator,” Opt. Lett. 30, 96–97 (1977).
[CrossRef]

R. K. Jain, C. Lin, R. H. Stolen, W. Pleibel, and P. Kaiser, “A high-efficiency tunable CW Raman oscillator,” Appl. Phys. Lett. 30, 162–164 (1977).
[CrossRef]

1973 (1)

C. Long, and D. R. Kearns, “Selection rules for the intermolecular enhancement of spin forbidden transitions in molecular oxygen,” J. Chem. Phys. 59, 5729–5736 (1973).
[CrossRef]

Aguergaray, C.

Al Jghgami, I. F.

A. P. Losev, I. N. Nichiporovich, I. M. Byteva, N. N. Drozdov, and I. F. Al Jghgami, “The perturbing effect of solvents on the luminescence rate constant of singlet molecular oxygen,” Chem. Phys. Lett. 181, 45–50 (1991).
[CrossRef]

Ambartzumian, R. V.

A. A. Krasnovsky, Jr., Ya. V. Roumbal, A. V. Ivanov, and R. V. Ambartzumian, “Solvent dependence of the steady-state rate of 1O2 generation upon excitation of dissolved oxygen by cw 1267 nm laser radiation in airsaturated solutions: Estimates of the absorbance and molar absorption coefficients of oxygen at the excitation wavelength,” Chem. Phys. Lett. 430, 260–264 (2006).
[CrossRef]

A. A. Krasnovsky, Jr., N. N. Drozdova, Ya. V. Roumbal, A. V. Ivanov, and R. V. Ambartzumian, “Biophotonics of molecular oxygen: activation efficiencies upon direct and photosensitized excitation,” Chin. Opt. Lett. 3, S1–S4 (2005).

A. A. Krasnovsky, Jr., and R. V. Ambartzumian, “Tetracene oxygenation caused by infrared excitation of molecular oxygen in air-saturated solutions: the photoreaction action spectrum and spectroscopic parameter of the 1Δg ←−3 Σ−g transition in oxygen molecules,” Chem. Phys. Lett. 400, 531–535 (2004).
[CrossRef]

A. A. Krasnovsky, Jr., N. N. Drozdova, V. Ivanov, and R. V. Ambartzumian, “Activation of Molecular Oxygen by Infrared Laser Radiation in Pigment-Free Aerobic Systems,” Biochemistry (Mosc.) 68, 963–966 (2003).
[CrossRef]

Babin, S. A.

Bartoschek, A.

A. G. Griesbeck, A. Bartoschek, J. Neudrfl, and C. Miara, “Stereoselectivity in Ene Reactions with 1O2:Matrix Effects in Polymer Supports, Photo-oxygenation of Organic Salts and Asymetric Synthesis,” Photochem. Photobiol. 82, 1233–1240 (2006).
[CrossRef] [PubMed]

Bélanger, E.

Bernier, M.

Bouteiller, J.-C.

M. D. Mermelstein, C. Headley, J.-C. Bouteiller, P. Steinvurzel, C. Horn, K. Feder, and B. J. Eggleton, “Configurable three-wavelength Raman fiber laser for Raman amplification and dynamic gain flattening,” IEEE Photon. Technol. Lett. 13, 1286–1288 (2001).
[CrossRef]

Bubnov, M. M.

A. S. Kurkov, E. M. Dianov, V. M. Paramonov, A. N. Gur’yanov, A. Yu. Laptev, V. F. Khopin, A. A. Umnikov, N. I. Vechkanov, O. I. Medvedkov, S. A. Vasil’ev, M. M. Bubnov, O. N. Egorova, S. L. Semenov, and E. V. Pershina, “High-power fibre Raman lasers emiting in the 1.24-1.34µm range,” Quantum Electron. 30, 791–793 (2000).
[CrossRef]

Byteva, I. M.

A. P. Losev, I. N. Nichiporovich, I. M. Byteva, N. N. Drozdov, and I. F. Al Jghgami, “The perturbing effect of solvents on the luminescence rate constant of singlet molecular oxygen,” Chem. Phys. Lett. 181, 45–50 (1991).
[CrossRef]

Chang, D.

S. V. Chernikov, N. S. Platonov, D. V. Gapontsev, D. Chang, M. J. Guy, and J. R. Taylor, “Raman fibre ring laser operating at 1.24 µm,” Electron. Lett. 34, 680–681 (1998).
[CrossRef]

Chernikov, S. V.

S. V. Chernikov, N. S. Platonov, D. V. Gapontsev, D. Chang, M. J. Guy, and J. R. Taylor, “Raman fibre ring laser operating at 1.24 µm,” Electron. Lett. 34, 680–681 (1998).
[CrossRef]

Chestnut, D. A.

Chung, Y.

Y. Han, C. Kim, J. U. Kang, U. Paek, and Y. Chung, “Multiwavelength Raman fiber-ring laser based on tunable cascaded long-period fiber gratings,” IEEE Photon. Technol. Lett. 15, 383–385 (2003).
[CrossRef]

Churkin, D. V.

Cumberland, B. A.

Dianov, E. M.

B. A. Cumberland, S. V. Popov, J. R. Taylor, O. I. Medvedkov, S. A. Vasiliev, and E. M. Dianov, “2.1 µm continuous-wave Raman laser in GeO2 fiber,” Opt. Lett. 32, 1848–1850 (2007).
[CrossRef] [PubMed]

A. S. Kurkov, E. M. Dianov, V. M. Paramonov, A. N. Gur’yanov, A. Yu. Laptev, V. F. Khopin, A. A. Umnikov, N. I. Vechkanov, O. I. Medvedkov, S. A. Vasil’ev, M. M. Bubnov, O. N. Egorova, S. L. Semenov, and E. V. Pershina, “High-power fibre Raman lasers emiting in the 1.24-1.34µm range,” Quantum Electron. 30, 791–793 (2000).
[CrossRef]

Dolmans, D. E. J. G. J.

D. E. J. G. J. Dolmans, D. Fukumura, and R. K. Jain, “Photodynamic therapy for cancer,” Nature 3, 380–387 (2003).

Dougherty, T. J.

T. J. Dougherty, C. J. Gomer, B. W. Henderson, G. Jori, D. Kessel, M. Korbelik, J. Moan, and Q. Peng, “Photodynamic Therapy,” J. Natl. Cancer Inst. 90, 889–905 (1998).
[CrossRef]

Dronov, A. G.

Drozdov, N. N.

A. P. Losev, I. N. Nichiporovich, I. M. Byteva, N. N. Drozdov, and I. F. Al Jghgami, “The perturbing effect of solvents on the luminescence rate constant of singlet molecular oxygen,” Chem. Phys. Lett. 181, 45–50 (1991).
[CrossRef]

Drozdova, N. N.

A. A. Krasnovsky, Jr., N. N. Drozdova, Ya. V. Roumbal, A. V. Ivanov, and R. V. Ambartzumian, “Biophotonics of molecular oxygen: activation efficiencies upon direct and photosensitized excitation,” Chin. Opt. Lett. 3, S1–S4 (2005).

A. A. Krasnovsky, Jr., N. N. Drozdova, V. Ivanov, and R. V. Ambartzumian, “Activation of Molecular Oxygen by Infrared Laser Radiation in Pigment-Free Aerobic Systems,” Biochemistry (Mosc.) 68, 963–966 (2003).
[CrossRef]

Eggleton, B. J.

M. D. Mermelstein, C. Headley, J.-C. Bouteiller, P. Steinvurzel, C. Horn, K. Feder, and B. J. Eggleton, “Configurable three-wavelength Raman fiber laser for Raman amplification and dynamic gain flattening,” IEEE Photon. Technol. Lett. 13, 1286–1288 (2001).
[CrossRef]

Egorova, O. N.

A. S. Kurkov, E. M. Dianov, V. M. Paramonov, A. N. Gur’yanov, A. Yu. Laptev, V. F. Khopin, A. A. Umnikov, N. I. Vechkanov, O. I. Medvedkov, S. A. Vasil’ev, M. M. Bubnov, O. N. Egorova, S. L. Semenov, and E. V. Pershina, “High-power fibre Raman lasers emiting in the 1.24-1.34µm range,” Quantum Electron. 30, 791–793 (2000).
[CrossRef]

Faucher, D.

Feder, K.

M. D. Mermelstein, C. Headley, J.-C. Bouteiller, P. Steinvurzel, C. Horn, K. Feder, and B. J. Eggleton, “Configurable three-wavelength Raman fiber laser for Raman amplification and dynamic gain flattening,” IEEE Photon. Technol. Lett. 13, 1286–1288 (2001).
[CrossRef]

French, W. G.

Fukumura, D.

D. E. J. G. J. Dolmans, D. Fukumura, and R. K. Jain, “Photodynamic therapy for cancer,” Nature 3, 380–387 (2003).

Gapontsev, D. V.

S. V. Chernikov, N. S. Platonov, D. V. Gapontsev, D. Chang, M. J. Guy, and J. R. Taylor, “Raman fibre ring laser operating at 1.24 µm,” Electron. Lett. 34, 680–681 (1998).
[CrossRef]

Gapontsev, V. P.

Georgiev, D.

Gomer, C. J.

T. J. Dougherty, C. J. Gomer, B. W. Henderson, G. Jori, D. Kessel, M. Korbelik, J. Moan, and Q. Peng, “Photodynamic Therapy,” J. Natl. Cancer Inst. 90, 889–905 (1998).
[CrossRef]

Goncharov, S. E.

A. S. Yusupov, S. E. Goncharov, I. D. Zalevskii, V. M. Paramonov, and A. S. Kurkov, “Raman fiber laser for the drug-free photodynamic therapy,” Laser Phys. 20, 357–359 (2010).
[CrossRef]

A. S. Kurkov, V. M. Paramonov, O. I. Medvedkov, I. D. Zalevskii, and S. E. Goncharov, “Fiber Raman laser at 1450 nm for medical applications,” Laser Phys. 18, 1234–1237 (2008).
[CrossRef]

Griesbeck, A. G.

A. G. Griesbeck, A. Bartoschek, J. Neudrfl, and C. Miara, “Stereoselectivity in Ene Reactions with 1O2:Matrix Effects in Polymer Supports, Photo-oxygenation of Organic Salts and Asymetric Synthesis,” Photochem. Photobiol. 82, 1233–1240 (2006).
[CrossRef] [PubMed]

Gur’yanov, A. N.

A. S. Kurkov, E. M. Dianov, V. M. Paramonov, A. N. Gur’yanov, A. Yu. Laptev, V. F. Khopin, A. A. Umnikov, N. I. Vechkanov, O. I. Medvedkov, S. A. Vasil’ev, M. M. Bubnov, O. N. Egorova, S. L. Semenov, and E. V. Pershina, “High-power fibre Raman lasers emiting in the 1.24-1.34µm range,” Quantum Electron. 30, 791–793 (2000).
[CrossRef]

Guy, M. J.

S. V. Chernikov, N. S. Platonov, D. V. Gapontsev, D. Chang, M. J. Guy, and J. R. Taylor, “Raman fibre ring laser operating at 1.24 µm,” Electron. Lett. 34, 680–681 (1998).
[CrossRef]

Han, Y.

Y. Han, S. B. Lee, C. Kim, and M. Y. Jeong, “Voltage-tuned multiwavelength Raman ring laser with high tunability based on a single fiber Bragg grating,” Appl. Opt. 47, 6099–6102 (2008).
[CrossRef] [PubMed]

Y. Han, C. Kim, J. U. Kang, U. Paek, and Y. Chung, “Multiwavelength Raman fiber-ring laser based on tunable cascaded long-period fiber gratings,” IEEE Photon. Technol. Lett. 15, 383–385 (2003).
[CrossRef]

Harvey, J. D.

Headley, C.

M. D. Mermelstein, C. Headley, J.-C. Bouteiller, P. Steinvurzel, C. Horn, K. Feder, and B. J. Eggleton, “Configurable three-wavelength Raman fiber laser for Raman amplification and dynamic gain flattening,” IEEE Photon. Technol. Lett. 13, 1286–1288 (2001).
[CrossRef]

Henderson, B. W.

T. J. Dougherty, C. J. Gomer, B. W. Henderson, G. Jori, D. Kessel, M. Korbelik, J. Moan, and Q. Peng, “Photodynamic Therapy,” J. Natl. Cancer Inst. 90, 889–905 (1998).
[CrossRef]

Horn, C.

M. D. Mermelstein, C. Headley, J.-C. Bouteiller, P. Steinvurzel, C. Horn, K. Feder, and B. J. Eggleton, “Configurable three-wavelength Raman fiber laser for Raman amplification and dynamic gain flattening,” IEEE Photon. Technol. Lett. 13, 1286–1288 (2001).
[CrossRef]

Ivanov, A. V.

A. A. Krasnovsky, Jr., Ya. V. Roumbal, A. V. Ivanov, and R. V. Ambartzumian, “Solvent dependence of the steady-state rate of 1O2 generation upon excitation of dissolved oxygen by cw 1267 nm laser radiation in airsaturated solutions: Estimates of the absorbance and molar absorption coefficients of oxygen at the excitation wavelength,” Chem. Phys. Lett. 430, 260–264 (2006).
[CrossRef]

A. A. Krasnovsky, Jr., N. N. Drozdova, Ya. V. Roumbal, A. V. Ivanov, and R. V. Ambartzumian, “Biophotonics of molecular oxygen: activation efficiencies upon direct and photosensitized excitation,” Chin. Opt. Lett. 3, S1–S4 (2005).

Ivanov, V.

A. A. Krasnovsky, Jr., N. N. Drozdova, V. Ivanov, and R. V. Ambartzumian, “Activation of Molecular Oxygen by Infrared Laser Radiation in Pigment-Free Aerobic Systems,” Biochemistry (Mosc.) 68, 963–966 (2003).
[CrossRef]

Jain, R. K.

D. E. J. G. J. Dolmans, D. Fukumura, and R. K. Jain, “Photodynamic therapy for cancer,” Nature 3, 380–387 (2003).

R. K. Jain, C. Lin, R. H. Stolen, W. Pleibel, and P. Kaiser, “A high-efficiency tunable CW Raman oscillator,” Appl. Phys. Lett. 30, 162–164 (1977).
[CrossRef]

Jeong, M. Y.

Jori, G.

T. J. Dougherty, C. J. Gomer, B. W. Henderson, G. Jori, D. Kessel, M. Korbelik, J. Moan, and Q. Peng, “Photodynamic Therapy,” J. Natl. Cancer Inst. 90, 889–905 (1998).
[CrossRef]

Kablukov, S. I.

Kaiser, P.

R. K. Jain, C. Lin, R. H. Stolen, W. Pleibel, and P. Kaiser, “A high-efficiency tunable CW Raman oscillator,” Appl. Phys. Lett. 30, 162–164 (1977).
[CrossRef]

Kang, J. U.

Y. Han, C. Kim, J. U. Kang, U. Paek, and Y. Chung, “Multiwavelength Raman fiber-ring laser based on tunable cascaded long-period fiber gratings,” IEEE Photon. Technol. Lett. 15, 383–385 (2003).
[CrossRef]

Kearns, D. R.

C. Long, and D. R. Kearns, “Selection rules for the intermolecular enhancement of spin forbidden transitions in molecular oxygen,” J. Chem. Phys. 59, 5729–5736 (1973).
[CrossRef]

Kessel, D.

T. J. Dougherty, C. J. Gomer, B. W. Henderson, G. Jori, D. Kessel, M. Korbelik, J. Moan, and Q. Peng, “Photodynamic Therapy,” J. Natl. Cancer Inst. 90, 889–905 (1998).
[CrossRef]

Khopin, V. F.

A. S. Kurkov, E. M. Dianov, V. M. Paramonov, A. N. Gur’yanov, A. Yu. Laptev, V. F. Khopin, A. A. Umnikov, N. I. Vechkanov, O. I. Medvedkov, S. A. Vasil’ev, M. M. Bubnov, O. N. Egorova, S. L. Semenov, and E. V. Pershina, “High-power fibre Raman lasers emiting in the 1.24-1.34µm range,” Quantum Electron. 30, 791–793 (2000).
[CrossRef]

Kim, C.

Y. Han, S. B. Lee, C. Kim, and M. Y. Jeong, “Voltage-tuned multiwavelength Raman ring laser with high tunability based on a single fiber Bragg grating,” Appl. Opt. 47, 6099–6102 (2008).
[CrossRef] [PubMed]

Y. Han, C. Kim, J. U. Kang, U. Paek, and Y. Chung, “Multiwavelength Raman fiber-ring laser based on tunable cascaded long-period fiber gratings,” IEEE Photon. Technol. Lett. 15, 383–385 (2003).
[CrossRef]

Korbelik, M.

T. J. Dougherty, C. J. Gomer, B. W. Henderson, G. Jori, D. Kessel, M. Korbelik, J. Moan, and Q. Peng, “Photodynamic Therapy,” J. Natl. Cancer Inst. 90, 889–905 (1998).
[CrossRef]

Krasnovsky, A. A.

A. A. Krasnovsky, Jr., Ya. V. Roumbal, and A. A. Strizhakov, “Rates of 1O2 (1Δg) production upon direct laser excitation of molecular oxygen by 1270 nm laser radiation in air-saturated alcohols and micellar aqueous dispersions,” Chem. Phys. Lett. 458, 195–199 (2008).
[CrossRef]

A. A. Krasnovsky, Jr., Ya. V. Roumbal, A. V. Ivanov, and R. V. Ambartzumian, “Solvent dependence of the steady-state rate of 1O2 generation upon excitation of dissolved oxygen by cw 1267 nm laser radiation in airsaturated solutions: Estimates of the absorbance and molar absorption coefficients of oxygen at the excitation wavelength,” Chem. Phys. Lett. 430, 260–264 (2006).
[CrossRef]

A. A. Krasnovsky, Jr., N. N. Drozdova, Ya. V. Roumbal, A. V. Ivanov, and R. V. Ambartzumian, “Biophotonics of molecular oxygen: activation efficiencies upon direct and photosensitized excitation,” Chin. Opt. Lett. 3, S1–S4 (2005).

A. A. Krasnovsky, Jr., and R. V. Ambartzumian, “Tetracene oxygenation caused by infrared excitation of molecular oxygen in air-saturated solutions: the photoreaction action spectrum and spectroscopic parameter of the 1Δg ←−3 Σ−g transition in oxygen molecules,” Chem. Phys. Lett. 400, 531–535 (2004).
[CrossRef]

A. A. Krasnovsky, Jr., N. N. Drozdova, V. Ivanov, and R. V. Ambartzumian, “Activation of Molecular Oxygen by Infrared Laser Radiation in Pigment-Free Aerobic Systems,” Biochemistry (Mosc.) 68, 963–966 (2003).
[CrossRef]

Kruglov, V.

Kurkov, A. S.

A. S. Yusupov, S. E. Goncharov, I. D. Zalevskii, V. M. Paramonov, and A. S. Kurkov, “Raman fiber laser for the drug-free photodynamic therapy,” Laser Phys. 20, 357–359 (2010).
[CrossRef]

A. S. Kurkov, V. M. Paramonov, O. I. Medvedkov, I. D. Zalevskii, and S. E. Goncharov, “Fiber Raman laser at 1450 nm for medical applications,” Laser Phys. 18, 1234–1237 (2008).
[CrossRef]

A. S. Kurkov, E. M. Dianov, V. M. Paramonov, A. N. Gur’yanov, A. Yu. Laptev, V. F. Khopin, A. A. Umnikov, N. I. Vechkanov, O. I. Medvedkov, S. A. Vasil’ev, M. M. Bubnov, O. N. Egorova, S. L. Semenov, and E. V. Pershina, “High-power fibre Raman lasers emiting in the 1.24-1.34µm range,” Quantum Electron. 30, 791–793 (2000).
[CrossRef]

Laptev, A. Yu.

A. S. Kurkov, E. M. Dianov, V. M. Paramonov, A. N. Gur’yanov, A. Yu. Laptev, V. F. Khopin, A. A. Umnikov, N. I. Vechkanov, O. I. Medvedkov, S. A. Vasil’ev, M. M. Bubnov, O. N. Egorova, S. L. Semenov, and E. V. Pershina, “High-power fibre Raman lasers emiting in the 1.24-1.34µm range,” Quantum Electron. 30, 791–793 (2000).
[CrossRef]

Lee, S. B.

Liao, M.

Lin, C.

C. Lin, R. H. Stolen, W. G. French, and T. G. Malone, “A cw tunable near-infrared (1.085-1.175-µm) Raman oscillator,” Opt. Lett. 30, 96–97 (1977).
[CrossRef]

R. K. Jain, C. Lin, R. H. Stolen, W. Pleibel, and P. Kaiser, “A high-efficiency tunable CW Raman oscillator,” Appl. Phys. Lett. 30, 162–164 (1977).
[CrossRef]

Long, C.

C. Long, and D. R. Kearns, “Selection rules for the intermolecular enhancement of spin forbidden transitions in molecular oxygen,” J. Chem. Phys. 59, 5729–5736 (1973).
[CrossRef]

Losev, A. P.

A. P. Losev, I. N. Nichiporovich, I. M. Byteva, N. N. Drozdov, and I. F. Al Jghgami, “The perturbing effect of solvents on the luminescence rate constant of singlet molecular oxygen,” Chem. Phys. Lett. 181, 45–50 (1991).
[CrossRef]

Malone, T. G.

Mchin, D.

Medvedkov, O. I.

A. S. Kurkov, V. M. Paramonov, O. I. Medvedkov, I. D. Zalevskii, and S. E. Goncharov, “Fiber Raman laser at 1450 nm for medical applications,” Laser Phys. 18, 1234–1237 (2008).
[CrossRef]

B. A. Cumberland, S. V. Popov, J. R. Taylor, O. I. Medvedkov, S. A. Vasiliev, and E. M. Dianov, “2.1 µm continuous-wave Raman laser in GeO2 fiber,” Opt. Lett. 32, 1848–1850 (2007).
[CrossRef] [PubMed]

A. S. Kurkov, E. M. Dianov, V. M. Paramonov, A. N. Gur’yanov, A. Yu. Laptev, V. F. Khopin, A. A. Umnikov, N. I. Vechkanov, O. I. Medvedkov, S. A. Vasil’ev, M. M. Bubnov, O. N. Egorova, S. L. Semenov, and E. V. Pershina, “High-power fibre Raman lasers emiting in the 1.24-1.34µm range,” Quantum Electron. 30, 791–793 (2000).
[CrossRef]

Mermelstein, M. D.

M. D. Mermelstein, C. Headley, J.-C. Bouteiller, P. Steinvurzel, C. Horn, K. Feder, and B. J. Eggleton, “Configurable three-wavelength Raman fiber laser for Raman amplification and dynamic gain flattening,” IEEE Photon. Technol. Lett. 13, 1286–1288 (2001).
[CrossRef]

Miara, C.

A. G. Griesbeck, A. Bartoschek, J. Neudrfl, and C. Miara, “Stereoselectivity in Ene Reactions with 1O2:Matrix Effects in Polymer Supports, Photo-oxygenation of Organic Salts and Asymetric Synthesis,” Photochem. Photobiol. 82, 1233–1240 (2006).
[CrossRef] [PubMed]

Moan, J.

T. J. Dougherty, C. J. Gomer, B. W. Henderson, G. Jori, D. Kessel, M. Korbelik, J. Moan, and Q. Peng, “Photodynamic Therapy,” J. Natl. Cancer Inst. 90, 889–905 (1998).
[CrossRef]

Mori, A.

Neudrfl, J.

A. G. Griesbeck, A. Bartoschek, J. Neudrfl, and C. Miara, “Stereoselectivity in Ene Reactions with 1O2:Matrix Effects in Polymer Supports, Photo-oxygenation of Organic Salts and Asymetric Synthesis,” Photochem. Photobiol. 82, 1233–1240 (2006).
[CrossRef] [PubMed]

Nichiporovich, I. N.

A. P. Losev, I. N. Nichiporovich, I. M. Byteva, N. N. Drozdov, and I. F. Al Jghgami, “The perturbing effect of solvents on the luminescence rate constant of singlet molecular oxygen,” Chem. Phys. Lett. 181, 45–50 (1991).
[CrossRef]

Ogilby, P. R.

P. R. Ogilby, “Solvent Effects on the radiative transitions of singlet oxygen,” Acc. Chem. Res. 32, 512–519 (1999).
[CrossRef]

Ohishi, Y.

Paek, U.

Y. Han, C. Kim, J. U. Kang, U. Paek, and Y. Chung, “Multiwavelength Raman fiber-ring laser based on tunable cascaded long-period fiber gratings,” IEEE Photon. Technol. Lett. 15, 383–385 (2003).
[CrossRef]

Paramonov, V. M.

A. S. Yusupov, S. E. Goncharov, I. D. Zalevskii, V. M. Paramonov, and A. S. Kurkov, “Raman fiber laser for the drug-free photodynamic therapy,” Laser Phys. 20, 357–359 (2010).
[CrossRef]

A. S. Kurkov, V. M. Paramonov, O. I. Medvedkov, I. D. Zalevskii, and S. E. Goncharov, “Fiber Raman laser at 1450 nm for medical applications,” Laser Phys. 18, 1234–1237 (2008).
[CrossRef]

A. S. Kurkov, E. M. Dianov, V. M. Paramonov, A. N. Gur’yanov, A. Yu. Laptev, V. F. Khopin, A. A. Umnikov, N. I. Vechkanov, O. I. Medvedkov, S. A. Vasil’ev, M. M. Bubnov, O. N. Egorova, S. L. Semenov, and E. V. Pershina, “High-power fibre Raman lasers emiting in the 1.24-1.34µm range,” Quantum Electron. 30, 791–793 (2000).
[CrossRef]

Peng, Q.

T. J. Dougherty, C. J. Gomer, B. W. Henderson, G. Jori, D. Kessel, M. Korbelik, J. Moan, and Q. Peng, “Photodynamic Therapy,” J. Natl. Cancer Inst. 90, 889–905 (1998).
[CrossRef]

Pershina, E. V.

A. S. Kurkov, E. M. Dianov, V. M. Paramonov, A. N. Gur’yanov, A. Yu. Laptev, V. F. Khopin, A. A. Umnikov, N. I. Vechkanov, O. I. Medvedkov, S. A. Vasil’ev, M. M. Bubnov, O. N. Egorova, S. L. Semenov, and E. V. Pershina, “High-power fibre Raman lasers emiting in the 1.24-1.34µm range,” Quantum Electron. 30, 791–793 (2000).
[CrossRef]

Platonov, N. S.

S. V. Chernikov, N. S. Platonov, D. V. Gapontsev, D. Chang, M. J. Guy, and J. R. Taylor, “Raman fibre ring laser operating at 1.24 µm,” Electron. Lett. 34, 680–681 (1998).
[CrossRef]

Pleibel, W.

R. K. Jain, C. Lin, R. H. Stolen, W. Pleibel, and P. Kaiser, “A high-efficiency tunable CW Raman oscillator,” Appl. Phys. Lett. 30, 162–164 (1977).
[CrossRef]

Popov, S. V.

Qin, G.

Reeves-Hall, P. C.

P. C. Reeves-Hall, and J. R. Taylor, “Wavelength tunable CW Raman fibre ring laser operating at 1486-1551 nm,” Electron. Lett. 37, 491–492 (2001).
[CrossRef]

Roumbal, Ya. V.

A. A. Krasnovsky, Jr., Ya. V. Roumbal, and A. A. Strizhakov, “Rates of 1O2 (1Δg) production upon direct laser excitation of molecular oxygen by 1270 nm laser radiation in air-saturated alcohols and micellar aqueous dispersions,” Chem. Phys. Lett. 458, 195–199 (2008).
[CrossRef]

A. A. Krasnovsky, Jr., Ya. V. Roumbal, A. V. Ivanov, and R. V. Ambartzumian, “Solvent dependence of the steady-state rate of 1O2 generation upon excitation of dissolved oxygen by cw 1267 nm laser radiation in airsaturated solutions: Estimates of the absorbance and molar absorption coefficients of oxygen at the excitation wavelength,” Chem. Phys. Lett. 430, 260–264 (2006).
[CrossRef]

A. A. Krasnovsky, Jr., N. N. Drozdova, Ya. V. Roumbal, A. V. Ivanov, and R. V. Ambartzumian, “Biophotonics of molecular oxygen: activation efficiencies upon direct and photosensitized excitation,” Chin. Opt. Lett. 3, S1–S4 (2005).

Rulkov, A. B.

Rybakov, M. A.

Semenov, S. L.

A. S. Kurkov, E. M. Dianov, V. M. Paramonov, A. N. Gur’yanov, A. Yu. Laptev, V. F. Khopin, A. A. Umnikov, N. I. Vechkanov, O. I. Medvedkov, S. A. Vasil’ev, M. M. Bubnov, O. N. Egorova, S. L. Semenov, and E. V. Pershina, “High-power fibre Raman lasers emiting in the 1.24-1.34µm range,” Quantum Electron. 30, 791–793 (2000).
[CrossRef]

Steinvurzel, P.

M. D. Mermelstein, C. Headley, J.-C. Bouteiller, P. Steinvurzel, C. Horn, K. Feder, and B. J. Eggleton, “Configurable three-wavelength Raman fiber laser for Raman amplification and dynamic gain flattening,” IEEE Photon. Technol. Lett. 13, 1286–1288 (2001).
[CrossRef]

Stolen, R. H.

R. K. Jain, C. Lin, R. H. Stolen, W. Pleibel, and P. Kaiser, “A high-efficiency tunable CW Raman oscillator,” Appl. Phys. Lett. 30, 162–164 (1977).
[CrossRef]

C. Lin, R. H. Stolen, W. G. French, and T. G. Malone, “A cw tunable near-infrared (1.085-1.175-µm) Raman oscillator,” Opt. Lett. 30, 96–97 (1977).
[CrossRef]

Strizhakov, A. A.

A. A. Krasnovsky, Jr., Ya. V. Roumbal, and A. A. Strizhakov, “Rates of 1O2 (1Δg) production upon direct laser excitation of molecular oxygen by 1270 nm laser radiation in air-saturated alcohols and micellar aqueous dispersions,” Chem. Phys. Lett. 458, 195–199 (2008).
[CrossRef]

Suzuki, T.

Taylor, J. R.

Umnikov, A. A.

A. S. Kurkov, E. M. Dianov, V. M. Paramonov, A. N. Gur’yanov, A. Yu. Laptev, V. F. Khopin, A. A. Umnikov, N. I. Vechkanov, O. I. Medvedkov, S. A. Vasil’ev, M. M. Bubnov, O. N. Egorova, S. L. Semenov, and E. V. Pershina, “High-power fibre Raman lasers emiting in the 1.24-1.34µm range,” Quantum Electron. 30, 791–793 (2000).
[CrossRef]

Vasil’ev, S. A.

A. S. Kurkov, E. M. Dianov, V. M. Paramonov, A. N. Gur’yanov, A. Yu. Laptev, V. F. Khopin, A. A. Umnikov, N. I. Vechkanov, O. I. Medvedkov, S. A. Vasil’ev, M. M. Bubnov, O. N. Egorova, S. L. Semenov, and E. V. Pershina, “High-power fibre Raman lasers emiting in the 1.24-1.34µm range,” Quantum Electron. 30, 791–793 (2000).
[CrossRef]

Vasiliev, S. A.

Vechkanov, N. I.

A. S. Kurkov, E. M. Dianov, V. M. Paramonov, A. N. Gur’yanov, A. Yu. Laptev, V. F. Khopin, A. A. Umnikov, N. I. Vechkanov, O. I. Medvedkov, S. A. Vasil’ev, M. M. Bubnov, O. N. Egorova, S. L. Semenov, and E. V. Pershina, “High-power fibre Raman lasers emiting in the 1.24-1.34µm range,” Quantum Electron. 30, 791–793 (2000).
[CrossRef]

Vlasov, A. A.

Vyatkin, M. Y.

Yusupov, A. S.

A. S. Yusupov, S. E. Goncharov, I. D. Zalevskii, V. M. Paramonov, and A. S. Kurkov, “Raman fiber laser for the drug-free photodynamic therapy,” Laser Phys. 20, 357–359 (2010).
[CrossRef]

Zalevskii, I. D.

A. S. Yusupov, S. E. Goncharov, I. D. Zalevskii, V. M. Paramonov, and A. S. Kurkov, “Raman fiber laser for the drug-free photodynamic therapy,” Laser Phys. 20, 357–359 (2010).
[CrossRef]

A. S. Kurkov, V. M. Paramonov, O. I. Medvedkov, I. D. Zalevskii, and S. E. Goncharov, “Fiber Raman laser at 1450 nm for medical applications,” Laser Phys. 18, 1234–1237 (2008).
[CrossRef]

Acc. Chem. Res. (1)

P. R. Ogilby, “Solvent Effects on the radiative transitions of singlet oxygen,” Acc. Chem. Res. 32, 512–519 (1999).
[CrossRef]

Appl. Opt. (1)

Appl. Phys. Lett. (1)

R. K. Jain, C. Lin, R. H. Stolen, W. Pleibel, and P. Kaiser, “A high-efficiency tunable CW Raman oscillator,” Appl. Phys. Lett. 30, 162–164 (1977).
[CrossRef]

Biochemistry (Mosc.) (1)

A. A. Krasnovsky, Jr., N. N. Drozdova, V. Ivanov, and R. V. Ambartzumian, “Activation of Molecular Oxygen by Infrared Laser Radiation in Pigment-Free Aerobic Systems,” Biochemistry (Mosc.) 68, 963–966 (2003).
[CrossRef]

Chem. Phys. Lett. (4)

A. A. Krasnovsky, Jr., and R. V. Ambartzumian, “Tetracene oxygenation caused by infrared excitation of molecular oxygen in air-saturated solutions: the photoreaction action spectrum and spectroscopic parameter of the 1Δg ←−3 Σ−g transition in oxygen molecules,” Chem. Phys. Lett. 400, 531–535 (2004).
[CrossRef]

A. P. Losev, I. N. Nichiporovich, I. M. Byteva, N. N. Drozdov, and I. F. Al Jghgami, “The perturbing effect of solvents on the luminescence rate constant of singlet molecular oxygen,” Chem. Phys. Lett. 181, 45–50 (1991).
[CrossRef]

A. A. Krasnovsky, Jr., Ya. V. Roumbal, A. V. Ivanov, and R. V. Ambartzumian, “Solvent dependence of the steady-state rate of 1O2 generation upon excitation of dissolved oxygen by cw 1267 nm laser radiation in airsaturated solutions: Estimates of the absorbance and molar absorption coefficients of oxygen at the excitation wavelength,” Chem. Phys. Lett. 430, 260–264 (2006).
[CrossRef]

A. A. Krasnovsky, Jr., Ya. V. Roumbal, and A. A. Strizhakov, “Rates of 1O2 (1Δg) production upon direct laser excitation of molecular oxygen by 1270 nm laser radiation in air-saturated alcohols and micellar aqueous dispersions,” Chem. Phys. Lett. 458, 195–199 (2008).
[CrossRef]

Chin. Opt. Lett. (1)

Electron. Lett. (2)

P. C. Reeves-Hall, and J. R. Taylor, “Wavelength tunable CW Raman fibre ring laser operating at 1486-1551 nm,” Electron. Lett. 37, 491–492 (2001).
[CrossRef]

S. V. Chernikov, N. S. Platonov, D. V. Gapontsev, D. Chang, M. J. Guy, and J. R. Taylor, “Raman fibre ring laser operating at 1.24 µm,” Electron. Lett. 34, 680–681 (1998).
[CrossRef]

IEEE Photon. Technol. Lett. (2)

Y. Han, C. Kim, J. U. Kang, U. Paek, and Y. Chung, “Multiwavelength Raman fiber-ring laser based on tunable cascaded long-period fiber gratings,” IEEE Photon. Technol. Lett. 15, 383–385 (2003).
[CrossRef]

M. D. Mermelstein, C. Headley, J.-C. Bouteiller, P. Steinvurzel, C. Horn, K. Feder, and B. J. Eggleton, “Configurable three-wavelength Raman fiber laser for Raman amplification and dynamic gain flattening,” IEEE Photon. Technol. Lett. 13, 1286–1288 (2001).
[CrossRef]

J. Chem. Phys. (1)

C. Long, and D. R. Kearns, “Selection rules for the intermolecular enhancement of spin forbidden transitions in molecular oxygen,” J. Chem. Phys. 59, 5729–5736 (1973).
[CrossRef]

J. Lightwave Technol. (1)

J. Natl. Cancer Inst. (1)

T. J. Dougherty, C. J. Gomer, B. W. Henderson, G. Jori, D. Kessel, M. Korbelik, J. Moan, and Q. Peng, “Photodynamic Therapy,” J. Natl. Cancer Inst. 90, 889–905 (1998).
[CrossRef]

Laser Phys. (2)

A. S. Kurkov, V. M. Paramonov, O. I. Medvedkov, I. D. Zalevskii, and S. E. Goncharov, “Fiber Raman laser at 1450 nm for medical applications,” Laser Phys. 18, 1234–1237 (2008).
[CrossRef]

A. S. Yusupov, S. E. Goncharov, I. D. Zalevskii, V. M. Paramonov, and A. S. Kurkov, “Raman fiber laser for the drug-free photodynamic therapy,” Laser Phys. 20, 357–359 (2010).
[CrossRef]

Nature (1)

D. E. J. G. J. Dolmans, D. Fukumura, and R. K. Jain, “Photodynamic therapy for cancer,” Nature 3, 380–387 (2003).

Opt. Express (3)

Opt. Lett. (4)

Photochem. Photobiol. (1)

A. G. Griesbeck, A. Bartoschek, J. Neudrfl, and C. Miara, “Stereoselectivity in Ene Reactions with 1O2:Matrix Effects in Polymer Supports, Photo-oxygenation of Organic Salts and Asymetric Synthesis,” Photochem. Photobiol. 82, 1233–1240 (2006).
[CrossRef] [PubMed]

Quantum Electron. (1)

A. S. Kurkov, E. M. Dianov, V. M. Paramonov, A. N. Gur’yanov, A. Yu. Laptev, V. F. Khopin, A. A. Umnikov, N. I. Vechkanov, O. I. Medvedkov, S. A. Vasil’ev, M. M. Bubnov, O. N. Egorova, S. L. Semenov, and E. V. Pershina, “High-power fibre Raman lasers emiting in the 1.24-1.34µm range,” Quantum Electron. 30, 791–793 (2000).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Schematic representation of the tunable Raman fiber ring laser. PC: Polarization Controller

Fig. 2
Fig. 2

(a) Power characteristics of the tunable Raman fiber ring laser measured at the output fiber coupler. The pump wavelength is 1085 nm and the Stokes wavelength is 1268 nm. Filled circles : total Stokes power, empty circles : transmitted pump power. (b) Power spectra of the forward-propagating Stokes wave at incident pump powers of 4.9 W, 5.6 W and 7 W. The pump wavelength is 1087 nm and the Stokes wavelength is ∼ 1270 nm.

Fig. 3
Fig. 3

(a) TRFRL generation wavelength as a function of the wavelength of the pump laser. (b) TRFRL output power as a function of its wavelength for an incident pump power of ∼ 5.3 Watt.

Fig. 4
Fig. 4

Normalized action spectra on DPIBF dissolved in air-saturated ethanol (filled circles) and in acetone (empty circles) upon irradiation of the TRFRL between 1247 nm and 1289 nm.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

ln ( P 0 P f ) = ɛ ( [ T ] 0 [ T ] ) . L
V r = [ T ] 0 [ T ] Δ t

Metrics