Abstract

This paper presents a novel design for getting high signal-noise ratio broadband terahertz signal through intracavity optical rectification together with terahertz EO sampling. A nonlinear crystal as terahertz emitter is positioned inside a femtosecond laser oscillator under Brewster angle pumping configuration in order to scale up the pumping pulse power but to keep high pulse repetition rate. Our experiments show that the compact and cost-effective design improves the signal-noise ratio by about 29 times compared with the counterpart based on extracavity nonlinear optical rectification. This work opens a new way to improve the signal-noise ratio of the free-space terahertz time-domain spectroscopy through nonlinear optical rectification pumped by a femtosecond laser oscillator.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. Mittleman, ed., Sensing with THz radiation (Springer, 2002).
  2. Z. Jiang and X. Zhang, “Terahertz imaging via electro-optic effect,” IEEE Trans. Microw. Theory Tech. 47(12), 2644–2650 (1999).
    [CrossRef]
  3. S. Xu and H. Cai, “A Theoretical and Experimental Research on Terahertz Electro-Optic Sampling at Near-Zero Optical Transmission Point,” Chin. Phys. Lett. 25(1), 152–155 (2008).
    [CrossRef]
  4. A. G. Stepanov, J. Kuhl, I. Z. Kozma, E. Riedle, G. Almási, and J. Hebling, “Scaling up the energy of THz pulses created by optical rectification,” Opt. Express 13(15), 5762–5768 (2005), http://www.opticsinfobase.org/abstract.cfm?URI=oe-13-15-5762 .
    [CrossRef] [PubMed]
  5. G. Neil, G. Carr, J. Gubeli, K. Jordan, M. Martin, W. McKinney, M. Shinn, M. Tani, G. Williams, and X. Zhang, “Production of high power femtosecond terahertz radiation,” Nucl. Instrum. Methods Phys. Res. A 507(1-2), 537–540 (2003).
    [CrossRef]
  6. A. Houard, Y. Liu, B. Prade, V. T. Tikhonchuk, and A. Mysyrowicz, “Strong enhancement of terahertz radiation from laser filaments in air by a static electric field,” Phys. Rev. Lett. 100(25), 255006 (2008).
    [CrossRef] [PubMed]
  7. G. Matthäus, B. Ortaç, J. Limpert, S. Nolte, R. Hohmuth, M. Voitsch, W. Richter, B. Pradarutti, and A. Tünnermann, “Intra- cavity terahertz generation inside a high-energy ultrafast soliton fiber laser,” Appl. Phys. Lett. 93(26), 261105 (2008).
    [CrossRef]
  8. M. Tonouchi, “Cutting-edge terahertz technology,” Nat. Photonics 1(2), 97–105 (2007).
    [CrossRef]
  9. D. Dragomana, “Terahertz fields and applications,” Prog. Quantum Electron. 28(1), 1–66 (2004).
    [CrossRef]
  10. X. Shi-Xiang, D. Xiao-Ming, Y. Xiao-Hua, and L. Jing-Zhen,, “Effects of Pumping Sizes on THz Radiation Based on Ultrashort Light Pulse Optical Rectification for High Spatial Resolution T-Ray Imaging,” Chin. Phys. Lett. 25(12), 4262–4265 (2008).
    [CrossRef]
  11. G. Dakovski, B. Kubera, and J. Shan, “Localized terahertz generation via optical rectification in ZnTe,” J. Opt. Soc. Am. B 22(8), 1667–1670 (2005).
    [CrossRef]
  12. D. Mittleman, M. Gupta, R. Neelamani, R. Baraniuk, J. Rudd, and M. Koch, “Recent advances in terahertz imaging,” Appl. Phys. B 68(6), 1085–1094 (1999).
    [CrossRef]
  13. Z. Jiang, F. Sun, Q. Chen, and X. Zhang, “Electro-optic sampling near zero optical transmission point,” Appl. Phys. Lett. 74(9), 1191–1193 (1999).
    [CrossRef]
  14. Q. Chen, M. Tani, Z. Jiang, and X. Zhang, “Electro-optic transceivers for terahertz-wave applications,” J. Opt. Soc. Am. B 18(6), 823–831 (2001).
    [CrossRef]

2008 (4)

A. Houard, Y. Liu, B. Prade, V. T. Tikhonchuk, and A. Mysyrowicz, “Strong enhancement of terahertz radiation from laser filaments in air by a static electric field,” Phys. Rev. Lett. 100(25), 255006 (2008).
[CrossRef] [PubMed]

G. Matthäus, B. Ortaç, J. Limpert, S. Nolte, R. Hohmuth, M. Voitsch, W. Richter, B. Pradarutti, and A. Tünnermann, “Intra- cavity terahertz generation inside a high-energy ultrafast soliton fiber laser,” Appl. Phys. Lett. 93(26), 261105 (2008).
[CrossRef]

X. Shi-Xiang, D. Xiao-Ming, Y. Xiao-Hua, and L. Jing-Zhen,, “Effects of Pumping Sizes on THz Radiation Based on Ultrashort Light Pulse Optical Rectification for High Spatial Resolution T-Ray Imaging,” Chin. Phys. Lett. 25(12), 4262–4265 (2008).
[CrossRef]

S. Xu and H. Cai, “A Theoretical and Experimental Research on Terahertz Electro-Optic Sampling at Near-Zero Optical Transmission Point,” Chin. Phys. Lett. 25(1), 152–155 (2008).
[CrossRef]

2007 (1)

M. Tonouchi, “Cutting-edge terahertz technology,” Nat. Photonics 1(2), 97–105 (2007).
[CrossRef]

2005 (2)

2004 (1)

D. Dragomana, “Terahertz fields and applications,” Prog. Quantum Electron. 28(1), 1–66 (2004).
[CrossRef]

2003 (1)

G. Neil, G. Carr, J. Gubeli, K. Jordan, M. Martin, W. McKinney, M. Shinn, M. Tani, G. Williams, and X. Zhang, “Production of high power femtosecond terahertz radiation,” Nucl. Instrum. Methods Phys. Res. A 507(1-2), 537–540 (2003).
[CrossRef]

2001 (1)

1999 (3)

D. Mittleman, M. Gupta, R. Neelamani, R. Baraniuk, J. Rudd, and M. Koch, “Recent advances in terahertz imaging,” Appl. Phys. B 68(6), 1085–1094 (1999).
[CrossRef]

Z. Jiang, F. Sun, Q. Chen, and X. Zhang, “Electro-optic sampling near zero optical transmission point,” Appl. Phys. Lett. 74(9), 1191–1193 (1999).
[CrossRef]

Z. Jiang and X. Zhang, “Terahertz imaging via electro-optic effect,” IEEE Trans. Microw. Theory Tech. 47(12), 2644–2650 (1999).
[CrossRef]

Almási, G.

Baraniuk, R.

D. Mittleman, M. Gupta, R. Neelamani, R. Baraniuk, J. Rudd, and M. Koch, “Recent advances in terahertz imaging,” Appl. Phys. B 68(6), 1085–1094 (1999).
[CrossRef]

Cai, H.

S. Xu and H. Cai, “A Theoretical and Experimental Research on Terahertz Electro-Optic Sampling at Near-Zero Optical Transmission Point,” Chin. Phys. Lett. 25(1), 152–155 (2008).
[CrossRef]

Carr, G.

G. Neil, G. Carr, J. Gubeli, K. Jordan, M. Martin, W. McKinney, M. Shinn, M. Tani, G. Williams, and X. Zhang, “Production of high power femtosecond terahertz radiation,” Nucl. Instrum. Methods Phys. Res. A 507(1-2), 537–540 (2003).
[CrossRef]

Chen, Q.

Q. Chen, M. Tani, Z. Jiang, and X. Zhang, “Electro-optic transceivers for terahertz-wave applications,” J. Opt. Soc. Am. B 18(6), 823–831 (2001).
[CrossRef]

Z. Jiang, F. Sun, Q. Chen, and X. Zhang, “Electro-optic sampling near zero optical transmission point,” Appl. Phys. Lett. 74(9), 1191–1193 (1999).
[CrossRef]

Dakovski, G.

Dragomana, D.

D. Dragomana, “Terahertz fields and applications,” Prog. Quantum Electron. 28(1), 1–66 (2004).
[CrossRef]

Gubeli, J.

G. Neil, G. Carr, J. Gubeli, K. Jordan, M. Martin, W. McKinney, M. Shinn, M. Tani, G. Williams, and X. Zhang, “Production of high power femtosecond terahertz radiation,” Nucl. Instrum. Methods Phys. Res. A 507(1-2), 537–540 (2003).
[CrossRef]

Gupta, M.

D. Mittleman, M. Gupta, R. Neelamani, R. Baraniuk, J. Rudd, and M. Koch, “Recent advances in terahertz imaging,” Appl. Phys. B 68(6), 1085–1094 (1999).
[CrossRef]

Hebling, J.

Hohmuth, R.

G. Matthäus, B. Ortaç, J. Limpert, S. Nolte, R. Hohmuth, M. Voitsch, W. Richter, B. Pradarutti, and A. Tünnermann, “Intra- cavity terahertz generation inside a high-energy ultrafast soliton fiber laser,” Appl. Phys. Lett. 93(26), 261105 (2008).
[CrossRef]

Houard, A.

A. Houard, Y. Liu, B. Prade, V. T. Tikhonchuk, and A. Mysyrowicz, “Strong enhancement of terahertz radiation from laser filaments in air by a static electric field,” Phys. Rev. Lett. 100(25), 255006 (2008).
[CrossRef] [PubMed]

Jiang, Z.

Q. Chen, M. Tani, Z. Jiang, and X. Zhang, “Electro-optic transceivers for terahertz-wave applications,” J. Opt. Soc. Am. B 18(6), 823–831 (2001).
[CrossRef]

Z. Jiang, F. Sun, Q. Chen, and X. Zhang, “Electro-optic sampling near zero optical transmission point,” Appl. Phys. Lett. 74(9), 1191–1193 (1999).
[CrossRef]

Z. Jiang and X. Zhang, “Terahertz imaging via electro-optic effect,” IEEE Trans. Microw. Theory Tech. 47(12), 2644–2650 (1999).
[CrossRef]

Jing-Zhen, L.

X. Shi-Xiang, D. Xiao-Ming, Y. Xiao-Hua, and L. Jing-Zhen,, “Effects of Pumping Sizes on THz Radiation Based on Ultrashort Light Pulse Optical Rectification for High Spatial Resolution T-Ray Imaging,” Chin. Phys. Lett. 25(12), 4262–4265 (2008).
[CrossRef]

Jordan, K.

G. Neil, G. Carr, J. Gubeli, K. Jordan, M. Martin, W. McKinney, M. Shinn, M. Tani, G. Williams, and X. Zhang, “Production of high power femtosecond terahertz radiation,” Nucl. Instrum. Methods Phys. Res. A 507(1-2), 537–540 (2003).
[CrossRef]

Koch, M.

D. Mittleman, M. Gupta, R. Neelamani, R. Baraniuk, J. Rudd, and M. Koch, “Recent advances in terahertz imaging,” Appl. Phys. B 68(6), 1085–1094 (1999).
[CrossRef]

Kozma, I. Z.

Kubera, B.

Kuhl, J.

Limpert, J.

G. Matthäus, B. Ortaç, J. Limpert, S. Nolte, R. Hohmuth, M. Voitsch, W. Richter, B. Pradarutti, and A. Tünnermann, “Intra- cavity terahertz generation inside a high-energy ultrafast soliton fiber laser,” Appl. Phys. Lett. 93(26), 261105 (2008).
[CrossRef]

Liu, Y.

A. Houard, Y. Liu, B. Prade, V. T. Tikhonchuk, and A. Mysyrowicz, “Strong enhancement of terahertz radiation from laser filaments in air by a static electric field,” Phys. Rev. Lett. 100(25), 255006 (2008).
[CrossRef] [PubMed]

Martin, M.

G. Neil, G. Carr, J. Gubeli, K. Jordan, M. Martin, W. McKinney, M. Shinn, M. Tani, G. Williams, and X. Zhang, “Production of high power femtosecond terahertz radiation,” Nucl. Instrum. Methods Phys. Res. A 507(1-2), 537–540 (2003).
[CrossRef]

Matthäus, G.

G. Matthäus, B. Ortaç, J. Limpert, S. Nolte, R. Hohmuth, M. Voitsch, W. Richter, B. Pradarutti, and A. Tünnermann, “Intra- cavity terahertz generation inside a high-energy ultrafast soliton fiber laser,” Appl. Phys. Lett. 93(26), 261105 (2008).
[CrossRef]

McKinney, W.

G. Neil, G. Carr, J. Gubeli, K. Jordan, M. Martin, W. McKinney, M. Shinn, M. Tani, G. Williams, and X. Zhang, “Production of high power femtosecond terahertz radiation,” Nucl. Instrum. Methods Phys. Res. A 507(1-2), 537–540 (2003).
[CrossRef]

Mittleman, D.

D. Mittleman, M. Gupta, R. Neelamani, R. Baraniuk, J. Rudd, and M. Koch, “Recent advances in terahertz imaging,” Appl. Phys. B 68(6), 1085–1094 (1999).
[CrossRef]

Mysyrowicz, A.

A. Houard, Y. Liu, B. Prade, V. T. Tikhonchuk, and A. Mysyrowicz, “Strong enhancement of terahertz radiation from laser filaments in air by a static electric field,” Phys. Rev. Lett. 100(25), 255006 (2008).
[CrossRef] [PubMed]

Neelamani, R.

D. Mittleman, M. Gupta, R. Neelamani, R. Baraniuk, J. Rudd, and M. Koch, “Recent advances in terahertz imaging,” Appl. Phys. B 68(6), 1085–1094 (1999).
[CrossRef]

Neil, G.

G. Neil, G. Carr, J. Gubeli, K. Jordan, M. Martin, W. McKinney, M. Shinn, M. Tani, G. Williams, and X. Zhang, “Production of high power femtosecond terahertz radiation,” Nucl. Instrum. Methods Phys. Res. A 507(1-2), 537–540 (2003).
[CrossRef]

Nolte, S.

G. Matthäus, B. Ortaç, J. Limpert, S. Nolte, R. Hohmuth, M. Voitsch, W. Richter, B. Pradarutti, and A. Tünnermann, “Intra- cavity terahertz generation inside a high-energy ultrafast soliton fiber laser,” Appl. Phys. Lett. 93(26), 261105 (2008).
[CrossRef]

Ortaç, B.

G. Matthäus, B. Ortaç, J. Limpert, S. Nolte, R. Hohmuth, M. Voitsch, W. Richter, B. Pradarutti, and A. Tünnermann, “Intra- cavity terahertz generation inside a high-energy ultrafast soliton fiber laser,” Appl. Phys. Lett. 93(26), 261105 (2008).
[CrossRef]

Pradarutti, B.

G. Matthäus, B. Ortaç, J. Limpert, S. Nolte, R. Hohmuth, M. Voitsch, W. Richter, B. Pradarutti, and A. Tünnermann, “Intra- cavity terahertz generation inside a high-energy ultrafast soliton fiber laser,” Appl. Phys. Lett. 93(26), 261105 (2008).
[CrossRef]

Prade, B.

A. Houard, Y. Liu, B. Prade, V. T. Tikhonchuk, and A. Mysyrowicz, “Strong enhancement of terahertz radiation from laser filaments in air by a static electric field,” Phys. Rev. Lett. 100(25), 255006 (2008).
[CrossRef] [PubMed]

Richter, W.

G. Matthäus, B. Ortaç, J. Limpert, S. Nolte, R. Hohmuth, M. Voitsch, W. Richter, B. Pradarutti, and A. Tünnermann, “Intra- cavity terahertz generation inside a high-energy ultrafast soliton fiber laser,” Appl. Phys. Lett. 93(26), 261105 (2008).
[CrossRef]

Riedle, E.

Rudd, J.

D. Mittleman, M. Gupta, R. Neelamani, R. Baraniuk, J. Rudd, and M. Koch, “Recent advances in terahertz imaging,” Appl. Phys. B 68(6), 1085–1094 (1999).
[CrossRef]

Shan, J.

Shinn, M.

G. Neil, G. Carr, J. Gubeli, K. Jordan, M. Martin, W. McKinney, M. Shinn, M. Tani, G. Williams, and X. Zhang, “Production of high power femtosecond terahertz radiation,” Nucl. Instrum. Methods Phys. Res. A 507(1-2), 537–540 (2003).
[CrossRef]

Shi-Xiang, X.

X. Shi-Xiang, D. Xiao-Ming, Y. Xiao-Hua, and L. Jing-Zhen,, “Effects of Pumping Sizes on THz Radiation Based on Ultrashort Light Pulse Optical Rectification for High Spatial Resolution T-Ray Imaging,” Chin. Phys. Lett. 25(12), 4262–4265 (2008).
[CrossRef]

Stepanov, A. G.

Sun, F.

Z. Jiang, F. Sun, Q. Chen, and X. Zhang, “Electro-optic sampling near zero optical transmission point,” Appl. Phys. Lett. 74(9), 1191–1193 (1999).
[CrossRef]

Tani, M.

G. Neil, G. Carr, J. Gubeli, K. Jordan, M. Martin, W. McKinney, M. Shinn, M. Tani, G. Williams, and X. Zhang, “Production of high power femtosecond terahertz radiation,” Nucl. Instrum. Methods Phys. Res. A 507(1-2), 537–540 (2003).
[CrossRef]

Q. Chen, M. Tani, Z. Jiang, and X. Zhang, “Electro-optic transceivers for terahertz-wave applications,” J. Opt. Soc. Am. B 18(6), 823–831 (2001).
[CrossRef]

Tikhonchuk, V. T.

A. Houard, Y. Liu, B. Prade, V. T. Tikhonchuk, and A. Mysyrowicz, “Strong enhancement of terahertz radiation from laser filaments in air by a static electric field,” Phys. Rev. Lett. 100(25), 255006 (2008).
[CrossRef] [PubMed]

Tonouchi, M.

M. Tonouchi, “Cutting-edge terahertz technology,” Nat. Photonics 1(2), 97–105 (2007).
[CrossRef]

Tünnermann, A.

G. Matthäus, B. Ortaç, J. Limpert, S. Nolte, R. Hohmuth, M. Voitsch, W. Richter, B. Pradarutti, and A. Tünnermann, “Intra- cavity terahertz generation inside a high-energy ultrafast soliton fiber laser,” Appl. Phys. Lett. 93(26), 261105 (2008).
[CrossRef]

Voitsch, M.

G. Matthäus, B. Ortaç, J. Limpert, S. Nolte, R. Hohmuth, M. Voitsch, W. Richter, B. Pradarutti, and A. Tünnermann, “Intra- cavity terahertz generation inside a high-energy ultrafast soliton fiber laser,” Appl. Phys. Lett. 93(26), 261105 (2008).
[CrossRef]

Williams, G.

G. Neil, G. Carr, J. Gubeli, K. Jordan, M. Martin, W. McKinney, M. Shinn, M. Tani, G. Williams, and X. Zhang, “Production of high power femtosecond terahertz radiation,” Nucl. Instrum. Methods Phys. Res. A 507(1-2), 537–540 (2003).
[CrossRef]

Xiao-Hua, Y.

X. Shi-Xiang, D. Xiao-Ming, Y. Xiao-Hua, and L. Jing-Zhen,, “Effects of Pumping Sizes on THz Radiation Based on Ultrashort Light Pulse Optical Rectification for High Spatial Resolution T-Ray Imaging,” Chin. Phys. Lett. 25(12), 4262–4265 (2008).
[CrossRef]

Xiao-Ming, D.

X. Shi-Xiang, D. Xiao-Ming, Y. Xiao-Hua, and L. Jing-Zhen,, “Effects of Pumping Sizes on THz Radiation Based on Ultrashort Light Pulse Optical Rectification for High Spatial Resolution T-Ray Imaging,” Chin. Phys. Lett. 25(12), 4262–4265 (2008).
[CrossRef]

Xu, S.

S. Xu and H. Cai, “A Theoretical and Experimental Research on Terahertz Electro-Optic Sampling at Near-Zero Optical Transmission Point,” Chin. Phys. Lett. 25(1), 152–155 (2008).
[CrossRef]

Zhang, X.

G. Neil, G. Carr, J. Gubeli, K. Jordan, M. Martin, W. McKinney, M. Shinn, M. Tani, G. Williams, and X. Zhang, “Production of high power femtosecond terahertz radiation,” Nucl. Instrum. Methods Phys. Res. A 507(1-2), 537–540 (2003).
[CrossRef]

Q. Chen, M. Tani, Z. Jiang, and X. Zhang, “Electro-optic transceivers for terahertz-wave applications,” J. Opt. Soc. Am. B 18(6), 823–831 (2001).
[CrossRef]

Z. Jiang, F. Sun, Q. Chen, and X. Zhang, “Electro-optic sampling near zero optical transmission point,” Appl. Phys. Lett. 74(9), 1191–1193 (1999).
[CrossRef]

Z. Jiang and X. Zhang, “Terahertz imaging via electro-optic effect,” IEEE Trans. Microw. Theory Tech. 47(12), 2644–2650 (1999).
[CrossRef]

Appl. Phys. B (1)

D. Mittleman, M. Gupta, R. Neelamani, R. Baraniuk, J. Rudd, and M. Koch, “Recent advances in terahertz imaging,” Appl. Phys. B 68(6), 1085–1094 (1999).
[CrossRef]

Appl. Phys. Lett. (2)

Z. Jiang, F. Sun, Q. Chen, and X. Zhang, “Electro-optic sampling near zero optical transmission point,” Appl. Phys. Lett. 74(9), 1191–1193 (1999).
[CrossRef]

G. Matthäus, B. Ortaç, J. Limpert, S. Nolte, R. Hohmuth, M. Voitsch, W. Richter, B. Pradarutti, and A. Tünnermann, “Intra- cavity terahertz generation inside a high-energy ultrafast soliton fiber laser,” Appl. Phys. Lett. 93(26), 261105 (2008).
[CrossRef]

Chin. Phys. Lett. (2)

X. Shi-Xiang, D. Xiao-Ming, Y. Xiao-Hua, and L. Jing-Zhen,, “Effects of Pumping Sizes on THz Radiation Based on Ultrashort Light Pulse Optical Rectification for High Spatial Resolution T-Ray Imaging,” Chin. Phys. Lett. 25(12), 4262–4265 (2008).
[CrossRef]

S. Xu and H. Cai, “A Theoretical and Experimental Research on Terahertz Electro-Optic Sampling at Near-Zero Optical Transmission Point,” Chin. Phys. Lett. 25(1), 152–155 (2008).
[CrossRef]

IEEE Trans. Microw. Theory Tech. (1)

Z. Jiang and X. Zhang, “Terahertz imaging via electro-optic effect,” IEEE Trans. Microw. Theory Tech. 47(12), 2644–2650 (1999).
[CrossRef]

J. Opt. Soc. Am. B (2)

Nat. Photonics (1)

M. Tonouchi, “Cutting-edge terahertz technology,” Nat. Photonics 1(2), 97–105 (2007).
[CrossRef]

Nucl. Instrum. Methods Phys. Res. A (1)

G. Neil, G. Carr, J. Gubeli, K. Jordan, M. Martin, W. McKinney, M. Shinn, M. Tani, G. Williams, and X. Zhang, “Production of high power femtosecond terahertz radiation,” Nucl. Instrum. Methods Phys. Res. A 507(1-2), 537–540 (2003).
[CrossRef]

Opt. Express (1)

Phys. Rev. Lett. (1)

A. Houard, Y. Liu, B. Prade, V. T. Tikhonchuk, and A. Mysyrowicz, “Strong enhancement of terahertz radiation from laser filaments in air by a static electric field,” Phys. Rev. Lett. 100(25), 255006 (2008).
[CrossRef] [PubMed]

Prog. Quantum Electron. (1)

D. Dragomana, “Terahertz fields and applications,” Prog. Quantum Electron. 28(1), 1–66 (2004).
[CrossRef]

Other (1)

D. Mittleman, ed., Sensing with THz radiation (Springer, 2002).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Experimental setup. L: Lens; P1~P4: Brewster prisms; CR1~CR4: concave mirrors; PM1~PM4: golden coated off-axis parabolic mirror; M1~M5: mirrors coated with 45° HR @ 800 nm; OC: output coupler; TC: crystal used as terahertz emitter; EO: electro-optics crystal; C: phase compensator; PL1, PL2: polarizers; D1, D2: detectors.

Fig. 2
Fig. 2

The output spectrum (a) and pulse duration (b) of the femtosecond Ti:sapphire oscillator with intrcavity optical rectification crystal.

Fig. 3
Fig. 3

The measured terahertz signal by EO detection through extracavity nonlinear optical rectification when terahertz emitter pumped by normal incidence and by Brewster angle.

Fig. 4
Fig. 4

The measured terahertz signal by EO detection through intracavity nonlinear optical rectification when the terahertz emitter pumped by Brewster angle incidence.

Metrics