Abstract

A scheme to generate terahertz (THz) emission using active disordered medium made of ruby grains with a three-level atomic system is proposed via a one-dimensional model. Our computed results reveal that THz random lasing phenomenon could occur under suitable conditions. The proposed scheme is based on the pumping of the 2A¯ level of ruby via a ruby laser operating on its R2 line (693.9 nm), and 0.87 THz random lasing is expected on the 2A¯ to E¯ transition of the split E2 level.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. N. M. Lawandy, R. M. Balachandra, A. S. L. Gomes, and E. Sauvain, “Laser action in strongly scattering media,” Nature 368(6470), 436–438 (1994).
    [CrossRef]
  2. H. Cao, Y. G. Zhao, H. C. Ong, S. T. Ho, E. W. Seelig, Q. H. Wang, and R. P. H. Chang, “Random laser action in semiconductor powder,” Phys. Rev. Lett. 82(11), 2278–2281 (1999).
    [CrossRef]
  3. C. Vanneste, P. Sebbah, and H. Cao, “Lasing with resonant feedback in weakly scattering random systems,” Phys. Rev. Lett. 98(14), 143902 (2007).
    [CrossRef] [PubMed]
  4. S. Mujumdar, M. Ricci, R. Torre, and D. S. Wiersma, “Amplified extended modes in random lasers,” Phys. Rev. Lett. 93(5), 053903 (2004).
    [CrossRef] [PubMed]
  5. X. Jiang and C. M. Soukoulis, “Time dependent theory for random lasers,” Phys. Rev. Lett. 85(1), 70–73 (2000).
    [CrossRef] [PubMed]
  6. P. Sebbah and C. Vanneste, “Random laser in the localized regime,” Phys. Rev. B 66(14), 144202 (2002).
    [CrossRef]
  7. C. M. Soukoulis, X. Jiang, J. Y. Xu, and H. Cao, “Dynamic response and relaxation oscillations in random lasers,” Phys. Rev. B 65(4), 041103 (2002).
    [CrossRef]
  8. J. S. Liu and Z. Xiong, “Theoretical investigation on the threshold property of localized modes based on spectral width in two-dimensional random media,” Opt. Commun. 268(2), 294–299 (2006).
    [CrossRef]
  9. J. S. Liu, H. Wang, and Z. Xiong, “Origin of light localization from orientational disorder in one and two-dimensional random media with uniaxial scatterers,” Phys. Rev. B 73(19), 195110 (2006).
    [CrossRef]
  10. H. E. Türeci, L. Ge, S. Rotter, and A. D. Stone, “Strong interactions in multimode random lasers,” Science 320(5876), 643–646 (2008).
    [CrossRef] [PubMed]
  11. T. Ito and M. Tomita, “Polarization-dependent laser action in a two-dimensional random medium,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 66(2), 027601 (2002).
    [CrossRef] [PubMed]
  12. C. Wang and J. S. Liu, “Polarization dependence of lasing modes in two-dimensional random lasers,” Phys. Lett. A 353(2-3), 269–272 (2006).
    [CrossRef]
  13. J. S. Liu, H. Lu, and C. Wang, “Spectral time evolution of quasistate modes in two-dimensional random media,” Acta Phys. Sin. 54, 3116–3122 (2005) (in Chinese).
  14. X. Jiang, S. Feng, C. M. Soukoulis, J. Zi, J. D. Joannopoulos, and H. Cao, “Coupling, competition, and stability of modes in random lasers,” Phys. Rev. B 69(10), 104202 (2004).
    [CrossRef]
  15. D. S. Wiersma, “The physics and applications of random lasers,” Nat. Phys. 4(5), 359–367 (2008).
    [CrossRef]
  16. X.-C. Zhang and J. Z. Xu, Introduction to THz Wave Photonics (Springer, Berlin, 2010).
  17. N. M. Lawandy, “Far-infrared lasing in ruby,” IEEE J. Quantum Electron. 6(15), 401–403 (1979).
    [CrossRef]
  18. E. Kuznetsova, Y. Rostovtsev, N. G. Kalugin, R. Kolesov, O. Kocharovskaya, and M. O. Scully, “Generation of coherent terahertz pulses in ruby at room temperature,” Phys. Rev. A 74(2), 023819 (2006).
    [CrossRef]
  19. S. Geschwind, G. E. Devlin, R. L. Cohen, and S. R. Chinn, “Orbach relaxation and hyperfine structure in the excited, ” Phys. Rev. 137(4A), A1087–A1100 (1965).
    [CrossRef]
  20. K. F. Renk and J. Deisenhonefer, “Imprisonment of resonant phonons observed with a new technique for the detection of 10l2Hz phonons,” Phys. Rev. Lett. 26, 164–166 (1971).
  21. T. Yajima and K. Inoue, “Submillimeter-wave generation by difference-frequency mixing of ruby lines in ZnTe,” IEEE J. Quantum Electron. 5(3), 140–146 (1969).
    [CrossRef]
  22. L. Mahler, A. Tredicucci, F. Beltram, C. Walther, J. Faist, H. E. Beere, D. A. Ritchie, and D. S. Wiersma, “Quasi-periodic distributed feedback laser,” Nat. Photonics 4(3), 165–169 (2010).
    [CrossRef]
  23. A. E. Siegman, Lasers (University Science Books, Mill Valley, CA, 1986).
  24. J. C. Walling, O. G. Peterson, H. P. Jenssen, R. C. Morris, and E. W. O’Dell, “Tunable alexandrite lasers,” IEEE J. Quantum Electron. 16(12), 1302–1315 (1980).
    [CrossRef]

2010 (1)

L. Mahler, A. Tredicucci, F. Beltram, C. Walther, J. Faist, H. E. Beere, D. A. Ritchie, and D. S. Wiersma, “Quasi-periodic distributed feedback laser,” Nat. Photonics 4(3), 165–169 (2010).
[CrossRef]

2008 (2)

H. E. Türeci, L. Ge, S. Rotter, and A. D. Stone, “Strong interactions in multimode random lasers,” Science 320(5876), 643–646 (2008).
[CrossRef] [PubMed]

D. S. Wiersma, “The physics and applications of random lasers,” Nat. Phys. 4(5), 359–367 (2008).
[CrossRef]

2007 (1)

C. Vanneste, P. Sebbah, and H. Cao, “Lasing with resonant feedback in weakly scattering random systems,” Phys. Rev. Lett. 98(14), 143902 (2007).
[CrossRef] [PubMed]

2006 (4)

J. S. Liu and Z. Xiong, “Theoretical investigation on the threshold property of localized modes based on spectral width in two-dimensional random media,” Opt. Commun. 268(2), 294–299 (2006).
[CrossRef]

J. S. Liu, H. Wang, and Z. Xiong, “Origin of light localization from orientational disorder in one and two-dimensional random media with uniaxial scatterers,” Phys. Rev. B 73(19), 195110 (2006).
[CrossRef]

E. Kuznetsova, Y. Rostovtsev, N. G. Kalugin, R. Kolesov, O. Kocharovskaya, and M. O. Scully, “Generation of coherent terahertz pulses in ruby at room temperature,” Phys. Rev. A 74(2), 023819 (2006).
[CrossRef]

C. Wang and J. S. Liu, “Polarization dependence of lasing modes in two-dimensional random lasers,” Phys. Lett. A 353(2-3), 269–272 (2006).
[CrossRef]

2005 (1)

J. S. Liu, H. Lu, and C. Wang, “Spectral time evolution of quasistate modes in two-dimensional random media,” Acta Phys. Sin. 54, 3116–3122 (2005) (in Chinese).

2004 (2)

X. Jiang, S. Feng, C. M. Soukoulis, J. Zi, J. D. Joannopoulos, and H. Cao, “Coupling, competition, and stability of modes in random lasers,” Phys. Rev. B 69(10), 104202 (2004).
[CrossRef]

S. Mujumdar, M. Ricci, R. Torre, and D. S. Wiersma, “Amplified extended modes in random lasers,” Phys. Rev. Lett. 93(5), 053903 (2004).
[CrossRef] [PubMed]

2002 (3)

P. Sebbah and C. Vanneste, “Random laser in the localized regime,” Phys. Rev. B 66(14), 144202 (2002).
[CrossRef]

C. M. Soukoulis, X. Jiang, J. Y. Xu, and H. Cao, “Dynamic response and relaxation oscillations in random lasers,” Phys. Rev. B 65(4), 041103 (2002).
[CrossRef]

T. Ito and M. Tomita, “Polarization-dependent laser action in a two-dimensional random medium,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 66(2), 027601 (2002).
[CrossRef] [PubMed]

2000 (1)

X. Jiang and C. M. Soukoulis, “Time dependent theory for random lasers,” Phys. Rev. Lett. 85(1), 70–73 (2000).
[CrossRef] [PubMed]

1999 (1)

H. Cao, Y. G. Zhao, H. C. Ong, S. T. Ho, E. W. Seelig, Q. H. Wang, and R. P. H. Chang, “Random laser action in semiconductor powder,” Phys. Rev. Lett. 82(11), 2278–2281 (1999).
[CrossRef]

1994 (1)

N. M. Lawandy, R. M. Balachandra, A. S. L. Gomes, and E. Sauvain, “Laser action in strongly scattering media,” Nature 368(6470), 436–438 (1994).
[CrossRef]

1980 (1)

J. C. Walling, O. G. Peterson, H. P. Jenssen, R. C. Morris, and E. W. O’Dell, “Tunable alexandrite lasers,” IEEE J. Quantum Electron. 16(12), 1302–1315 (1980).
[CrossRef]

1979 (1)

N. M. Lawandy, “Far-infrared lasing in ruby,” IEEE J. Quantum Electron. 6(15), 401–403 (1979).
[CrossRef]

1971 (1)

K. F. Renk and J. Deisenhonefer, “Imprisonment of resonant phonons observed with a new technique for the detection of 10l2Hz phonons,” Phys. Rev. Lett. 26, 164–166 (1971).

1969 (1)

T. Yajima and K. Inoue, “Submillimeter-wave generation by difference-frequency mixing of ruby lines in ZnTe,” IEEE J. Quantum Electron. 5(3), 140–146 (1969).
[CrossRef]

1965 (1)

S. Geschwind, G. E. Devlin, R. L. Cohen, and S. R. Chinn, “Orbach relaxation and hyperfine structure in the excited, ” Phys. Rev. 137(4A), A1087–A1100 (1965).
[CrossRef]

Balachandra, R. M.

N. M. Lawandy, R. M. Balachandra, A. S. L. Gomes, and E. Sauvain, “Laser action in strongly scattering media,” Nature 368(6470), 436–438 (1994).
[CrossRef]

Beere, H. E.

L. Mahler, A. Tredicucci, F. Beltram, C. Walther, J. Faist, H. E. Beere, D. A. Ritchie, and D. S. Wiersma, “Quasi-periodic distributed feedback laser,” Nat. Photonics 4(3), 165–169 (2010).
[CrossRef]

Beltram, F.

L. Mahler, A. Tredicucci, F. Beltram, C. Walther, J. Faist, H. E. Beere, D. A. Ritchie, and D. S. Wiersma, “Quasi-periodic distributed feedback laser,” Nat. Photonics 4(3), 165–169 (2010).
[CrossRef]

Cao, H.

C. Vanneste, P. Sebbah, and H. Cao, “Lasing with resonant feedback in weakly scattering random systems,” Phys. Rev. Lett. 98(14), 143902 (2007).
[CrossRef] [PubMed]

X. Jiang, S. Feng, C. M. Soukoulis, J. Zi, J. D. Joannopoulos, and H. Cao, “Coupling, competition, and stability of modes in random lasers,” Phys. Rev. B 69(10), 104202 (2004).
[CrossRef]

C. M. Soukoulis, X. Jiang, J. Y. Xu, and H. Cao, “Dynamic response and relaxation oscillations in random lasers,” Phys. Rev. B 65(4), 041103 (2002).
[CrossRef]

H. Cao, Y. G. Zhao, H. C. Ong, S. T. Ho, E. W. Seelig, Q. H. Wang, and R. P. H. Chang, “Random laser action in semiconductor powder,” Phys. Rev. Lett. 82(11), 2278–2281 (1999).
[CrossRef]

Chang, R. P. H.

H. Cao, Y. G. Zhao, H. C. Ong, S. T. Ho, E. W. Seelig, Q. H. Wang, and R. P. H. Chang, “Random laser action in semiconductor powder,” Phys. Rev. Lett. 82(11), 2278–2281 (1999).
[CrossRef]

Chinn, S. R.

S. Geschwind, G. E. Devlin, R. L. Cohen, and S. R. Chinn, “Orbach relaxation and hyperfine structure in the excited, ” Phys. Rev. 137(4A), A1087–A1100 (1965).
[CrossRef]

Cohen, R. L.

S. Geschwind, G. E. Devlin, R. L. Cohen, and S. R. Chinn, “Orbach relaxation and hyperfine structure in the excited, ” Phys. Rev. 137(4A), A1087–A1100 (1965).
[CrossRef]

Deisenhonefer, J.

K. F. Renk and J. Deisenhonefer, “Imprisonment of resonant phonons observed with a new technique for the detection of 10l2Hz phonons,” Phys. Rev. Lett. 26, 164–166 (1971).

Devlin, G. E.

S. Geschwind, G. E. Devlin, R. L. Cohen, and S. R. Chinn, “Orbach relaxation and hyperfine structure in the excited, ” Phys. Rev. 137(4A), A1087–A1100 (1965).
[CrossRef]

Faist, J.

L. Mahler, A. Tredicucci, F. Beltram, C. Walther, J. Faist, H. E. Beere, D. A. Ritchie, and D. S. Wiersma, “Quasi-periodic distributed feedback laser,” Nat. Photonics 4(3), 165–169 (2010).
[CrossRef]

Feng, S.

X. Jiang, S. Feng, C. M. Soukoulis, J. Zi, J. D. Joannopoulos, and H. Cao, “Coupling, competition, and stability of modes in random lasers,” Phys. Rev. B 69(10), 104202 (2004).
[CrossRef]

Ge, L.

H. E. Türeci, L. Ge, S. Rotter, and A. D. Stone, “Strong interactions in multimode random lasers,” Science 320(5876), 643–646 (2008).
[CrossRef] [PubMed]

Geschwind, S.

S. Geschwind, G. E. Devlin, R. L. Cohen, and S. R. Chinn, “Orbach relaxation and hyperfine structure in the excited, ” Phys. Rev. 137(4A), A1087–A1100 (1965).
[CrossRef]

Gomes, A. S. L.

N. M. Lawandy, R. M. Balachandra, A. S. L. Gomes, and E. Sauvain, “Laser action in strongly scattering media,” Nature 368(6470), 436–438 (1994).
[CrossRef]

Ho, S. T.

H. Cao, Y. G. Zhao, H. C. Ong, S. T. Ho, E. W. Seelig, Q. H. Wang, and R. P. H. Chang, “Random laser action in semiconductor powder,” Phys. Rev. Lett. 82(11), 2278–2281 (1999).
[CrossRef]

Inoue, K.

T. Yajima and K. Inoue, “Submillimeter-wave generation by difference-frequency mixing of ruby lines in ZnTe,” IEEE J. Quantum Electron. 5(3), 140–146 (1969).
[CrossRef]

Ito, T.

T. Ito and M. Tomita, “Polarization-dependent laser action in a two-dimensional random medium,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 66(2), 027601 (2002).
[CrossRef] [PubMed]

Jenssen, H. P.

J. C. Walling, O. G. Peterson, H. P. Jenssen, R. C. Morris, and E. W. O’Dell, “Tunable alexandrite lasers,” IEEE J. Quantum Electron. 16(12), 1302–1315 (1980).
[CrossRef]

Jiang, X.

X. Jiang, S. Feng, C. M. Soukoulis, J. Zi, J. D. Joannopoulos, and H. Cao, “Coupling, competition, and stability of modes in random lasers,” Phys. Rev. B 69(10), 104202 (2004).
[CrossRef]

C. M. Soukoulis, X. Jiang, J. Y. Xu, and H. Cao, “Dynamic response and relaxation oscillations in random lasers,” Phys. Rev. B 65(4), 041103 (2002).
[CrossRef]

X. Jiang and C. M. Soukoulis, “Time dependent theory for random lasers,” Phys. Rev. Lett. 85(1), 70–73 (2000).
[CrossRef] [PubMed]

Joannopoulos, J. D.

X. Jiang, S. Feng, C. M. Soukoulis, J. Zi, J. D. Joannopoulos, and H. Cao, “Coupling, competition, and stability of modes in random lasers,” Phys. Rev. B 69(10), 104202 (2004).
[CrossRef]

Kalugin, N. G.

E. Kuznetsova, Y. Rostovtsev, N. G. Kalugin, R. Kolesov, O. Kocharovskaya, and M. O. Scully, “Generation of coherent terahertz pulses in ruby at room temperature,” Phys. Rev. A 74(2), 023819 (2006).
[CrossRef]

Kocharovskaya, O.

E. Kuznetsova, Y. Rostovtsev, N. G. Kalugin, R. Kolesov, O. Kocharovskaya, and M. O. Scully, “Generation of coherent terahertz pulses in ruby at room temperature,” Phys. Rev. A 74(2), 023819 (2006).
[CrossRef]

Kolesov, R.

E. Kuznetsova, Y. Rostovtsev, N. G. Kalugin, R. Kolesov, O. Kocharovskaya, and M. O. Scully, “Generation of coherent terahertz pulses in ruby at room temperature,” Phys. Rev. A 74(2), 023819 (2006).
[CrossRef]

Kuznetsova, E.

E. Kuznetsova, Y. Rostovtsev, N. G. Kalugin, R. Kolesov, O. Kocharovskaya, and M. O. Scully, “Generation of coherent terahertz pulses in ruby at room temperature,” Phys. Rev. A 74(2), 023819 (2006).
[CrossRef]

Lawandy, N. M.

N. M. Lawandy, R. M. Balachandra, A. S. L. Gomes, and E. Sauvain, “Laser action in strongly scattering media,” Nature 368(6470), 436–438 (1994).
[CrossRef]

N. M. Lawandy, “Far-infrared lasing in ruby,” IEEE J. Quantum Electron. 6(15), 401–403 (1979).
[CrossRef]

Liu, J. S.

J. S. Liu, H. Wang, and Z. Xiong, “Origin of light localization from orientational disorder in one and two-dimensional random media with uniaxial scatterers,” Phys. Rev. B 73(19), 195110 (2006).
[CrossRef]

C. Wang and J. S. Liu, “Polarization dependence of lasing modes in two-dimensional random lasers,” Phys. Lett. A 353(2-3), 269–272 (2006).
[CrossRef]

J. S. Liu and Z. Xiong, “Theoretical investigation on the threshold property of localized modes based on spectral width in two-dimensional random media,” Opt. Commun. 268(2), 294–299 (2006).
[CrossRef]

J. S. Liu, H. Lu, and C. Wang, “Spectral time evolution of quasistate modes in two-dimensional random media,” Acta Phys. Sin. 54, 3116–3122 (2005) (in Chinese).

Lu, H.

J. S. Liu, H. Lu, and C. Wang, “Spectral time evolution of quasistate modes in two-dimensional random media,” Acta Phys. Sin. 54, 3116–3122 (2005) (in Chinese).

Mahler, L.

L. Mahler, A. Tredicucci, F. Beltram, C. Walther, J. Faist, H. E. Beere, D. A. Ritchie, and D. S. Wiersma, “Quasi-periodic distributed feedback laser,” Nat. Photonics 4(3), 165–169 (2010).
[CrossRef]

Morris, R. C.

J. C. Walling, O. G. Peterson, H. P. Jenssen, R. C. Morris, and E. W. O’Dell, “Tunable alexandrite lasers,” IEEE J. Quantum Electron. 16(12), 1302–1315 (1980).
[CrossRef]

Mujumdar, S.

S. Mujumdar, M. Ricci, R. Torre, and D. S. Wiersma, “Amplified extended modes in random lasers,” Phys. Rev. Lett. 93(5), 053903 (2004).
[CrossRef] [PubMed]

O’Dell, E. W.

J. C. Walling, O. G. Peterson, H. P. Jenssen, R. C. Morris, and E. W. O’Dell, “Tunable alexandrite lasers,” IEEE J. Quantum Electron. 16(12), 1302–1315 (1980).
[CrossRef]

Ong, H. C.

H. Cao, Y. G. Zhao, H. C. Ong, S. T. Ho, E. W. Seelig, Q. H. Wang, and R. P. H. Chang, “Random laser action in semiconductor powder,” Phys. Rev. Lett. 82(11), 2278–2281 (1999).
[CrossRef]

Peterson, O. G.

J. C. Walling, O. G. Peterson, H. P. Jenssen, R. C. Morris, and E. W. O’Dell, “Tunable alexandrite lasers,” IEEE J. Quantum Electron. 16(12), 1302–1315 (1980).
[CrossRef]

Renk, K. F.

K. F. Renk and J. Deisenhonefer, “Imprisonment of resonant phonons observed with a new technique for the detection of 10l2Hz phonons,” Phys. Rev. Lett. 26, 164–166 (1971).

Ricci, M.

S. Mujumdar, M. Ricci, R. Torre, and D. S. Wiersma, “Amplified extended modes in random lasers,” Phys. Rev. Lett. 93(5), 053903 (2004).
[CrossRef] [PubMed]

Ritchie, D. A.

L. Mahler, A. Tredicucci, F. Beltram, C. Walther, J. Faist, H. E. Beere, D. A. Ritchie, and D. S. Wiersma, “Quasi-periodic distributed feedback laser,” Nat. Photonics 4(3), 165–169 (2010).
[CrossRef]

Rostovtsev, Y.

E. Kuznetsova, Y. Rostovtsev, N. G. Kalugin, R. Kolesov, O. Kocharovskaya, and M. O. Scully, “Generation of coherent terahertz pulses in ruby at room temperature,” Phys. Rev. A 74(2), 023819 (2006).
[CrossRef]

Rotter, S.

H. E. Türeci, L. Ge, S. Rotter, and A. D. Stone, “Strong interactions in multimode random lasers,” Science 320(5876), 643–646 (2008).
[CrossRef] [PubMed]

Sauvain, E.

N. M. Lawandy, R. M. Balachandra, A. S. L. Gomes, and E. Sauvain, “Laser action in strongly scattering media,” Nature 368(6470), 436–438 (1994).
[CrossRef]

Scully, M. O.

E. Kuznetsova, Y. Rostovtsev, N. G. Kalugin, R. Kolesov, O. Kocharovskaya, and M. O. Scully, “Generation of coherent terahertz pulses in ruby at room temperature,” Phys. Rev. A 74(2), 023819 (2006).
[CrossRef]

Sebbah, P.

C. Vanneste, P. Sebbah, and H. Cao, “Lasing with resonant feedback in weakly scattering random systems,” Phys. Rev. Lett. 98(14), 143902 (2007).
[CrossRef] [PubMed]

P. Sebbah and C. Vanneste, “Random laser in the localized regime,” Phys. Rev. B 66(14), 144202 (2002).
[CrossRef]

Seelig, E. W.

H. Cao, Y. G. Zhao, H. C. Ong, S. T. Ho, E. W. Seelig, Q. H. Wang, and R. P. H. Chang, “Random laser action in semiconductor powder,” Phys. Rev. Lett. 82(11), 2278–2281 (1999).
[CrossRef]

Soukoulis, C. M.

X. Jiang, S. Feng, C. M. Soukoulis, J. Zi, J. D. Joannopoulos, and H. Cao, “Coupling, competition, and stability of modes in random lasers,” Phys. Rev. B 69(10), 104202 (2004).
[CrossRef]

C. M. Soukoulis, X. Jiang, J. Y. Xu, and H. Cao, “Dynamic response and relaxation oscillations in random lasers,” Phys. Rev. B 65(4), 041103 (2002).
[CrossRef]

X. Jiang and C. M. Soukoulis, “Time dependent theory for random lasers,” Phys. Rev. Lett. 85(1), 70–73 (2000).
[CrossRef] [PubMed]

Stone, A. D.

H. E. Türeci, L. Ge, S. Rotter, and A. D. Stone, “Strong interactions in multimode random lasers,” Science 320(5876), 643–646 (2008).
[CrossRef] [PubMed]

Tomita, M.

T. Ito and M. Tomita, “Polarization-dependent laser action in a two-dimensional random medium,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 66(2), 027601 (2002).
[CrossRef] [PubMed]

Torre, R.

S. Mujumdar, M. Ricci, R. Torre, and D. S. Wiersma, “Amplified extended modes in random lasers,” Phys. Rev. Lett. 93(5), 053903 (2004).
[CrossRef] [PubMed]

Tredicucci, A.

L. Mahler, A. Tredicucci, F. Beltram, C. Walther, J. Faist, H. E. Beere, D. A. Ritchie, and D. S. Wiersma, “Quasi-periodic distributed feedback laser,” Nat. Photonics 4(3), 165–169 (2010).
[CrossRef]

Türeci, H. E.

H. E. Türeci, L. Ge, S. Rotter, and A. D. Stone, “Strong interactions in multimode random lasers,” Science 320(5876), 643–646 (2008).
[CrossRef] [PubMed]

Vanneste, C.

C. Vanneste, P. Sebbah, and H. Cao, “Lasing with resonant feedback in weakly scattering random systems,” Phys. Rev. Lett. 98(14), 143902 (2007).
[CrossRef] [PubMed]

P. Sebbah and C. Vanneste, “Random laser in the localized regime,” Phys. Rev. B 66(14), 144202 (2002).
[CrossRef]

Walling, J. C.

J. C. Walling, O. G. Peterson, H. P. Jenssen, R. C. Morris, and E. W. O’Dell, “Tunable alexandrite lasers,” IEEE J. Quantum Electron. 16(12), 1302–1315 (1980).
[CrossRef]

Walther, C.

L. Mahler, A. Tredicucci, F. Beltram, C. Walther, J. Faist, H. E. Beere, D. A. Ritchie, and D. S. Wiersma, “Quasi-periodic distributed feedback laser,” Nat. Photonics 4(3), 165–169 (2010).
[CrossRef]

Wang, C.

C. Wang and J. S. Liu, “Polarization dependence of lasing modes in two-dimensional random lasers,” Phys. Lett. A 353(2-3), 269–272 (2006).
[CrossRef]

J. S. Liu, H. Lu, and C. Wang, “Spectral time evolution of quasistate modes in two-dimensional random media,” Acta Phys. Sin. 54, 3116–3122 (2005) (in Chinese).

Wang, H.

J. S. Liu, H. Wang, and Z. Xiong, “Origin of light localization from orientational disorder in one and two-dimensional random media with uniaxial scatterers,” Phys. Rev. B 73(19), 195110 (2006).
[CrossRef]

Wang, Q. H.

H. Cao, Y. G. Zhao, H. C. Ong, S. T. Ho, E. W. Seelig, Q. H. Wang, and R. P. H. Chang, “Random laser action in semiconductor powder,” Phys. Rev. Lett. 82(11), 2278–2281 (1999).
[CrossRef]

Wiersma, D. S.

L. Mahler, A. Tredicucci, F. Beltram, C. Walther, J. Faist, H. E. Beere, D. A. Ritchie, and D. S. Wiersma, “Quasi-periodic distributed feedback laser,” Nat. Photonics 4(3), 165–169 (2010).
[CrossRef]

D. S. Wiersma, “The physics and applications of random lasers,” Nat. Phys. 4(5), 359–367 (2008).
[CrossRef]

S. Mujumdar, M. Ricci, R. Torre, and D. S. Wiersma, “Amplified extended modes in random lasers,” Phys. Rev. Lett. 93(5), 053903 (2004).
[CrossRef] [PubMed]

Xiong, Z.

J. S. Liu and Z. Xiong, “Theoretical investigation on the threshold property of localized modes based on spectral width in two-dimensional random media,” Opt. Commun. 268(2), 294–299 (2006).
[CrossRef]

J. S. Liu, H. Wang, and Z. Xiong, “Origin of light localization from orientational disorder in one and two-dimensional random media with uniaxial scatterers,” Phys. Rev. B 73(19), 195110 (2006).
[CrossRef]

Xu, J. Y.

C. M. Soukoulis, X. Jiang, J. Y. Xu, and H. Cao, “Dynamic response and relaxation oscillations in random lasers,” Phys. Rev. B 65(4), 041103 (2002).
[CrossRef]

Yajima, T.

T. Yajima and K. Inoue, “Submillimeter-wave generation by difference-frequency mixing of ruby lines in ZnTe,” IEEE J. Quantum Electron. 5(3), 140–146 (1969).
[CrossRef]

Zhao, Y. G.

H. Cao, Y. G. Zhao, H. C. Ong, S. T. Ho, E. W. Seelig, Q. H. Wang, and R. P. H. Chang, “Random laser action in semiconductor powder,” Phys. Rev. Lett. 82(11), 2278–2281 (1999).
[CrossRef]

Zi, J.

X. Jiang, S. Feng, C. M. Soukoulis, J. Zi, J. D. Joannopoulos, and H. Cao, “Coupling, competition, and stability of modes in random lasers,” Phys. Rev. B 69(10), 104202 (2004).
[CrossRef]

Acta Phys. Sin. (1)

J. S. Liu, H. Lu, and C. Wang, “Spectral time evolution of quasistate modes in two-dimensional random media,” Acta Phys. Sin. 54, 3116–3122 (2005) (in Chinese).

IEEE J. Quantum Electron. (3)

N. M. Lawandy, “Far-infrared lasing in ruby,” IEEE J. Quantum Electron. 6(15), 401–403 (1979).
[CrossRef]

T. Yajima and K. Inoue, “Submillimeter-wave generation by difference-frequency mixing of ruby lines in ZnTe,” IEEE J. Quantum Electron. 5(3), 140–146 (1969).
[CrossRef]

J. C. Walling, O. G. Peterson, H. P. Jenssen, R. C. Morris, and E. W. O’Dell, “Tunable alexandrite lasers,” IEEE J. Quantum Electron. 16(12), 1302–1315 (1980).
[CrossRef]

Nat. Photonics (1)

L. Mahler, A. Tredicucci, F. Beltram, C. Walther, J. Faist, H. E. Beere, D. A. Ritchie, and D. S. Wiersma, “Quasi-periodic distributed feedback laser,” Nat. Photonics 4(3), 165–169 (2010).
[CrossRef]

Nat. Phys. (1)

D. S. Wiersma, “The physics and applications of random lasers,” Nat. Phys. 4(5), 359–367 (2008).
[CrossRef]

Nature (1)

N. M. Lawandy, R. M. Balachandra, A. S. L. Gomes, and E. Sauvain, “Laser action in strongly scattering media,” Nature 368(6470), 436–438 (1994).
[CrossRef]

Opt. Commun. (1)

J. S. Liu and Z. Xiong, “Theoretical investigation on the threshold property of localized modes based on spectral width in two-dimensional random media,” Opt. Commun. 268(2), 294–299 (2006).
[CrossRef]

Phys. Lett. A (1)

C. Wang and J. S. Liu, “Polarization dependence of lasing modes in two-dimensional random lasers,” Phys. Lett. A 353(2-3), 269–272 (2006).
[CrossRef]

Phys. Rev. (1)

S. Geschwind, G. E. Devlin, R. L. Cohen, and S. R. Chinn, “Orbach relaxation and hyperfine structure in the excited, ” Phys. Rev. 137(4A), A1087–A1100 (1965).
[CrossRef]

Phys. Rev. A (1)

E. Kuznetsova, Y. Rostovtsev, N. G. Kalugin, R. Kolesov, O. Kocharovskaya, and M. O. Scully, “Generation of coherent terahertz pulses in ruby at room temperature,” Phys. Rev. A 74(2), 023819 (2006).
[CrossRef]

Phys. Rev. B (4)

X. Jiang, S. Feng, C. M. Soukoulis, J. Zi, J. D. Joannopoulos, and H. Cao, “Coupling, competition, and stability of modes in random lasers,” Phys. Rev. B 69(10), 104202 (2004).
[CrossRef]

J. S. Liu, H. Wang, and Z. Xiong, “Origin of light localization from orientational disorder in one and two-dimensional random media with uniaxial scatterers,” Phys. Rev. B 73(19), 195110 (2006).
[CrossRef]

P. Sebbah and C. Vanneste, “Random laser in the localized regime,” Phys. Rev. B 66(14), 144202 (2002).
[CrossRef]

C. M. Soukoulis, X. Jiang, J. Y. Xu, and H. Cao, “Dynamic response and relaxation oscillations in random lasers,” Phys. Rev. B 65(4), 041103 (2002).
[CrossRef]

Phys. Rev. E Stat. Nonlin. Soft Matter Phys. (1)

T. Ito and M. Tomita, “Polarization-dependent laser action in a two-dimensional random medium,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 66(2), 027601 (2002).
[CrossRef] [PubMed]

Phys. Rev. Lett. (5)

H. Cao, Y. G. Zhao, H. C. Ong, S. T. Ho, E. W. Seelig, Q. H. Wang, and R. P. H. Chang, “Random laser action in semiconductor powder,” Phys. Rev. Lett. 82(11), 2278–2281 (1999).
[CrossRef]

C. Vanneste, P. Sebbah, and H. Cao, “Lasing with resonant feedback in weakly scattering random systems,” Phys. Rev. Lett. 98(14), 143902 (2007).
[CrossRef] [PubMed]

S. Mujumdar, M. Ricci, R. Torre, and D. S. Wiersma, “Amplified extended modes in random lasers,” Phys. Rev. Lett. 93(5), 053903 (2004).
[CrossRef] [PubMed]

X. Jiang and C. M. Soukoulis, “Time dependent theory for random lasers,” Phys. Rev. Lett. 85(1), 70–73 (2000).
[CrossRef] [PubMed]

K. F. Renk and J. Deisenhonefer, “Imprisonment of resonant phonons observed with a new technique for the detection of 10l2Hz phonons,” Phys. Rev. Lett. 26, 164–166 (1971).

Science (1)

H. E. Türeci, L. Ge, S. Rotter, and A. D. Stone, “Strong interactions in multimode random lasers,” Science 320(5876), 643–646 (2008).
[CrossRef] [PubMed]

Other (2)

X.-C. Zhang and J. Z. Xu, Introduction to THz Wave Photonics (Springer, Berlin, 2010).

A. E. Siegman, Lasers (University Science Books, Mill Valley, CA, 1986).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

(a) Schematic illustration of 1D random medium made of ruby grains, and (b) the scheme of the energy levels for Cr3+.

Fig. 2
Fig. 2

The spectral intensity in arbitrary units versus the wavelength for 1D disordered ruby medium shown in Fig. 1 at (a) W p = 10s−1, (b) W p = 30 s−1, (c) W p = 100 s−1, and (d) W p = 1000 s−1.

Fig. 3
Fig. 3

The plot of the peak intensity and spectral width of the lasing modes vs the pump rate W p . (a) The peak intensity for the four indicated modes, and the lasing threshold measured from the plots are W I 0 =30 s−1, W I 1 =60 s−1, W I 2 =50 s−1 and W I 3 =45 s−1; (b) the peak intensity and spectral width for the mode λ0; and (c) the spectral width for the four indicated modes, and the lasing threshold measured from the plots are W W 0 =43 s−1, W W 1 =82 s−1, W W 2 =78 s−1 and W W 3 =61 s−1.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

H y x = ε 0 ε i E z t + P z t , ( i = 1 , 2 ) ,
E z x = μ 0 H y t ,
d N 1 d t = N 2 τ 21 + N 3 τ 31 N 1 W p ,
d N 2 d t = N 3 τ 32 N 2 τ 21 N 2 T + E z ω l d P z d t ,
d N 3 d t = N 1 W p N 3 τ 31 N 3 τ 32 + N 2 T E z ω l d P z d t ,
d 2 P z / d t 2 + Δ ω l d P z / d t + ω l 2 P z = κ Δ N E z .

Metrics