Abstract

Far-field secondary emission spectra of free standing samples of one-dimensional porous silicon photonic crystals show characteristic co-focal rings centered close to the structure normal plane. The rings appear when the frequency of picoseconds excitation laser pulses is tuned into the edges of the fourth photonic band gap. They can be clearly distinguished from the typical reflected and transmitted light for an oblique incidence geometry. The rings number depends on the excitation frequency and the incidence angle. We explain these anomalous spectral features of porous silicon structures by the spectral filtering of light elastically scattered inside the photonic structure by the narrow photonic bands. The elastic scattering of light due to the photonic disorder in the structure causes the appearance of secondary waves propagating in any direction. But only those waves which fall into the allowed photonic bands may penetrate through the whole structure and move through its front or back surfaces. The observed patterned secondary emission is an example of efficient photonic engineering by simple means of multilayer porous silicon structures.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. E. Yablonovitch, "Photonic band-gap structures," J. Opt. Soc. Am. B 2, 283-295 (1993).
    [CrossRef]
  2. H. Kosaka, T. Kawashima, A. Tomita, M. Notomi, T. Tamamura, T. Sato, and S. Kawakami, "Superprism phenomena in photonic crystals," Phys. Rev. B 58, 10096-10099 (1998).
    [CrossRef]
  3. E. Cubukcu, K. Aydin, E. Ozbay, S. Foteinopoulou, and C. M. Soukoulis, "Negative refraction by photonic crystals," Nature 423, 604-605 (2003).
    [CrossRef] [PubMed]
  4. M. Notomi, "Theory of light propagation in strongly modulated photonic crystals: Refraction like behavior in the vicinity of the photonic band gap," Phys. Rev. B 62, 10696-10705 (2000).
    [CrossRef]
  5. B. Gralak, S. Enoch, and G. Tayeb, "Anomalous refractive properties of photonic crystals," J. Opt. Soc. Am. A 17, 1012-1020 (2000).
    [CrossRef]
  6. W. Bogaerts, P. Bienstman, D. Taillaert, R. Baets, and D. De Zutter, "Out-of-plane scattering in photonic crystals," IEEE Photon. Technol. Lett. 13, 565-567 (2001).
    [CrossRef]
  7. P. C. Ingrey, K. I. Hopcrafta, and E. Jakemana, "Negative refraction and rough surfaces: A new regime for lensing," Opt. Commun. 283, 1188-1191 (2010).
    [CrossRef]
  8. V. Agarwal, J. A. del Río, G. Malpuech, M. Zamfirescu, A. Kavokin, D. Coquillat, D. Scalbert, M. Vladimirova, and B. Gil, "Photonic Bloch Oscillations in porous silicon optical superlattices," Phys. Rev. Lett. 92, 097401 (2004).
    [CrossRef] [PubMed]
  9. R. Nava, J. Tagüeña-Martínez, J. A. del Río, and G. G. Naumis, "Perfect light transmission in Fibonacci arrays of dielectric multilayers," J. Phys. Condens. Matter 21, 155901 (2009).
    [CrossRef] [PubMed]
  10. J. E. Lugo, B. de la Mora, R. Doti, R. Nava, J. Tagüeña, A. del Río, and J. Faubert, "Multiband negative refraction in one-dimensional photonic crystals," Opt. Express 17, 3042-3051 (2009).
    [CrossRef] [PubMed]
  11. Z. Wei, H. Li, C. Wu, Y. Cao, J. Ren, Z. Hang, H. Chen, D. Zhang, and C. T. Chan, "Anomalous reflection from hybrid metamaterial slab," Opt. Express 18, 12119-12126 (2010).
    [CrossRef] [PubMed]
  12. M. Gerken, and D. A. B. Miller, "Wavelength demultiplexer using the spatial dispersion of multilayer thin-film structures," IEEE Photon. Technol. Lett. 15, 1097-1099 (2003).
    [CrossRef]
  13. V. Agarwal, and J. A. del Río, "Filters, mirrors and microcavities from porous silicon," Int. J. Mod. Phys. B 20, 99-110 (2006).
    [CrossRef]
  14. A. G. Cullis, L. T. Canham, and P. D. J. Calcott, "The structural and luminescence properties of porous silicon," J. Appl. Phys. 82, 909-965 (1997).
    [CrossRef]
  15. O. Bisi, S. Ossicini, and L. Pavesi, "Porous silicon: a quantum sponge structure porous silicon based optoelectronics," Surf. Sci. Rep. 38, 1-126 (2000).
    [CrossRef]
  16. P. M. Fauchet, L. Tsybeskov, C. Peng, S. P. Duttagupta, J. von Behren, Y. Kostoulas, J. M. V. Vandyshev, and K. D. Hirschman, "Light-emitting porous silicon: materials science, properties, and device applications," IEEE J. Sel. Top. Quantum Electron. 1, 1126-1139 (1995).
    [CrossRef]
  17. A. Kavokin, G. Malpuech, and I. Shelykh, "Negative refraction of light in Bragg mirrors made of porous silicon," Phys. Lett. A 339, 387-392 (2005).
    [CrossRef]
  18. Y. Kanemitsu, H. Uto, and Y. Masumoto, "Microestructure and optical properties of free-standing porous silicon films: size dependence of absortion spectra in Si nanometer-sized crystallites," Phys. Rev. B 4, 2827-2830 (1993).
    [CrossRef]
  19. M. B. de la Mora, O. A. Jaramillo, R. Nava, J. Tagüeña-Martínez, and J. A. del Río, "Viability study of porous silicon photonic mirrors as secondary reflectors for solar concentration systems," Sol. Energy Mater. Sol. Cells 93, 1218-1224 (2009).
    [CrossRef]
  20. P. Yeh, "Bloch waves and band structures," in Optical Waves in Layered Media, (Whiley-Interscience Publication, 1988), pp. 119-134.
  21. F. García-Santamaría, J. F. Galisteo-López, P. V. Braun, and C. López, "Optical diffraction and high-energy features in three-dimensional photonic crystals," Phys. Rev. B 71, 95112-95117 (2005).
    [CrossRef]

2010 (2)

P. C. Ingrey, K. I. Hopcrafta, and E. Jakemana, "Negative refraction and rough surfaces: A new regime for lensing," Opt. Commun. 283, 1188-1191 (2010).
[CrossRef]

Z. Wei, H. Li, C. Wu, Y. Cao, J. Ren, Z. Hang, H. Chen, D. Zhang, and C. T. Chan, "Anomalous reflection from hybrid metamaterial slab," Opt. Express 18, 12119-12126 (2010).
[CrossRef] [PubMed]

2009 (3)

R. Nava, J. Tagüeña-Martínez, J. A. del Río, and G. G. Naumis, "Perfect light transmission in Fibonacci arrays of dielectric multilayers," J. Phys. Condens. Matter 21, 155901 (2009).
[CrossRef] [PubMed]

J. E. Lugo, B. de la Mora, R. Doti, R. Nava, J. Tagüeña, A. del Río, and J. Faubert, "Multiband negative refraction in one-dimensional photonic crystals," Opt. Express 17, 3042-3051 (2009).
[CrossRef] [PubMed]

M. B. de la Mora, O. A. Jaramillo, R. Nava, J. Tagüeña-Martínez, and J. A. del Río, "Viability study of porous silicon photonic mirrors as secondary reflectors for solar concentration systems," Sol. Energy Mater. Sol. Cells 93, 1218-1224 (2009).
[CrossRef]

2006 (1)

V. Agarwal, and J. A. del Río, "Filters, mirrors and microcavities from porous silicon," Int. J. Mod. Phys. B 20, 99-110 (2006).
[CrossRef]

2005 (2)

A. Kavokin, G. Malpuech, and I. Shelykh, "Negative refraction of light in Bragg mirrors made of porous silicon," Phys. Lett. A 339, 387-392 (2005).
[CrossRef]

F. García-Santamaría, J. F. Galisteo-López, P. V. Braun, and C. López, "Optical diffraction and high-energy features in three-dimensional photonic crystals," Phys. Rev. B 71, 95112-95117 (2005).
[CrossRef]

2004 (1)

V. Agarwal, J. A. del Río, G. Malpuech, M. Zamfirescu, A. Kavokin, D. Coquillat, D. Scalbert, M. Vladimirova, and B. Gil, "Photonic Bloch Oscillations in porous silicon optical superlattices," Phys. Rev. Lett. 92, 097401 (2004).
[CrossRef] [PubMed]

2003 (2)

E. Cubukcu, K. Aydin, E. Ozbay, S. Foteinopoulou, and C. M. Soukoulis, "Negative refraction by photonic crystals," Nature 423, 604-605 (2003).
[CrossRef] [PubMed]

M. Gerken, and D. A. B. Miller, "Wavelength demultiplexer using the spatial dispersion of multilayer thin-film structures," IEEE Photon. Technol. Lett. 15, 1097-1099 (2003).
[CrossRef]

2001 (1)

W. Bogaerts, P. Bienstman, D. Taillaert, R. Baets, and D. De Zutter, "Out-of-plane scattering in photonic crystals," IEEE Photon. Technol. Lett. 13, 565-567 (2001).
[CrossRef]

2000 (3)

O. Bisi, S. Ossicini, and L. Pavesi, "Porous silicon: a quantum sponge structure porous silicon based optoelectronics," Surf. Sci. Rep. 38, 1-126 (2000).
[CrossRef]

M. Notomi, "Theory of light propagation in strongly modulated photonic crystals: Refraction like behavior in the vicinity of the photonic band gap," Phys. Rev. B 62, 10696-10705 (2000).
[CrossRef]

B. Gralak, S. Enoch, and G. Tayeb, "Anomalous refractive properties of photonic crystals," J. Opt. Soc. Am. A 17, 1012-1020 (2000).
[CrossRef]

1998 (1)

H. Kosaka, T. Kawashima, A. Tomita, M. Notomi, T. Tamamura, T. Sato, and S. Kawakami, "Superprism phenomena in photonic crystals," Phys. Rev. B 58, 10096-10099 (1998).
[CrossRef]

1997 (1)

A. G. Cullis, L. T. Canham, and P. D. J. Calcott, "The structural and luminescence properties of porous silicon," J. Appl. Phys. 82, 909-965 (1997).
[CrossRef]

1995 (1)

P. M. Fauchet, L. Tsybeskov, C. Peng, S. P. Duttagupta, J. von Behren, Y. Kostoulas, J. M. V. Vandyshev, and K. D. Hirschman, "Light-emitting porous silicon: materials science, properties, and device applications," IEEE J. Sel. Top. Quantum Electron. 1, 1126-1139 (1995).
[CrossRef]

1993 (2)

Y. Kanemitsu, H. Uto, and Y. Masumoto, "Microestructure and optical properties of free-standing porous silicon films: size dependence of absortion spectra in Si nanometer-sized crystallites," Phys. Rev. B 4, 2827-2830 (1993).
[CrossRef]

E. Yablonovitch, "Photonic band-gap structures," J. Opt. Soc. Am. B 2, 283-295 (1993).
[CrossRef]

Agarwal, V.

V. Agarwal, and J. A. del Río, "Filters, mirrors and microcavities from porous silicon," Int. J. Mod. Phys. B 20, 99-110 (2006).
[CrossRef]

V. Agarwal, J. A. del Río, G. Malpuech, M. Zamfirescu, A. Kavokin, D. Coquillat, D. Scalbert, M. Vladimirova, and B. Gil, "Photonic Bloch Oscillations in porous silicon optical superlattices," Phys. Rev. Lett. 92, 097401 (2004).
[CrossRef] [PubMed]

Aydin, K.

E. Cubukcu, K. Aydin, E. Ozbay, S. Foteinopoulou, and C. M. Soukoulis, "Negative refraction by photonic crystals," Nature 423, 604-605 (2003).
[CrossRef] [PubMed]

Baets, R.

W. Bogaerts, P. Bienstman, D. Taillaert, R. Baets, and D. De Zutter, "Out-of-plane scattering in photonic crystals," IEEE Photon. Technol. Lett. 13, 565-567 (2001).
[CrossRef]

Bienstman, P.

W. Bogaerts, P. Bienstman, D. Taillaert, R. Baets, and D. De Zutter, "Out-of-plane scattering in photonic crystals," IEEE Photon. Technol. Lett. 13, 565-567 (2001).
[CrossRef]

Bisi, O.

O. Bisi, S. Ossicini, and L. Pavesi, "Porous silicon: a quantum sponge structure porous silicon based optoelectronics," Surf. Sci. Rep. 38, 1-126 (2000).
[CrossRef]

Bogaerts, W.

W. Bogaerts, P. Bienstman, D. Taillaert, R. Baets, and D. De Zutter, "Out-of-plane scattering in photonic crystals," IEEE Photon. Technol. Lett. 13, 565-567 (2001).
[CrossRef]

Braun, P. V.

F. García-Santamaría, J. F. Galisteo-López, P. V. Braun, and C. López, "Optical diffraction and high-energy features in three-dimensional photonic crystals," Phys. Rev. B 71, 95112-95117 (2005).
[CrossRef]

Calcott, P. D. J.

A. G. Cullis, L. T. Canham, and P. D. J. Calcott, "The structural and luminescence properties of porous silicon," J. Appl. Phys. 82, 909-965 (1997).
[CrossRef]

Canham, L. T.

A. G. Cullis, L. T. Canham, and P. D. J. Calcott, "The structural and luminescence properties of porous silicon," J. Appl. Phys. 82, 909-965 (1997).
[CrossRef]

Cao, Y.

Chan, C. T.

Chen, H.

Coquillat, D.

V. Agarwal, J. A. del Río, G. Malpuech, M. Zamfirescu, A. Kavokin, D. Coquillat, D. Scalbert, M. Vladimirova, and B. Gil, "Photonic Bloch Oscillations in porous silicon optical superlattices," Phys. Rev. Lett. 92, 097401 (2004).
[CrossRef] [PubMed]

Cubukcu, E.

E. Cubukcu, K. Aydin, E. Ozbay, S. Foteinopoulou, and C. M. Soukoulis, "Negative refraction by photonic crystals," Nature 423, 604-605 (2003).
[CrossRef] [PubMed]

Cullis, A. G.

A. G. Cullis, L. T. Canham, and P. D. J. Calcott, "The structural and luminescence properties of porous silicon," J. Appl. Phys. 82, 909-965 (1997).
[CrossRef]

de la Mora, B.

de la Mora, M. B.

M. B. de la Mora, O. A. Jaramillo, R. Nava, J. Tagüeña-Martínez, and J. A. del Río, "Viability study of porous silicon photonic mirrors as secondary reflectors for solar concentration systems," Sol. Energy Mater. Sol. Cells 93, 1218-1224 (2009).
[CrossRef]

De Zutter, D.

W. Bogaerts, P. Bienstman, D. Taillaert, R. Baets, and D. De Zutter, "Out-of-plane scattering in photonic crystals," IEEE Photon. Technol. Lett. 13, 565-567 (2001).
[CrossRef]

del Río, A.

del Río, J. A.

R. Nava, J. Tagüeña-Martínez, J. A. del Río, and G. G. Naumis, "Perfect light transmission in Fibonacci arrays of dielectric multilayers," J. Phys. Condens. Matter 21, 155901 (2009).
[CrossRef] [PubMed]

M. B. de la Mora, O. A. Jaramillo, R. Nava, J. Tagüeña-Martínez, and J. A. del Río, "Viability study of porous silicon photonic mirrors as secondary reflectors for solar concentration systems," Sol. Energy Mater. Sol. Cells 93, 1218-1224 (2009).
[CrossRef]

V. Agarwal, and J. A. del Río, "Filters, mirrors and microcavities from porous silicon," Int. J. Mod. Phys. B 20, 99-110 (2006).
[CrossRef]

V. Agarwal, J. A. del Río, G. Malpuech, M. Zamfirescu, A. Kavokin, D. Coquillat, D. Scalbert, M. Vladimirova, and B. Gil, "Photonic Bloch Oscillations in porous silicon optical superlattices," Phys. Rev. Lett. 92, 097401 (2004).
[CrossRef] [PubMed]

Doti, R.

Duttagupta, S. P.

P. M. Fauchet, L. Tsybeskov, C. Peng, S. P. Duttagupta, J. von Behren, Y. Kostoulas, J. M. V. Vandyshev, and K. D. Hirschman, "Light-emitting porous silicon: materials science, properties, and device applications," IEEE J. Sel. Top. Quantum Electron. 1, 1126-1139 (1995).
[CrossRef]

Enoch, S.

Faubert, J.

Fauchet, P. M.

P. M. Fauchet, L. Tsybeskov, C. Peng, S. P. Duttagupta, J. von Behren, Y. Kostoulas, J. M. V. Vandyshev, and K. D. Hirschman, "Light-emitting porous silicon: materials science, properties, and device applications," IEEE J. Sel. Top. Quantum Electron. 1, 1126-1139 (1995).
[CrossRef]

Foteinopoulou, S.

E. Cubukcu, K. Aydin, E. Ozbay, S. Foteinopoulou, and C. M. Soukoulis, "Negative refraction by photonic crystals," Nature 423, 604-605 (2003).
[CrossRef] [PubMed]

Galisteo-López, J. F.

F. García-Santamaría, J. F. Galisteo-López, P. V. Braun, and C. López, "Optical diffraction and high-energy features in three-dimensional photonic crystals," Phys. Rev. B 71, 95112-95117 (2005).
[CrossRef]

García-Santamaría, F.

F. García-Santamaría, J. F. Galisteo-López, P. V. Braun, and C. López, "Optical diffraction and high-energy features in three-dimensional photonic crystals," Phys. Rev. B 71, 95112-95117 (2005).
[CrossRef]

Gerken, M.

M. Gerken, and D. A. B. Miller, "Wavelength demultiplexer using the spatial dispersion of multilayer thin-film structures," IEEE Photon. Technol. Lett. 15, 1097-1099 (2003).
[CrossRef]

Gil, B.

V. Agarwal, J. A. del Río, G. Malpuech, M. Zamfirescu, A. Kavokin, D. Coquillat, D. Scalbert, M. Vladimirova, and B. Gil, "Photonic Bloch Oscillations in porous silicon optical superlattices," Phys. Rev. Lett. 92, 097401 (2004).
[CrossRef] [PubMed]

Gralak, B.

Hang, Z.

Hirschman, K. D.

P. M. Fauchet, L. Tsybeskov, C. Peng, S. P. Duttagupta, J. von Behren, Y. Kostoulas, J. M. V. Vandyshev, and K. D. Hirschman, "Light-emitting porous silicon: materials science, properties, and device applications," IEEE J. Sel. Top. Quantum Electron. 1, 1126-1139 (1995).
[CrossRef]

Hopcrafta, K. I.

P. C. Ingrey, K. I. Hopcrafta, and E. Jakemana, "Negative refraction and rough surfaces: A new regime for lensing," Opt. Commun. 283, 1188-1191 (2010).
[CrossRef]

Ingrey, P. C.

P. C. Ingrey, K. I. Hopcrafta, and E. Jakemana, "Negative refraction and rough surfaces: A new regime for lensing," Opt. Commun. 283, 1188-1191 (2010).
[CrossRef]

Jakemana, E.

P. C. Ingrey, K. I. Hopcrafta, and E. Jakemana, "Negative refraction and rough surfaces: A new regime for lensing," Opt. Commun. 283, 1188-1191 (2010).
[CrossRef]

Jaramillo, O. A.

M. B. de la Mora, O. A. Jaramillo, R. Nava, J. Tagüeña-Martínez, and J. A. del Río, "Viability study of porous silicon photonic mirrors as secondary reflectors for solar concentration systems," Sol. Energy Mater. Sol. Cells 93, 1218-1224 (2009).
[CrossRef]

Kanemitsu, Y.

Y. Kanemitsu, H. Uto, and Y. Masumoto, "Microestructure and optical properties of free-standing porous silicon films: size dependence of absortion spectra in Si nanometer-sized crystallites," Phys. Rev. B 4, 2827-2830 (1993).
[CrossRef]

Kavokin, A.

A. Kavokin, G. Malpuech, and I. Shelykh, "Negative refraction of light in Bragg mirrors made of porous silicon," Phys. Lett. A 339, 387-392 (2005).
[CrossRef]

V. Agarwal, J. A. del Río, G. Malpuech, M. Zamfirescu, A. Kavokin, D. Coquillat, D. Scalbert, M. Vladimirova, and B. Gil, "Photonic Bloch Oscillations in porous silicon optical superlattices," Phys. Rev. Lett. 92, 097401 (2004).
[CrossRef] [PubMed]

Kawakami, S.

H. Kosaka, T. Kawashima, A. Tomita, M. Notomi, T. Tamamura, T. Sato, and S. Kawakami, "Superprism phenomena in photonic crystals," Phys. Rev. B 58, 10096-10099 (1998).
[CrossRef]

Kawashima, T.

H. Kosaka, T. Kawashima, A. Tomita, M. Notomi, T. Tamamura, T. Sato, and S. Kawakami, "Superprism phenomena in photonic crystals," Phys. Rev. B 58, 10096-10099 (1998).
[CrossRef]

Kosaka, H.

H. Kosaka, T. Kawashima, A. Tomita, M. Notomi, T. Tamamura, T. Sato, and S. Kawakami, "Superprism phenomena in photonic crystals," Phys. Rev. B 58, 10096-10099 (1998).
[CrossRef]

Kostoulas, Y.

P. M. Fauchet, L. Tsybeskov, C. Peng, S. P. Duttagupta, J. von Behren, Y. Kostoulas, J. M. V. Vandyshev, and K. D. Hirschman, "Light-emitting porous silicon: materials science, properties, and device applications," IEEE J. Sel. Top. Quantum Electron. 1, 1126-1139 (1995).
[CrossRef]

Li, H.

López, C.

F. García-Santamaría, J. F. Galisteo-López, P. V. Braun, and C. López, "Optical diffraction and high-energy features in three-dimensional photonic crystals," Phys. Rev. B 71, 95112-95117 (2005).
[CrossRef]

Lugo, J. E.

Malpuech, G.

A. Kavokin, G. Malpuech, and I. Shelykh, "Negative refraction of light in Bragg mirrors made of porous silicon," Phys. Lett. A 339, 387-392 (2005).
[CrossRef]

V. Agarwal, J. A. del Río, G. Malpuech, M. Zamfirescu, A. Kavokin, D. Coquillat, D. Scalbert, M. Vladimirova, and B. Gil, "Photonic Bloch Oscillations in porous silicon optical superlattices," Phys. Rev. Lett. 92, 097401 (2004).
[CrossRef] [PubMed]

Masumoto, Y.

Y. Kanemitsu, H. Uto, and Y. Masumoto, "Microestructure and optical properties of free-standing porous silicon films: size dependence of absortion spectra in Si nanometer-sized crystallites," Phys. Rev. B 4, 2827-2830 (1993).
[CrossRef]

Miller, D. A. B.

M. Gerken, and D. A. B. Miller, "Wavelength demultiplexer using the spatial dispersion of multilayer thin-film structures," IEEE Photon. Technol. Lett. 15, 1097-1099 (2003).
[CrossRef]

Naumis, G. G.

R. Nava, J. Tagüeña-Martínez, J. A. del Río, and G. G. Naumis, "Perfect light transmission in Fibonacci arrays of dielectric multilayers," J. Phys. Condens. Matter 21, 155901 (2009).
[CrossRef] [PubMed]

Nava, R.

J. E. Lugo, B. de la Mora, R. Doti, R. Nava, J. Tagüeña, A. del Río, and J. Faubert, "Multiband negative refraction in one-dimensional photonic crystals," Opt. Express 17, 3042-3051 (2009).
[CrossRef] [PubMed]

R. Nava, J. Tagüeña-Martínez, J. A. del Río, and G. G. Naumis, "Perfect light transmission in Fibonacci arrays of dielectric multilayers," J. Phys. Condens. Matter 21, 155901 (2009).
[CrossRef] [PubMed]

M. B. de la Mora, O. A. Jaramillo, R. Nava, J. Tagüeña-Martínez, and J. A. del Río, "Viability study of porous silicon photonic mirrors as secondary reflectors for solar concentration systems," Sol. Energy Mater. Sol. Cells 93, 1218-1224 (2009).
[CrossRef]

Notomi, M.

M. Notomi, "Theory of light propagation in strongly modulated photonic crystals: Refraction like behavior in the vicinity of the photonic band gap," Phys. Rev. B 62, 10696-10705 (2000).
[CrossRef]

H. Kosaka, T. Kawashima, A. Tomita, M. Notomi, T. Tamamura, T. Sato, and S. Kawakami, "Superprism phenomena in photonic crystals," Phys. Rev. B 58, 10096-10099 (1998).
[CrossRef]

Ossicini, S.

O. Bisi, S. Ossicini, and L. Pavesi, "Porous silicon: a quantum sponge structure porous silicon based optoelectronics," Surf. Sci. Rep. 38, 1-126 (2000).
[CrossRef]

Ozbay, E.

E. Cubukcu, K. Aydin, E. Ozbay, S. Foteinopoulou, and C. M. Soukoulis, "Negative refraction by photonic crystals," Nature 423, 604-605 (2003).
[CrossRef] [PubMed]

Pavesi, L.

O. Bisi, S. Ossicini, and L. Pavesi, "Porous silicon: a quantum sponge structure porous silicon based optoelectronics," Surf. Sci. Rep. 38, 1-126 (2000).
[CrossRef]

Peng, C.

P. M. Fauchet, L. Tsybeskov, C. Peng, S. P. Duttagupta, J. von Behren, Y. Kostoulas, J. M. V. Vandyshev, and K. D. Hirschman, "Light-emitting porous silicon: materials science, properties, and device applications," IEEE J. Sel. Top. Quantum Electron. 1, 1126-1139 (1995).
[CrossRef]

Ren, J.

Sato, T.

H. Kosaka, T. Kawashima, A. Tomita, M. Notomi, T. Tamamura, T. Sato, and S. Kawakami, "Superprism phenomena in photonic crystals," Phys. Rev. B 58, 10096-10099 (1998).
[CrossRef]

Scalbert, D.

V. Agarwal, J. A. del Río, G. Malpuech, M. Zamfirescu, A. Kavokin, D. Coquillat, D. Scalbert, M. Vladimirova, and B. Gil, "Photonic Bloch Oscillations in porous silicon optical superlattices," Phys. Rev. Lett. 92, 097401 (2004).
[CrossRef] [PubMed]

Shelykh, I.

A. Kavokin, G. Malpuech, and I. Shelykh, "Negative refraction of light in Bragg mirrors made of porous silicon," Phys. Lett. A 339, 387-392 (2005).
[CrossRef]

Soukoulis, C. M.

E. Cubukcu, K. Aydin, E. Ozbay, S. Foteinopoulou, and C. M. Soukoulis, "Negative refraction by photonic crystals," Nature 423, 604-605 (2003).
[CrossRef] [PubMed]

Tagüeña, J.

Tagüeña-Martínez, J.

R. Nava, J. Tagüeña-Martínez, J. A. del Río, and G. G. Naumis, "Perfect light transmission in Fibonacci arrays of dielectric multilayers," J. Phys. Condens. Matter 21, 155901 (2009).
[CrossRef] [PubMed]

M. B. de la Mora, O. A. Jaramillo, R. Nava, J. Tagüeña-Martínez, and J. A. del Río, "Viability study of porous silicon photonic mirrors as secondary reflectors for solar concentration systems," Sol. Energy Mater. Sol. Cells 93, 1218-1224 (2009).
[CrossRef]

Taillaert, D.

W. Bogaerts, P. Bienstman, D. Taillaert, R. Baets, and D. De Zutter, "Out-of-plane scattering in photonic crystals," IEEE Photon. Technol. Lett. 13, 565-567 (2001).
[CrossRef]

Tamamura, T.

H. Kosaka, T. Kawashima, A. Tomita, M. Notomi, T. Tamamura, T. Sato, and S. Kawakami, "Superprism phenomena in photonic crystals," Phys. Rev. B 58, 10096-10099 (1998).
[CrossRef]

Tayeb, G.

Tomita, A.

H. Kosaka, T. Kawashima, A. Tomita, M. Notomi, T. Tamamura, T. Sato, and S. Kawakami, "Superprism phenomena in photonic crystals," Phys. Rev. B 58, 10096-10099 (1998).
[CrossRef]

Tsybeskov, L.

P. M. Fauchet, L. Tsybeskov, C. Peng, S. P. Duttagupta, J. von Behren, Y. Kostoulas, J. M. V. Vandyshev, and K. D. Hirschman, "Light-emitting porous silicon: materials science, properties, and device applications," IEEE J. Sel. Top. Quantum Electron. 1, 1126-1139 (1995).
[CrossRef]

Uto, H.

Y. Kanemitsu, H. Uto, and Y. Masumoto, "Microestructure and optical properties of free-standing porous silicon films: size dependence of absortion spectra in Si nanometer-sized crystallites," Phys. Rev. B 4, 2827-2830 (1993).
[CrossRef]

Vandyshev, J. M. V.

P. M. Fauchet, L. Tsybeskov, C. Peng, S. P. Duttagupta, J. von Behren, Y. Kostoulas, J. M. V. Vandyshev, and K. D. Hirschman, "Light-emitting porous silicon: materials science, properties, and device applications," IEEE J. Sel. Top. Quantum Electron. 1, 1126-1139 (1995).
[CrossRef]

Vladimirova, M.

V. Agarwal, J. A. del Río, G. Malpuech, M. Zamfirescu, A. Kavokin, D. Coquillat, D. Scalbert, M. Vladimirova, and B. Gil, "Photonic Bloch Oscillations in porous silicon optical superlattices," Phys. Rev. Lett. 92, 097401 (2004).
[CrossRef] [PubMed]

von Behren, J.

P. M. Fauchet, L. Tsybeskov, C. Peng, S. P. Duttagupta, J. von Behren, Y. Kostoulas, J. M. V. Vandyshev, and K. D. Hirschman, "Light-emitting porous silicon: materials science, properties, and device applications," IEEE J. Sel. Top. Quantum Electron. 1, 1126-1139 (1995).
[CrossRef]

Wei, Z.

Wu, C.

Yablonovitch, E.

Zamfirescu, M.

V. Agarwal, J. A. del Río, G. Malpuech, M. Zamfirescu, A. Kavokin, D. Coquillat, D. Scalbert, M. Vladimirova, and B. Gil, "Photonic Bloch Oscillations in porous silicon optical superlattices," Phys. Rev. Lett. 92, 097401 (2004).
[CrossRef] [PubMed]

Zhang, D.

IEEE J. Sel. Top. Quantum Electron. (1)

P. M. Fauchet, L. Tsybeskov, C. Peng, S. P. Duttagupta, J. von Behren, Y. Kostoulas, J. M. V. Vandyshev, and K. D. Hirschman, "Light-emitting porous silicon: materials science, properties, and device applications," IEEE J. Sel. Top. Quantum Electron. 1, 1126-1139 (1995).
[CrossRef]

IEEE Photon. Technol. Lett. (2)

M. Gerken, and D. A. B. Miller, "Wavelength demultiplexer using the spatial dispersion of multilayer thin-film structures," IEEE Photon. Technol. Lett. 15, 1097-1099 (2003).
[CrossRef]

W. Bogaerts, P. Bienstman, D. Taillaert, R. Baets, and D. De Zutter, "Out-of-plane scattering in photonic crystals," IEEE Photon. Technol. Lett. 13, 565-567 (2001).
[CrossRef]

Int. J. Mod. Phys. B (1)

V. Agarwal, and J. A. del Río, "Filters, mirrors and microcavities from porous silicon," Int. J. Mod. Phys. B 20, 99-110 (2006).
[CrossRef]

J. Appl. Phys. (1)

A. G. Cullis, L. T. Canham, and P. D. J. Calcott, "The structural and luminescence properties of porous silicon," J. Appl. Phys. 82, 909-965 (1997).
[CrossRef]

J. Opt. Soc. Am. A (1)

J. Opt. Soc. Am. B (1)

J. Phys. Condens. Matter (1)

R. Nava, J. Tagüeña-Martínez, J. A. del Río, and G. G. Naumis, "Perfect light transmission in Fibonacci arrays of dielectric multilayers," J. Phys. Condens. Matter 21, 155901 (2009).
[CrossRef] [PubMed]

Nature (1)

E. Cubukcu, K. Aydin, E. Ozbay, S. Foteinopoulou, and C. M. Soukoulis, "Negative refraction by photonic crystals," Nature 423, 604-605 (2003).
[CrossRef] [PubMed]

Opt. Commun. (1)

P. C. Ingrey, K. I. Hopcrafta, and E. Jakemana, "Negative refraction and rough surfaces: A new regime for lensing," Opt. Commun. 283, 1188-1191 (2010).
[CrossRef]

Opt. Express (2)

Phys. Lett. A (1)

A. Kavokin, G. Malpuech, and I. Shelykh, "Negative refraction of light in Bragg mirrors made of porous silicon," Phys. Lett. A 339, 387-392 (2005).
[CrossRef]

Phys. Rev. B (4)

Y. Kanemitsu, H. Uto, and Y. Masumoto, "Microestructure and optical properties of free-standing porous silicon films: size dependence of absortion spectra in Si nanometer-sized crystallites," Phys. Rev. B 4, 2827-2830 (1993).
[CrossRef]

M. Notomi, "Theory of light propagation in strongly modulated photonic crystals: Refraction like behavior in the vicinity of the photonic band gap," Phys. Rev. B 62, 10696-10705 (2000).
[CrossRef]

H. Kosaka, T. Kawashima, A. Tomita, M. Notomi, T. Tamamura, T. Sato, and S. Kawakami, "Superprism phenomena in photonic crystals," Phys. Rev. B 58, 10096-10099 (1998).
[CrossRef]

F. García-Santamaría, J. F. Galisteo-López, P. V. Braun, and C. López, "Optical diffraction and high-energy features in three-dimensional photonic crystals," Phys. Rev. B 71, 95112-95117 (2005).
[CrossRef]

Phys. Rev. Lett. (1)

V. Agarwal, J. A. del Río, G. Malpuech, M. Zamfirescu, A. Kavokin, D. Coquillat, D. Scalbert, M. Vladimirova, and B. Gil, "Photonic Bloch Oscillations in porous silicon optical superlattices," Phys. Rev. Lett. 92, 097401 (2004).
[CrossRef] [PubMed]

Sol. Energy Mater. Sol. Cells (1)

M. B. de la Mora, O. A. Jaramillo, R. Nava, J. Tagüeña-Martínez, and J. A. del Río, "Viability study of porous silicon photonic mirrors as secondary reflectors for solar concentration systems," Sol. Energy Mater. Sol. Cells 93, 1218-1224 (2009).
[CrossRef]

Surf. Sci. Rep. (1)

O. Bisi, S. Ossicini, and L. Pavesi, "Porous silicon: a quantum sponge structure porous silicon based optoelectronics," Surf. Sci. Rep. 38, 1-126 (2000).
[CrossRef]

Other (1)

P. Yeh, "Bloch waves and band structures," in Optical Waves in Layered Media, (Whiley-Interscience Publication, 1988), pp. 119-134.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Reflectivity of the p-Si multilayer showing two stop bands in the spectral range of visible light with the experimental conditions described in this section. The inset shows reflectivity spectrum of another pSi-sample designed to have stop bands in the infrared range.

Fig. 2
Fig. 2

SEM images of a p-Si multilayer as prepared.

Fig. 3
Fig. 3

A schematic design of our experimental setup for the transmission measurements. (1) Tunable pulsed laser, (2) Set of mirrors, (3) Polarizer, (4) Waveplate lambda/2, (5) Polarizer, (6) Diaphragm of 1 mm of diameter, (7) Free standing sample of p-Si, (8) Arrangement of two rotary stages, (9) Optical fiber, (10) Spectrophotometer, (11) Computer.

Fig. 4
Fig. 4

Schematic representation of the light coming out from the p-Si multilayers. It shows the incident (red line), reflected ray (green line) and the refracted (blue line) rays. Part A) corresponds to the anomalous transmitted pattern, while part B) to the anomalous reflected pattern.

Fig. 5
Fig. 5

Interference patterns of anomalous transmitted light at different wavelengths, for an angle of incidence of 40 in TE polarization.

Fig. 6
Fig. 6

In-plane photonic band structure of a 1D PC of p-Si, prepared as described in Section 2, in TE polarization. The scattered light travels at different angles finding allowed (color zones) and forbidden bands (white zones). The constant line corresponds to ω=6 (600 nm). Only the modes which propagate within allowed bands can leave the sample, which is why the observed pattern of secondary emission appears (inset).

Fig. 7
Fig. 7

The intensity of the outcoming light as a function of the detection angle for ω=6 (600 nm), for TE (black) and TM (red) polarization. The angle of incidence is 40°. In inset we present the comparison between simulation (*) and experiments (•) for TE.

Metrics