Abstract

We demonstrate the integration of a spectral pulse-shaper into a passive mode-locked laser cavity for direct control of the output pulse-shape of the laser. Depending on the dispersion filter applied with the pulse-shaper we either observe a bright or dark “soliton-like” pulse train. The results demonstrate the strong potential of an in-cavity spectral pulse-shaper as an experimental tool for controlling the dynamics of passively mode-locked lasers.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. Chang, C. J. Divin, C.-H. Liu, S. L. Williamson, A. Galvanauskas, and T. B. Norris, “Power scalable compact THz system based on an ultrafast Yb-doped fiber amplifier,” Opt. Express 14, 7909 (2006).
    [CrossRef] [PubMed]
  2. S. T. Cundiff, J. Ye, and J. L. Hall, “Optical frequency synthesis based on mode-locked lasers,” Rev. Sci. Instrum. 72, 3749 (2001).
    [CrossRef]
  3. T. Hellerer, A. M. Enejder, and A. Zumbusch, “Spectral focusing: High spectral resolution spectroscopy with broad-bandwidth laser pulses,” Appl. Phys. Lett. 85, 25 (2004).
    [CrossRef]
  4. B. Oktem, C. Ülgüdür, and F. O. Ilday, “Soliton-similariton fibre laser,” Nat. Photonics 4, 307–311 (2010).
    [CrossRef]
  5. J. R. Buckley, F. W. Wise, F. O. Ilday, and T. Sosnowski, “Femtosecond fiber lasers with pulse energies above 10 nJ,” Opt. Lett. 30, 1888–1890 (2005).
    [CrossRef] [PubMed]
  6. A. Chong, J. Buckley, W. Renninger, and F. Wise, “All-normal-dispersion femtosecond fiber laser,” Opt. Express 14, 10095–10100 (2006).
    [CrossRef] [PubMed]
  7. H. Zhang, D. Y. Tang, L. M. Zhao, Q. L. Bao, and K. P. Loh, “Large energy mode locking of an erbium-doped fiber laser with atomic layer graphene,” Opt. Express 17, 17630–17635 (2009).
    [CrossRef] [PubMed]
  8. C. J. S. de Matos, D. A. Chestnut, and J. R. Taylor, “Low-threshold self-induced modulational instability ring laser in highly nonlinear fiber yielding a continuous-wave 262-GHz soliton train,” Opt. Lett. 27, 915–917 (2002).
    [CrossRef]
  9. P. Honzatko, P. Peterka, and J. Kanka, “Modulational-instability ? -resonator fiber laser,” Opt. Lett. 26, 810–812 (2001).
    [CrossRef]
  10. P. Franco, F. Fontana, I. Cristiani, M. Midrio, and M. Romagnoli, “Self-induced modulational-instability laser,” Opt. Lett. 20, 2009–2011 (1995).
    [CrossRef] [PubMed]
  11. S. T. Cundiff, J. M. Soto-Crespo, and N. Akhmediev, “Experimental Evidence for Soliton Explosions,” Phys. Rev. Lett. 88, 73903 (2002).
    [CrossRef]
  12. P. Grelu, F. Belhache, F. Gutty, and J.-M. Soto-Crespo, “Phase-locked soliton pairs in a stretched-pulse fiber laser,” Opt. Lett. 27, 966–968 (2002).
    [CrossRef]
  13. A. M. Weiner, “Femtosecond pulse shaping using spatial light modulators,” Rev. Sci. Instrum. 71, 1929–1960 (2000).
    [CrossRef]
  14. N. Dudovich, D. Oron, and Y. Silberberg, “Single-pulse coherently controlled nonlinear Raman spectroscopy and microscopy,” Nature 418, 512–514 (2002).
    [CrossRef] [PubMed]
  15. T. Brixner, N. H. Damrauer, P. Niklaus, and G. Gerber, “Photoselective adaptive femtosecond quantum control in the liquid phase,” Nature 414, 57–60 (2001).
    [CrossRef] [PubMed]
  16. J. Schröder, T. D. Vo, and B. J. Eggleton, “Repetition-rate-selective, wavelength-tunable mode-locked laser at up to 640 GHz,” Opt. Lett. 34, 3902–3904 (2009).
    [CrossRef] [PubMed]
  17. M. Feng, K. L. Silverman, R. P. Mirin, and S. T. Cundiff, “Dark pulse quantum dot diode laser,” Opt. Express 18(13), 13385–13395 (2010).
    [CrossRef] [PubMed]
  18. H. Zhang, D. Y. Tang, L. M. Zhao, and R. J. Knize, “Vector dark domain wall solitons in a fiber ring laser,” Opt. Express 18(5), 4428–4433 (2010).
    [CrossRef] [PubMed]
  19. M. Nakazawa, K. Suzuki, and H. A. Haus, “The modulational instability laser. I. Experiment,” IEEE J. Quantum Electron. 25, 2036–2044 (1989).
    [CrossRef]
  20. M. Nakazawa, K. Suzuki, H. Kubota, and H. A. Haus, “The modulation instability laser. II. Theory,” IEEE J. Quantum Electron. 25, 2045–2052 (1989).
    [CrossRef]
  21. T. Sylvestre, S. Coen, P. Emplit, and M. Haelterman, “Self-induced modulational instability laser revisited: normal dispersion and dark-pulse train generation,” Opt. Lett. 27, 482–484 (2002).
    [CrossRef]
  22. M. Quiroga-Teixeiro, C. B. Clausen, M. P. Sorensen, P. L. Christiansen, and P. A. Andrekson, “Passive mode locking by dissipative four-wave mixing,” J. Opt. Soc. Am. B 15, 1315–1321 (1998).
    [CrossRef]
  23. J. Schröder, S. Coen, F. Vanholsbeeck, and T. Sylvestre, “Passively mode-locked Raman fiber laser with 100 GHz repetition rate,” Opt. Lett. 31, 3489–3491 (2006).
    [CrossRef] [PubMed]
  24. S. Zhang, F. Li, X. Dong, P. Shum, X. Yang, X. Zhou, Y. Gong, and C. Lu, “Passive mode locking at harmonics of the free spectral range of the intracavity filter in a fiber ring laser,” Opt. Lett. 30, 2852–2854 (2005).
    [CrossRef] [PubMed]
  25. M. Peccianti, A. Pasquazi, Y. Park, B. E. Little, S. T. Chu, D. J. Moss, and R. Morandotti, “Subpicosecond 200GHz soliton laser based on a C-MOS compatible integrated microring resonator,” in “Conference on Lasers and Electro-Optics CLEO 2010,” (2010), p. CPDA9.
  26. M. A. F. Roelens, S. Frisken, J. A. Bolger, D. Abakoumov, G. Baxter, S. Poole, and B. J. Eggleton, “Dispersion Trimming in a Reconfigurable Wavelength Selective Switch,” J. Lightwave Technol. 26, 73–78 (2008).
    [CrossRef]
  27. D. J. Kane, G. Rodriguez, A. J. Taylor, and T. S. Clement, “Simultaneous measurement of two ultrashort laser pulses from a single spectrogram in a single shot,” J. Opt. Soc. Am. B 14, 935 (1997).
    [CrossRef]
  28. J. M. Dudley, F. Gutty, S. Pitois, and G. Millot, “Complete characterization of terahertz pulse trains generated from nonlinear processes in optical fibers,” IEEE J. Quantum Electron. 37, 587–594 (2001).
    [CrossRef]
  29. J. Schröder, D. Alasia, T. Sylvestre, and S. Coen, “Dynamics of an ultrahigh-repetition-rate passively modelocked Raman fiber laser,” J. Opt. Soc. Am. B 25, 1178–1186 (2008).
    [CrossRef]
  30. T. Sylvestre, S. Coen, O. Deparis, P. Emplit, and M. Haelterman, “Demonstration of passive modelocking through dissipative four-wave mixing in fibre laser,” Electron. Lett. 37, 881–882 (2001).
    [CrossRef]

2010 (3)

2009 (2)

2008 (2)

2006 (3)

2005 (2)

2004 (1)

T. Hellerer, A. M. Enejder, and A. Zumbusch, “Spectral focusing: High spectral resolution spectroscopy with broad-bandwidth laser pulses,” Appl. Phys. Lett. 85, 25 (2004).
[CrossRef]

2002 (5)

2001 (5)

J. M. Dudley, F. Gutty, S. Pitois, and G. Millot, “Complete characterization of terahertz pulse trains generated from nonlinear processes in optical fibers,” IEEE J. Quantum Electron. 37, 587–594 (2001).
[CrossRef]

T. Sylvestre, S. Coen, O. Deparis, P. Emplit, and M. Haelterman, “Demonstration of passive modelocking through dissipative four-wave mixing in fibre laser,” Electron. Lett. 37, 881–882 (2001).
[CrossRef]

T. Brixner, N. H. Damrauer, P. Niklaus, and G. Gerber, “Photoselective adaptive femtosecond quantum control in the liquid phase,” Nature 414, 57–60 (2001).
[CrossRef] [PubMed]

S. T. Cundiff, J. Ye, and J. L. Hall, “Optical frequency synthesis based on mode-locked lasers,” Rev. Sci. Instrum. 72, 3749 (2001).
[CrossRef]

P. Honzatko, P. Peterka, and J. Kanka, “Modulational-instability ? -resonator fiber laser,” Opt. Lett. 26, 810–812 (2001).
[CrossRef]

2000 (1)

A. M. Weiner, “Femtosecond pulse shaping using spatial light modulators,” Rev. Sci. Instrum. 71, 1929–1960 (2000).
[CrossRef]

1998 (1)

1997 (1)

1995 (1)

1989 (2)

M. Nakazawa, K. Suzuki, and H. A. Haus, “The modulational instability laser. I. Experiment,” IEEE J. Quantum Electron. 25, 2036–2044 (1989).
[CrossRef]

M. Nakazawa, K. Suzuki, H. Kubota, and H. A. Haus, “The modulation instability laser. II. Theory,” IEEE J. Quantum Electron. 25, 2045–2052 (1989).
[CrossRef]

Abakoumov, D.

Akhmediev, N.

S. T. Cundiff, J. M. Soto-Crespo, and N. Akhmediev, “Experimental Evidence for Soliton Explosions,” Phys. Rev. Lett. 88, 73903 (2002).
[CrossRef]

Alasia, D.

Andrekson, P. A.

Bao, Q. L.

Baxter, G.

Belhache, F.

Bolger, J. A.

Brixner, T.

T. Brixner, N. H. Damrauer, P. Niklaus, and G. Gerber, “Photoselective adaptive femtosecond quantum control in the liquid phase,” Nature 414, 57–60 (2001).
[CrossRef] [PubMed]

Buckley, J.

Buckley, J. R.

Chang, G.

Chestnut, D. A.

Chong, A.

Christiansen, P. L.

Clausen, C. B.

Clement, T. S.

Coen, S.

Cristiani, I.

Cundiff, S. T.

M. Feng, K. L. Silverman, R. P. Mirin, and S. T. Cundiff, “Dark pulse quantum dot diode laser,” Opt. Express 18(13), 13385–13395 (2010).
[CrossRef] [PubMed]

S. T. Cundiff, J. M. Soto-Crespo, and N. Akhmediev, “Experimental Evidence for Soliton Explosions,” Phys. Rev. Lett. 88, 73903 (2002).
[CrossRef]

S. T. Cundiff, J. Ye, and J. L. Hall, “Optical frequency synthesis based on mode-locked lasers,” Rev. Sci. Instrum. 72, 3749 (2001).
[CrossRef]

Damrauer, N. H.

T. Brixner, N. H. Damrauer, P. Niklaus, and G. Gerber, “Photoselective adaptive femtosecond quantum control in the liquid phase,” Nature 414, 57–60 (2001).
[CrossRef] [PubMed]

de Matos, C. J. S.

Deparis, O.

T. Sylvestre, S. Coen, O. Deparis, P. Emplit, and M. Haelterman, “Demonstration of passive modelocking through dissipative four-wave mixing in fibre laser,” Electron. Lett. 37, 881–882 (2001).
[CrossRef]

Divin, C. J.

Dong, X.

Dudley, J. M.

J. M. Dudley, F. Gutty, S. Pitois, and G. Millot, “Complete characterization of terahertz pulse trains generated from nonlinear processes in optical fibers,” IEEE J. Quantum Electron. 37, 587–594 (2001).
[CrossRef]

Dudovich, N.

N. Dudovich, D. Oron, and Y. Silberberg, “Single-pulse coherently controlled nonlinear Raman spectroscopy and microscopy,” Nature 418, 512–514 (2002).
[CrossRef] [PubMed]

Eggleton, B. J.

Emplit, P.

T. Sylvestre, S. Coen, P. Emplit, and M. Haelterman, “Self-induced modulational instability laser revisited: normal dispersion and dark-pulse train generation,” Opt. Lett. 27, 482–484 (2002).
[CrossRef]

T. Sylvestre, S. Coen, O. Deparis, P. Emplit, and M. Haelterman, “Demonstration of passive modelocking through dissipative four-wave mixing in fibre laser,” Electron. Lett. 37, 881–882 (2001).
[CrossRef]

Enejder, A. M.

T. Hellerer, A. M. Enejder, and A. Zumbusch, “Spectral focusing: High spectral resolution spectroscopy with broad-bandwidth laser pulses,” Appl. Phys. Lett. 85, 25 (2004).
[CrossRef]

Feng, M.

Fontana, F.

Franco, P.

Frisken, S.

Galvanauskas, A.

Gerber, G.

T. Brixner, N. H. Damrauer, P. Niklaus, and G. Gerber, “Photoselective adaptive femtosecond quantum control in the liquid phase,” Nature 414, 57–60 (2001).
[CrossRef] [PubMed]

Gong, Y.

Grelu, P.

Gutty, F.

P. Grelu, F. Belhache, F. Gutty, and J.-M. Soto-Crespo, “Phase-locked soliton pairs in a stretched-pulse fiber laser,” Opt. Lett. 27, 966–968 (2002).
[CrossRef]

J. M. Dudley, F. Gutty, S. Pitois, and G. Millot, “Complete characterization of terahertz pulse trains generated from nonlinear processes in optical fibers,” IEEE J. Quantum Electron. 37, 587–594 (2001).
[CrossRef]

Haelterman, M.

T. Sylvestre, S. Coen, P. Emplit, and M. Haelterman, “Self-induced modulational instability laser revisited: normal dispersion and dark-pulse train generation,” Opt. Lett. 27, 482–484 (2002).
[CrossRef]

T. Sylvestre, S. Coen, O. Deparis, P. Emplit, and M. Haelterman, “Demonstration of passive modelocking through dissipative four-wave mixing in fibre laser,” Electron. Lett. 37, 881–882 (2001).
[CrossRef]

Hall, J. L.

S. T. Cundiff, J. Ye, and J. L. Hall, “Optical frequency synthesis based on mode-locked lasers,” Rev. Sci. Instrum. 72, 3749 (2001).
[CrossRef]

Haus, H. A.

M. Nakazawa, K. Suzuki, H. Kubota, and H. A. Haus, “The modulation instability laser. II. Theory,” IEEE J. Quantum Electron. 25, 2045–2052 (1989).
[CrossRef]

M. Nakazawa, K. Suzuki, and H. A. Haus, “The modulational instability laser. I. Experiment,” IEEE J. Quantum Electron. 25, 2036–2044 (1989).
[CrossRef]

Hellerer, T.

T. Hellerer, A. M. Enejder, and A. Zumbusch, “Spectral focusing: High spectral resolution spectroscopy with broad-bandwidth laser pulses,” Appl. Phys. Lett. 85, 25 (2004).
[CrossRef]

Honzatko, P.

Ilday, F. O.

Kane, D. J.

Kanka, J.

Knize, R. J.

Kubota, H.

M. Nakazawa, K. Suzuki, H. Kubota, and H. A. Haus, “The modulation instability laser. II. Theory,” IEEE J. Quantum Electron. 25, 2045–2052 (1989).
[CrossRef]

Li, F.

Liu, C.-H.

Loh, K. P.

Lu, C.

Midrio, M.

Millot, G.

J. M. Dudley, F. Gutty, S. Pitois, and G. Millot, “Complete characterization of terahertz pulse trains generated from nonlinear processes in optical fibers,” IEEE J. Quantum Electron. 37, 587–594 (2001).
[CrossRef]

Mirin, R. P.

Nakazawa, M.

M. Nakazawa, K. Suzuki, and H. A. Haus, “The modulational instability laser. I. Experiment,” IEEE J. Quantum Electron. 25, 2036–2044 (1989).
[CrossRef]

M. Nakazawa, K. Suzuki, H. Kubota, and H. A. Haus, “The modulation instability laser. II. Theory,” IEEE J. Quantum Electron. 25, 2045–2052 (1989).
[CrossRef]

Niklaus, P.

T. Brixner, N. H. Damrauer, P. Niklaus, and G. Gerber, “Photoselective adaptive femtosecond quantum control in the liquid phase,” Nature 414, 57–60 (2001).
[CrossRef] [PubMed]

Norris, T. B.

Oktem, B.

B. Oktem, C. Ülgüdür, and F. O. Ilday, “Soliton-similariton fibre laser,” Nat. Photonics 4, 307–311 (2010).
[CrossRef]

Oron, D.

N. Dudovich, D. Oron, and Y. Silberberg, “Single-pulse coherently controlled nonlinear Raman spectroscopy and microscopy,” Nature 418, 512–514 (2002).
[CrossRef] [PubMed]

Peterka, P.

Pitois, S.

J. M. Dudley, F. Gutty, S. Pitois, and G. Millot, “Complete characterization of terahertz pulse trains generated from nonlinear processes in optical fibers,” IEEE J. Quantum Electron. 37, 587–594 (2001).
[CrossRef]

Poole, S.

Quiroga-Teixeiro, M.

Renninger, W.

Rodriguez, G.

Roelens, M. A. F.

Romagnoli, M.

Schröder, J.

Shum, P.

Silberberg, Y.

N. Dudovich, D. Oron, and Y. Silberberg, “Single-pulse coherently controlled nonlinear Raman spectroscopy and microscopy,” Nature 418, 512–514 (2002).
[CrossRef] [PubMed]

Silverman, K. L.

Sorensen, M. P.

Sosnowski, T.

Soto-Crespo, J. M.

S. T. Cundiff, J. M. Soto-Crespo, and N. Akhmediev, “Experimental Evidence for Soliton Explosions,” Phys. Rev. Lett. 88, 73903 (2002).
[CrossRef]

Soto-Crespo, J.-M.

Suzuki, K.

M. Nakazawa, K. Suzuki, and H. A. Haus, “The modulational instability laser. I. Experiment,” IEEE J. Quantum Electron. 25, 2036–2044 (1989).
[CrossRef]

M. Nakazawa, K. Suzuki, H. Kubota, and H. A. Haus, “The modulation instability laser. II. Theory,” IEEE J. Quantum Electron. 25, 2045–2052 (1989).
[CrossRef]

Sylvestre, T.

Tang, D. Y.

Taylor, A. J.

Taylor, J. R.

Ülgüdür, C.

B. Oktem, C. Ülgüdür, and F. O. Ilday, “Soliton-similariton fibre laser,” Nat. Photonics 4, 307–311 (2010).
[CrossRef]

Vanholsbeeck, F.

Vo, T. D.

Weiner, A. M.

A. M. Weiner, “Femtosecond pulse shaping using spatial light modulators,” Rev. Sci. Instrum. 71, 1929–1960 (2000).
[CrossRef]

Williamson, S. L.

Wise, F.

Wise, F. W.

Yang, X.

Ye, J.

S. T. Cundiff, J. Ye, and J. L. Hall, “Optical frequency synthesis based on mode-locked lasers,” Rev. Sci. Instrum. 72, 3749 (2001).
[CrossRef]

Zhang, H.

Zhang, S.

Zhao, L. M.

Zhou, X.

Zumbusch, A.

T. Hellerer, A. M. Enejder, and A. Zumbusch, “Spectral focusing: High spectral resolution spectroscopy with broad-bandwidth laser pulses,” Appl. Phys. Lett. 85, 25 (2004).
[CrossRef]

Appl. Phys. Lett. (1)

T. Hellerer, A. M. Enejder, and A. Zumbusch, “Spectral focusing: High spectral resolution spectroscopy with broad-bandwidth laser pulses,” Appl. Phys. Lett. 85, 25 (2004).
[CrossRef]

Electron. Lett. (1)

T. Sylvestre, S. Coen, O. Deparis, P. Emplit, and M. Haelterman, “Demonstration of passive modelocking through dissipative four-wave mixing in fibre laser,” Electron. Lett. 37, 881–882 (2001).
[CrossRef]

IEEE J. Quantum Electron. (3)

M. Nakazawa, K. Suzuki, and H. A. Haus, “The modulational instability laser. I. Experiment,” IEEE J. Quantum Electron. 25, 2036–2044 (1989).
[CrossRef]

M. Nakazawa, K. Suzuki, H. Kubota, and H. A. Haus, “The modulation instability laser. II. Theory,” IEEE J. Quantum Electron. 25, 2045–2052 (1989).
[CrossRef]

J. M. Dudley, F. Gutty, S. Pitois, and G. Millot, “Complete characterization of terahertz pulse trains generated from nonlinear processes in optical fibers,” IEEE J. Quantum Electron. 37, 587–594 (2001).
[CrossRef]

J. Lightwave Technol. (1)

J. Opt. Soc. Am. B (3)

Nat. Photonics (1)

B. Oktem, C. Ülgüdür, and F. O. Ilday, “Soliton-similariton fibre laser,” Nat. Photonics 4, 307–311 (2010).
[CrossRef]

Nature (2)

N. Dudovich, D. Oron, and Y. Silberberg, “Single-pulse coherently controlled nonlinear Raman spectroscopy and microscopy,” Nature 418, 512–514 (2002).
[CrossRef] [PubMed]

T. Brixner, N. H. Damrauer, P. Niklaus, and G. Gerber, “Photoselective adaptive femtosecond quantum control in the liquid phase,” Nature 414, 57–60 (2001).
[CrossRef] [PubMed]

Opt. Express (5)

Opt. Lett. (9)

J. Schröder, S. Coen, F. Vanholsbeeck, and T. Sylvestre, “Passively mode-locked Raman fiber laser with 100 GHz repetition rate,” Opt. Lett. 31, 3489–3491 (2006).
[CrossRef] [PubMed]

P. Franco, F. Fontana, I. Cristiani, M. Midrio, and M. Romagnoli, “Self-induced modulational-instability laser,” Opt. Lett. 20, 2009–2011 (1995).
[CrossRef] [PubMed]

J. Schröder, T. D. Vo, and B. J. Eggleton, “Repetition-rate-selective, wavelength-tunable mode-locked laser at up to 640 GHz,” Opt. Lett. 34, 3902–3904 (2009).
[CrossRef] [PubMed]

P. Honzatko, P. Peterka, and J. Kanka, “Modulational-instability ? -resonator fiber laser,” Opt. Lett. 26, 810–812 (2001).
[CrossRef]

T. Sylvestre, S. Coen, P. Emplit, and M. Haelterman, “Self-induced modulational instability laser revisited: normal dispersion and dark-pulse train generation,” Opt. Lett. 27, 482–484 (2002).
[CrossRef]

C. J. S. de Matos, D. A. Chestnut, and J. R. Taylor, “Low-threshold self-induced modulational instability ring laser in highly nonlinear fiber yielding a continuous-wave 262-GHz soliton train,” Opt. Lett. 27, 915–917 (2002).
[CrossRef]

P. Grelu, F. Belhache, F. Gutty, and J.-M. Soto-Crespo, “Phase-locked soliton pairs in a stretched-pulse fiber laser,” Opt. Lett. 27, 966–968 (2002).
[CrossRef]

J. R. Buckley, F. W. Wise, F. O. Ilday, and T. Sosnowski, “Femtosecond fiber lasers with pulse energies above 10 nJ,” Opt. Lett. 30, 1888–1890 (2005).
[CrossRef] [PubMed]

S. Zhang, F. Li, X. Dong, P. Shum, X. Yang, X. Zhou, Y. Gong, and C. Lu, “Passive mode locking at harmonics of the free spectral range of the intracavity filter in a fiber ring laser,” Opt. Lett. 30, 2852–2854 (2005).
[CrossRef] [PubMed]

Phys. Rev. Lett. (1)

S. T. Cundiff, J. M. Soto-Crespo, and N. Akhmediev, “Experimental Evidence for Soliton Explosions,” Phys. Rev. Lett. 88, 73903 (2002).
[CrossRef]

Rev. Sci. Instrum. (2)

A. M. Weiner, “Femtosecond pulse shaping using spatial light modulators,” Rev. Sci. Instrum. 71, 1929–1960 (2000).
[CrossRef]

S. T. Cundiff, J. Ye, and J. L. Hall, “Optical frequency synthesis based on mode-locked lasers,” Rev. Sci. Instrum. 72, 3749 (2001).
[CrossRef]

Other (1)

M. Peccianti, A. Pasquazi, Y. Park, B. E. Little, S. T. Chu, D. J. Moss, and R. Morandotti, “Subpicosecond 200GHz soliton laser based on a C-MOS compatible integrated microring resonator,” in “Conference on Lasers and Electro-Optics CLEO 2010,” (2010), p. CPDA9.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Experimental setup. EDFA: erbium-doped fiber amplifier, HNLF: highly nonlinear fiber.

Fig. 2
Fig. 2

(a) Optical spectra, (b) FROG spectrograms and (c) recovered field intensity (solid) and phase (dashed) for dispersion values (1) β2L = 0.4 ps2, (2) β2L = 0.5 ps2 and (3) β2L = 0.8 ps2.

Fig. 3
Fig. 3

(a) Duty cycle as a function of normalized dispersion κ. (b) Field intensity (solid), and phase (red, dotted) for the points 1,2,3 indicated in (a).

Fig. 4
Fig. 4

Comparison of (a) experimental and (b) numerical FROG spectrograms for the dispersion values given in Fig. 2 and Fig. 3 respectively (spectrograms have been thresholded for better clarity).

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

ζ U + i κ 2 τ 2 U = i | U | 2 U + G 1 + Q I S U α 2 U

Metrics