Abstract

The performance of thermal detectors is derived for devices incorporating materials with non-uniform spectral absorption. A detector designed to have low absorption in the primary thermal emission band at a given temperature will have a background-limited radiation noise well below that of a blackbody absorber, which is the condition typically assessed for ultimate thermal detector performance. Specific examples of mid-wave infrared (λ ∼ 3–5μm) devices are described using lead selenide as a primary absorber with optical cavity layers that maximize coupling. An analysis of all significant noise sources is presented for two example room-temperature devices designed to have detectivities up to 4.37×1010 cm Hz1/2 W−1, which is a factor 3.1 greater than the traditional blackbody limit. An alternative method of fabricating spectrally selective devices by patterning a plasmonic structure in silver is also considered.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. C. Jones, "The ultimate sensitivity of radiation detectors," J. Opt. Soc. Am. 37, 879-888 (1947).
    [PubMed]
  2. P. W. Kruse, L. D. McGlauchlin, and R. B. McQuistan, Elements of Infrared Technology: Generation, Transmission, and Detection (Wiley, 1962).
  3. L. J. Hornbeck, "Infrared detector," U.S. Patent No. 5,021,663 (1991).
  4. R. A. Wood, "Use of vanadium oxide in microbolometer sensors," U.S. Patent No. 5,450,053 (1995).
  5. P. B. Fellgett, "On the ultimate sensitivity and practical performance of radiation detectors," J. Opt. Soc. Am. 39, 970-976 (1949).
    [CrossRef] [PubMed]
  6. K. M. van Vliet, "Noise limitations in solid state photodetectors," Appl. Opt. 6, 1145-1169 (1967).
    [CrossRef] [PubMed]
  7. A. Muñoz, J. Meléndez, M. C. Torquemada, M. T. Rodrigo, J. Cebrián, A. J. de Castro, J. Meneses, M. Ugarte, F. López, G. Vergara, J. L. Hernández, J. M. Martín, L. Adell, and M. T. Montojo, "Pbse photodetector arrays for ir sensors," Thin Solid Films 317, 425-428 (1998).
    [CrossRef]
  8. J. M. Martin, J. L. Hernandez, L. Adell, A. Rodriguez, and F. Lopez, "Arrays of thermally evaporated infrared photodetectors deposited on si substrates operating at room temperature," Semicond. Sci. Technol. (1996).
    [CrossRef]
  9. P. Yeh, Optical Waves in Layered Media (Wiley, 1988).
  10. E. D. Palik, ed., Handbook of Optical Constants of Solids (Elsevier, 1998).
  11. C. L. Kauffman, S.-S. Yoo, and T. R. Beystrum, "Photoconductive bolometer infrared detector," U.S. Patent No. 7,262,413 (2007).
  12. A. Gawarikar, R. Shea, A. Mehdaoui, and J. Talghader, "Radiation heat transfer dominated microbolometers," in "Optical MEMs and Nanophotonics, 2008 IEEE/LEOS International Conference on," (2008), pp. 178-179.
  13. CRC Handbook of Chemistry and Physics (CRC Press Taylor and Francis, 2009).
  14. Semiconductors and Semimetals - Vol 47 (Academic Press, 1997).
  15. Y.-W. Jiang, L. D. Tzuang, Y.-H. Ye, Y.-T. Wu, M.-W. Tsai, C.-Y. Chen, and S.-C. Lee, "Effect of wood’s anomalies on the profile of extraordinary transmission spectra through metal periodic arrays of rectangular subwavelength holes with different aspect ratio," Opt. Express 17, 2631-2637 (2009).
    [CrossRef] [PubMed]
  16. A. D. Rakic, A. B. Djurišic, J. M. Elazar, and M. L. Majewski, "Optical properties of metallic films for vertical cavity optoelectronic devices," Appl. Opt. 37, 5271-5283 (1998).
    [CrossRef]

2009

1998

A. D. Rakic, A. B. Djurišic, J. M. Elazar, and M. L. Majewski, "Optical properties of metallic films for vertical cavity optoelectronic devices," Appl. Opt. 37, 5271-5283 (1998).
[CrossRef]

A. Muñoz, J. Meléndez, M. C. Torquemada, M. T. Rodrigo, J. Cebrián, A. J. de Castro, J. Meneses, M. Ugarte, F. López, G. Vergara, J. L. Hernández, J. M. Martín, L. Adell, and M. T. Montojo, "Pbse photodetector arrays for ir sensors," Thin Solid Films 317, 425-428 (1998).
[CrossRef]

1967

1949

1947

Adell, L.

A. Muñoz, J. Meléndez, M. C. Torquemada, M. T. Rodrigo, J. Cebrián, A. J. de Castro, J. Meneses, M. Ugarte, F. López, G. Vergara, J. L. Hernández, J. M. Martín, L. Adell, and M. T. Montojo, "Pbse photodetector arrays for ir sensors," Thin Solid Films 317, 425-428 (1998).
[CrossRef]

Cebrián, J.

A. Muñoz, J. Meléndez, M. C. Torquemada, M. T. Rodrigo, J. Cebrián, A. J. de Castro, J. Meneses, M. Ugarte, F. López, G. Vergara, J. L. Hernández, J. M. Martín, L. Adell, and M. T. Montojo, "Pbse photodetector arrays for ir sensors," Thin Solid Films 317, 425-428 (1998).
[CrossRef]

Chen, C.-Y.

de Castro, A. J.

A. Muñoz, J. Meléndez, M. C. Torquemada, M. T. Rodrigo, J. Cebrián, A. J. de Castro, J. Meneses, M. Ugarte, F. López, G. Vergara, J. L. Hernández, J. M. Martín, L. Adell, and M. T. Montojo, "Pbse photodetector arrays for ir sensors," Thin Solid Films 317, 425-428 (1998).
[CrossRef]

Djurišic, A. B.

Elazar, J. M.

Fellgett, P. B.

Hernández, J. L.

A. Muñoz, J. Meléndez, M. C. Torquemada, M. T. Rodrigo, J. Cebrián, A. J. de Castro, J. Meneses, M. Ugarte, F. López, G. Vergara, J. L. Hernández, J. M. Martín, L. Adell, and M. T. Montojo, "Pbse photodetector arrays for ir sensors," Thin Solid Films 317, 425-428 (1998).
[CrossRef]

Jiang, Y.-W.

Jones, R. C.

Lee, S.-C.

López, F.

A. Muñoz, J. Meléndez, M. C. Torquemada, M. T. Rodrigo, J. Cebrián, A. J. de Castro, J. Meneses, M. Ugarte, F. López, G. Vergara, J. L. Hernández, J. M. Martín, L. Adell, and M. T. Montojo, "Pbse photodetector arrays for ir sensors," Thin Solid Films 317, 425-428 (1998).
[CrossRef]

Majewski, M. L.

Martín, J. M.

A. Muñoz, J. Meléndez, M. C. Torquemada, M. T. Rodrigo, J. Cebrián, A. J. de Castro, J. Meneses, M. Ugarte, F. López, G. Vergara, J. L. Hernández, J. M. Martín, L. Adell, and M. T. Montojo, "Pbse photodetector arrays for ir sensors," Thin Solid Films 317, 425-428 (1998).
[CrossRef]

Meléndez, J.

A. Muñoz, J. Meléndez, M. C. Torquemada, M. T. Rodrigo, J. Cebrián, A. J. de Castro, J. Meneses, M. Ugarte, F. López, G. Vergara, J. L. Hernández, J. M. Martín, L. Adell, and M. T. Montojo, "Pbse photodetector arrays for ir sensors," Thin Solid Films 317, 425-428 (1998).
[CrossRef]

Meneses, J.

A. Muñoz, J. Meléndez, M. C. Torquemada, M. T. Rodrigo, J. Cebrián, A. J. de Castro, J. Meneses, M. Ugarte, F. López, G. Vergara, J. L. Hernández, J. M. Martín, L. Adell, and M. T. Montojo, "Pbse photodetector arrays for ir sensors," Thin Solid Films 317, 425-428 (1998).
[CrossRef]

Montojo, M. T.

A. Muñoz, J. Meléndez, M. C. Torquemada, M. T. Rodrigo, J. Cebrián, A. J. de Castro, J. Meneses, M. Ugarte, F. López, G. Vergara, J. L. Hernández, J. M. Martín, L. Adell, and M. T. Montojo, "Pbse photodetector arrays for ir sensors," Thin Solid Films 317, 425-428 (1998).
[CrossRef]

Muñoz, A.

A. Muñoz, J. Meléndez, M. C. Torquemada, M. T. Rodrigo, J. Cebrián, A. J. de Castro, J. Meneses, M. Ugarte, F. López, G. Vergara, J. L. Hernández, J. M. Martín, L. Adell, and M. T. Montojo, "Pbse photodetector arrays for ir sensors," Thin Solid Films 317, 425-428 (1998).
[CrossRef]

Rakic, A. D.

Rodrigo, M. T.

A. Muñoz, J. Meléndez, M. C. Torquemada, M. T. Rodrigo, J. Cebrián, A. J. de Castro, J. Meneses, M. Ugarte, F. López, G. Vergara, J. L. Hernández, J. M. Martín, L. Adell, and M. T. Montojo, "Pbse photodetector arrays for ir sensors," Thin Solid Films 317, 425-428 (1998).
[CrossRef]

Torquemada, M. C.

A. Muñoz, J. Meléndez, M. C. Torquemada, M. T. Rodrigo, J. Cebrián, A. J. de Castro, J. Meneses, M. Ugarte, F. López, G. Vergara, J. L. Hernández, J. M. Martín, L. Adell, and M. T. Montojo, "Pbse photodetector arrays for ir sensors," Thin Solid Films 317, 425-428 (1998).
[CrossRef]

Tsai, M.-W.

Tzuang, L. D.

Ugarte, M.

A. Muñoz, J. Meléndez, M. C. Torquemada, M. T. Rodrigo, J. Cebrián, A. J. de Castro, J. Meneses, M. Ugarte, F. López, G. Vergara, J. L. Hernández, J. M. Martín, L. Adell, and M. T. Montojo, "Pbse photodetector arrays for ir sensors," Thin Solid Films 317, 425-428 (1998).
[CrossRef]

van Vliet, K. M.

Vergara, G.

A. Muñoz, J. Meléndez, M. C. Torquemada, M. T. Rodrigo, J. Cebrián, A. J. de Castro, J. Meneses, M. Ugarte, F. López, G. Vergara, J. L. Hernández, J. M. Martín, L. Adell, and M. T. Montojo, "Pbse photodetector arrays for ir sensors," Thin Solid Films 317, 425-428 (1998).
[CrossRef]

Wu, Y.-T.

Ye, Y.-H.

Appl. Opt.

J. Opt. Soc. Am.

Opt. Express

Thin Solid Films

A. Muñoz, J. Meléndez, M. C. Torquemada, M. T. Rodrigo, J. Cebrián, A. J. de Castro, J. Meneses, M. Ugarte, F. López, G. Vergara, J. L. Hernández, J. M. Martín, L. Adell, and M. T. Montojo, "Pbse photodetector arrays for ir sensors," Thin Solid Films 317, 425-428 (1998).
[CrossRef]

Other

J. M. Martin, J. L. Hernandez, L. Adell, A. Rodriguez, and F. Lopez, "Arrays of thermally evaporated infrared photodetectors deposited on si substrates operating at room temperature," Semicond. Sci. Technol. (1996).
[CrossRef]

P. Yeh, Optical Waves in Layered Media (Wiley, 1988).

E. D. Palik, ed., Handbook of Optical Constants of Solids (Elsevier, 1998).

C. L. Kauffman, S.-S. Yoo, and T. R. Beystrum, "Photoconductive bolometer infrared detector," U.S. Patent No. 7,262,413 (2007).

A. Gawarikar, R. Shea, A. Mehdaoui, and J. Talghader, "Radiation heat transfer dominated microbolometers," in "Optical MEMs and Nanophotonics, 2008 IEEE/LEOS International Conference on," (2008), pp. 178-179.

CRC Handbook of Chemistry and Physics (CRC Press Taylor and Francis, 2009).

Semiconductors and Semimetals - Vol 47 (Academic Press, 1997).

P. W. Kruse, L. D. McGlauchlin, and R. B. McQuistan, Elements of Infrared Technology: Generation, Transmission, and Detection (Wiley, 1962).

L. J. Hornbeck, "Infrared detector," U.S. Patent No. 5,021,663 (1991).

R. A. Wood, "Use of vanadium oxide in microbolometer sensors," U.S. Patent No. 5,450,053 (1995).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Diagram of the proposed MWIR detector showing a surface micromachined top mirror/absorber and a bottom mirror deposited on the substrate.

Fig. 2
Fig. 2

Radiation-limited detectivity vs. cutoff wavelength for an ideal semiconductor where emissivity, ɛ=1 below the cutoff wavelength and ɛ=0 above the cutoff wavelength. This idealized emissivity is overlayed with the room temperature blackbody noise power spectrum in the inset.

Fig. 3
Fig. 3

Spectral characteristics of a 500nm thick layer of PbSe at normal incidence. Note that the y-axis displays the absorption on the left and the radiation-limited specific detectivity on the right.

Fig. 4
Fig. 4

Spectral characteristics of the example cavity coupled device defined in Table 1. Note that the y-axis displays the absorption on the left and the radiation-limited specific detectivity on the right.

Fig. 5
Fig. 5

MWIR spectral characteristics of the example device defined in Table 1 with all noise sources considered. The material and device parameters are defined in the text and Table 2. Note that the y-axis displays the detectivity of high D* device, [a] on the left side low τ device, [b] on the right side.

Fig. 6
Fig. 6

Simulated absorption spectrum of a spectrally selective plasmonic microbolometer with a diagram detailing the layout of metal nanoslits in the inset.

Tables (2)

Tables Icon

Table 1 Optical design parameters for an example device

Tables Icon

Table 2 Device design parameters, calculated thermal properties, and calculated noise levels for two example devices

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

p p 2 ¯ = 4 h 2 c 3 A λ , θ , ϕ ɛ ( λ , θ , ϕ ) e h c / λ kT λ 6 [ e h c / λ k T 1 ] 2 cos θ sin θ d θ d ϕ d λ
( NEP ) 2 = G 2 kT 2 C + 1 2 ( 4 kTR Δ f + V b 2 k m ln f 2 f 1 )

Metrics