Abstract

We present a novel technique to generate orthogonally polarized optical single sideband modulated signals. The modulation scheme is based on all optical stimulated Brillouin scattering processing of the optical carrier of an optical single sideband modulated signal, by means of the polarization state dragging induced by this non-linear effect. This modulation technique can be used in several microwave photonics applications, such as antenna beamforming or microwave photonics filters. In order to perform a proof-of-concept experiment, the orthogonal modulator is deployed for the implementation of an RF phase-shifter.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. H. Smith, D. Novak, and Z. Ahmed, “Technique for optical SSB generation to overcome dispersion penalties in fibre-radio systems,” Electron. Lett. 33(1), 74–75 (1997).
    [CrossRef]
  2. A. Loayssa and F. J. Lahoz, “Broad-band RF photonic phase shifter based on stimulated Brillouin scattering and single-sideband modulation,” IEEE Photon. Technol. Lett. 18(1), 208–210 (2006).
    [CrossRef]
  3. J. Mora, J. Capmany, A. Loayssa, and D. Pastor, “Novel technique for implementing incoherent microwave photonic filters with negative coefficients using phase modulation and single sideband selection,” IEEE Photon. Technol. Lett. 18(18), 1943–1945 (2006).
    [CrossRef]
  4. A. Loayssa, J. Capmany, M. Sagues, and J. Mora, “Demonstration of incoherent microwave photonic filters with all-optical complex coefficients,” IEEE Photon. Technol. Lett. 18(16), 1744–1746 (2006).
    [CrossRef]
  5. M. Sagues, R. García Olcina, A. Loayssa, S. Sales, and J. Capmany, “Multi-tap complex-coefficient incoherent microwave photonic filters based on optical single-sideband modulation and narrow band optical filtering,” Opt. Express 16(1), 295–303 (2008), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-16-1-295 .
    [CrossRef] [PubMed]
  6. M. Sagues, M. Pérez, and A. Loayssa, “Measurement of polarization dependent loss, polarization mode dispersion and group delay of optical components using swept optical single sideband modulated signals,” Opt. Express 16(20), 16181–16188 (2008), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-16-20-16181 .
    [CrossRef] [PubMed]
  7. D. Dolfi, P. Joffre, J. Antoine, J. P. Huignard, D. Philippet, and P. Granger, “Experimental demonstration of a phased-array antenna optically controlled with phase and time delays,” Appl. Opt. 35(26), 5293–5300 (1996).
    [CrossRef] [PubMed]
  8. B. Vidal, T. Mengual, C. Ibanez-Lopez, and J. Marti, “Optical Beamforming Network Based on Fiber-Optical Delay Lines and Spatial Light Modulators for Large Antenna Arrays,” IEEE Photon. Technol. Lett. 18(24), 2590–2592 (2006).
    [CrossRef]
  9. T. Mengual, B. Vidal, and J. Martí, “Continuously tunable photonic microwave filter based on a spatial light modulator,” Opt. Commun. 281, 2746–2749 (2008).
  10. Z. Li, C. Yu, Y. Dong, L. Cheng, L. F. K. Lui, C. Lu, A. P. Lau, H. Y. Tam, and P. K. Wai, “Linear photonic radio frequency phase shifter using a differential-group-delay element and an optical phase modulator,” Opt. Lett. 35(11), 1881–1883 (2010).
    [CrossRef] [PubMed]
  11. A. L. Campillo, “Orthogonally polarized single sideband modulator,” Opt. Lett. 32(21), 3152–3154 (2007).
    [CrossRef] [PubMed]
  12. L. Thévenaz, A. Zadok, A. Eyal, and M. Tur, “All-optical polarization control through Brillouin amplification,” in Proc. Optical Fiber Communications Conference, (OFC’2008) paper OML7 (2008).
  13. A. Zadok, E. Zilka, A. Eyal, L. Thévenaz, and M. Tur, “Vector analysis of stimulated Brillouin scattering amplification in standard single-mode fibers,” Opt. Express 16(26), 21692–21707 (2008), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-16-26-21692 .
    [CrossRef] [PubMed]
  14. T. Kawanishi, T. Sakamoto, A. Chiba, M. Izutsu, K. Higuma, J. Ichikawa, T. Lee, and V. Filsinger, “High-speed dual-parallel Mach-Zehnder Modulator using Thin Lithium Niobate Substrate,” in Proc. Optical Fiber Communications Conference, (OFC’2008) paper JThA34 (2008).
  15. M. O. Deventer and A. J. Boot, “Polarization properties of stimulated Brillouin scattering in single-mode fibers,” J. Lightwave Technol. 12(4), 585–590 (1994).
    [CrossRef]

2010

2008

2007

2006

B. Vidal, T. Mengual, C. Ibanez-Lopez, and J. Marti, “Optical Beamforming Network Based on Fiber-Optical Delay Lines and Spatial Light Modulators for Large Antenna Arrays,” IEEE Photon. Technol. Lett. 18(24), 2590–2592 (2006).
[CrossRef]

A. Loayssa and F. J. Lahoz, “Broad-band RF photonic phase shifter based on stimulated Brillouin scattering and single-sideband modulation,” IEEE Photon. Technol. Lett. 18(1), 208–210 (2006).
[CrossRef]

J. Mora, J. Capmany, A. Loayssa, and D. Pastor, “Novel technique for implementing incoherent microwave photonic filters with negative coefficients using phase modulation and single sideband selection,” IEEE Photon. Technol. Lett. 18(18), 1943–1945 (2006).
[CrossRef]

A. Loayssa, J. Capmany, M. Sagues, and J. Mora, “Demonstration of incoherent microwave photonic filters with all-optical complex coefficients,” IEEE Photon. Technol. Lett. 18(16), 1744–1746 (2006).
[CrossRef]

1997

G. H. Smith, D. Novak, and Z. Ahmed, “Technique for optical SSB generation to overcome dispersion penalties in fibre-radio systems,” Electron. Lett. 33(1), 74–75 (1997).
[CrossRef]

1996

1994

M. O. Deventer and A. J. Boot, “Polarization properties of stimulated Brillouin scattering in single-mode fibers,” J. Lightwave Technol. 12(4), 585–590 (1994).
[CrossRef]

Ahmed, Z.

G. H. Smith, D. Novak, and Z. Ahmed, “Technique for optical SSB generation to overcome dispersion penalties in fibre-radio systems,” Electron. Lett. 33(1), 74–75 (1997).
[CrossRef]

Antoine, J.

Boot, A. J.

M. O. Deventer and A. J. Boot, “Polarization properties of stimulated Brillouin scattering in single-mode fibers,” J. Lightwave Technol. 12(4), 585–590 (1994).
[CrossRef]

Campillo, A. L.

Capmany, J.

M. Sagues, R. García Olcina, A. Loayssa, S. Sales, and J. Capmany, “Multi-tap complex-coefficient incoherent microwave photonic filters based on optical single-sideband modulation and narrow band optical filtering,” Opt. Express 16(1), 295–303 (2008), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-16-1-295 .
[CrossRef] [PubMed]

A. Loayssa, J. Capmany, M. Sagues, and J. Mora, “Demonstration of incoherent microwave photonic filters with all-optical complex coefficients,” IEEE Photon. Technol. Lett. 18(16), 1744–1746 (2006).
[CrossRef]

J. Mora, J. Capmany, A. Loayssa, and D. Pastor, “Novel technique for implementing incoherent microwave photonic filters with negative coefficients using phase modulation and single sideband selection,” IEEE Photon. Technol. Lett. 18(18), 1943–1945 (2006).
[CrossRef]

Cheng, L.

Deventer, M. O.

M. O. Deventer and A. J. Boot, “Polarization properties of stimulated Brillouin scattering in single-mode fibers,” J. Lightwave Technol. 12(4), 585–590 (1994).
[CrossRef]

Dolfi, D.

Dong, Y.

Eyal, A.

García Olcina, R.

Granger, P.

Huignard, J. P.

Ibanez-Lopez, C.

B. Vidal, T. Mengual, C. Ibanez-Lopez, and J. Marti, “Optical Beamforming Network Based on Fiber-Optical Delay Lines and Spatial Light Modulators for Large Antenna Arrays,” IEEE Photon. Technol. Lett. 18(24), 2590–2592 (2006).
[CrossRef]

Joffre, P.

Lahoz, F. J.

A. Loayssa and F. J. Lahoz, “Broad-band RF photonic phase shifter based on stimulated Brillouin scattering and single-sideband modulation,” IEEE Photon. Technol. Lett. 18(1), 208–210 (2006).
[CrossRef]

Lau, A. P.

Li, Z.

Loayssa, A.

M. Sagues, M. Pérez, and A. Loayssa, “Measurement of polarization dependent loss, polarization mode dispersion and group delay of optical components using swept optical single sideband modulated signals,” Opt. Express 16(20), 16181–16188 (2008), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-16-20-16181 .
[CrossRef] [PubMed]

M. Sagues, R. García Olcina, A. Loayssa, S. Sales, and J. Capmany, “Multi-tap complex-coefficient incoherent microwave photonic filters based on optical single-sideband modulation and narrow band optical filtering,” Opt. Express 16(1), 295–303 (2008), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-16-1-295 .
[CrossRef] [PubMed]

J. Mora, J. Capmany, A. Loayssa, and D. Pastor, “Novel technique for implementing incoherent microwave photonic filters with negative coefficients using phase modulation and single sideband selection,” IEEE Photon. Technol. Lett. 18(18), 1943–1945 (2006).
[CrossRef]

A. Loayssa and F. J. Lahoz, “Broad-band RF photonic phase shifter based on stimulated Brillouin scattering and single-sideband modulation,” IEEE Photon. Technol. Lett. 18(1), 208–210 (2006).
[CrossRef]

A. Loayssa, J. Capmany, M. Sagues, and J. Mora, “Demonstration of incoherent microwave photonic filters with all-optical complex coefficients,” IEEE Photon. Technol. Lett. 18(16), 1744–1746 (2006).
[CrossRef]

Lu, C.

Lui, L. F. K.

Marti, J.

B. Vidal, T. Mengual, C. Ibanez-Lopez, and J. Marti, “Optical Beamforming Network Based on Fiber-Optical Delay Lines and Spatial Light Modulators for Large Antenna Arrays,” IEEE Photon. Technol. Lett. 18(24), 2590–2592 (2006).
[CrossRef]

Martí, J.

T. Mengual, B. Vidal, and J. Martí, “Continuously tunable photonic microwave filter based on a spatial light modulator,” Opt. Commun. 281, 2746–2749 (2008).

Mengual, T.

T. Mengual, B. Vidal, and J. Martí, “Continuously tunable photonic microwave filter based on a spatial light modulator,” Opt. Commun. 281, 2746–2749 (2008).

B. Vidal, T. Mengual, C. Ibanez-Lopez, and J. Marti, “Optical Beamforming Network Based on Fiber-Optical Delay Lines and Spatial Light Modulators for Large Antenna Arrays,” IEEE Photon. Technol. Lett. 18(24), 2590–2592 (2006).
[CrossRef]

Mora, J.

J. Mora, J. Capmany, A. Loayssa, and D. Pastor, “Novel technique for implementing incoherent microwave photonic filters with negative coefficients using phase modulation and single sideband selection,” IEEE Photon. Technol. Lett. 18(18), 1943–1945 (2006).
[CrossRef]

A. Loayssa, J. Capmany, M. Sagues, and J. Mora, “Demonstration of incoherent microwave photonic filters with all-optical complex coefficients,” IEEE Photon. Technol. Lett. 18(16), 1744–1746 (2006).
[CrossRef]

Novak, D.

G. H. Smith, D. Novak, and Z. Ahmed, “Technique for optical SSB generation to overcome dispersion penalties in fibre-radio systems,” Electron. Lett. 33(1), 74–75 (1997).
[CrossRef]

Pastor, D.

J. Mora, J. Capmany, A. Loayssa, and D. Pastor, “Novel technique for implementing incoherent microwave photonic filters with negative coefficients using phase modulation and single sideband selection,” IEEE Photon. Technol. Lett. 18(18), 1943–1945 (2006).
[CrossRef]

Pérez, M.

Philippet, D.

Sagues, M.

Sales, S.

Smith, G. H.

G. H. Smith, D. Novak, and Z. Ahmed, “Technique for optical SSB generation to overcome dispersion penalties in fibre-radio systems,” Electron. Lett. 33(1), 74–75 (1997).
[CrossRef]

Tam, H. Y.

Thévenaz, L.

Tur, M.

Vidal, B.

T. Mengual, B. Vidal, and J. Martí, “Continuously tunable photonic microwave filter based on a spatial light modulator,” Opt. Commun. 281, 2746–2749 (2008).

B. Vidal, T. Mengual, C. Ibanez-Lopez, and J. Marti, “Optical Beamforming Network Based on Fiber-Optical Delay Lines and Spatial Light Modulators for Large Antenna Arrays,” IEEE Photon. Technol. Lett. 18(24), 2590–2592 (2006).
[CrossRef]

Wai, P. K.

Yu, C.

Zadok, A.

Zilka, E.

Appl. Opt.

Electron. Lett.

G. H. Smith, D. Novak, and Z. Ahmed, “Technique for optical SSB generation to overcome dispersion penalties in fibre-radio systems,” Electron. Lett. 33(1), 74–75 (1997).
[CrossRef]

IEEE Photon. Technol. Lett.

A. Loayssa and F. J. Lahoz, “Broad-band RF photonic phase shifter based on stimulated Brillouin scattering and single-sideband modulation,” IEEE Photon. Technol. Lett. 18(1), 208–210 (2006).
[CrossRef]

J. Mora, J. Capmany, A. Loayssa, and D. Pastor, “Novel technique for implementing incoherent microwave photonic filters with negative coefficients using phase modulation and single sideband selection,” IEEE Photon. Technol. Lett. 18(18), 1943–1945 (2006).
[CrossRef]

A. Loayssa, J. Capmany, M. Sagues, and J. Mora, “Demonstration of incoherent microwave photonic filters with all-optical complex coefficients,” IEEE Photon. Technol. Lett. 18(16), 1744–1746 (2006).
[CrossRef]

B. Vidal, T. Mengual, C. Ibanez-Lopez, and J. Marti, “Optical Beamforming Network Based on Fiber-Optical Delay Lines and Spatial Light Modulators for Large Antenna Arrays,” IEEE Photon. Technol. Lett. 18(24), 2590–2592 (2006).
[CrossRef]

J. Lightwave Technol.

M. O. Deventer and A. J. Boot, “Polarization properties of stimulated Brillouin scattering in single-mode fibers,” J. Lightwave Technol. 12(4), 585–590 (1994).
[CrossRef]

Opt. Commun.

T. Mengual, B. Vidal, and J. Martí, “Continuously tunable photonic microwave filter based on a spatial light modulator,” Opt. Commun. 281, 2746–2749 (2008).

Opt. Express

Opt. Lett.

Other

L. Thévenaz, A. Zadok, A. Eyal, and M. Tur, “All-optical polarization control through Brillouin amplification,” in Proc. Optical Fiber Communications Conference, (OFC’2008) paper OML7 (2008).

T. Kawanishi, T. Sakamoto, A. Chiba, M. Izutsu, K. Higuma, J. Ichikawa, T. Lee, and V. Filsinger, “High-speed dual-parallel Mach-Zehnder Modulator using Thin Lithium Niobate Substrate,” in Proc. Optical Fiber Communications Conference, (OFC’2008) paper JThA34 (2008).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Fundamentals of the narrowband optical processing of the optical carrier for the implementation of an OSSB orthogonal modulator. SOPo : SOP of optical carrier; SOPSB : SOP of modulation sideband.

Fig. 2
Fig. 2

Schematical description of the RF phase-shifting technique. The refraction index seen by the optical signal in one of the axis can be tuned, while the other remains unaltered.

Fig. 3
Fig. 3

Graphical representation of the fundamentals of the optical processing for the RF phase-shifter showing the addition of both desired and interfering terms in Eq. (3). EOC: electric field of the optical carrier; ESB: electric field of the sideband; ESB ϕ : projection of the electric field of the sideband into the tunable refraction index axis; ESB0: projection of the electric field of the sideband into the constant refraction index axis.

Fig. 4
Fig. 4

(a) RF phase-shift deviation from the applied optical phase-shift and (b) detected RF power as a function of ϕ when ρ = 45° and β = 89°.

Fig. 5
Fig. 5

Optical carrier attenuation as a function of ρ and for different amplitude error goals in the system, from 1 dB (higher trace) to 0.1 dB.

Fig. 6
Fig. 6

Experimental setup.

Fig. 7
Fig. 7

Measured spectra of the (a) OSSB for a 5 GHz RF modulation frequency and (b) OSSB-SC signals at their respective input ports of the fiber. The center of each graph corresponds to the optical carrier wavelength.

Fig. 8
Fig. 8

Poincaré sphere showing the measured SOP of (A) sideband and unprocessed optical carrier, (B) optical carrier when SBS processing is applied, (E) complex-conjugate of OSSB-SC signal and (C, D) polarizer axis.

Fig. 9
Fig. 9

(a) RF phase-shift tuning and (b) RF power as the retarder wave plate is changed in the setup (λ/4 and λ/2) and as the SOP of the polarizer is tuned from C to D in Fig. 8.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

E o c ( t ) = A o c ( cos 2 ( β ) cos ( β ) sin ( β ) cos ( β ) sin ( β ) cos 2 ( β ) ) ( 1 0 0 e j φ ) ( 1 0 ) e j 2 π ν o t E s b ( t ) = A s b ( cos 2 ( β ) cos ( β ) sin ( β ) cos ( β ) sin ( β ) cos 2 ( β ) ) ( 1 0 0 e j φ ) ( cos ( ρ ) sin ( ρ ) sin ( ρ ) cos ( ρ ) ) ( 1 0 ) e j 2 π ( ν o + f R F ) t
i ( t ) E ( t ) 2 = E ( t ) * T E ( t )
I ( f R F ) A o c A s b cos ( β ) ( cos ( ρ ) cos ( β ) + sin ( ρ ) sin ( β ) e j φ )

Metrics