Abstract

We experimentally demonstrate a novel technique to process broadband microwave signals, using all-optically tunable true time delay in optical fibers. The configuration to achieve true time delay basically consists of two main stages: photonic RF phase shifter and slow light, based on stimulated Brillouin scattering in fibers. Dispersion properties of fibers are controlled, separately at optical carrier frequency and in the vicinity of microwave signal bandwidth. This way time delay induced within the signal bandwidth can be manipulated to correctly act as true time delay with a proper phase compensation introduced to the optical carrier. We completely analyzed the generated true time delay as a promising solution to feed phased array antenna for radar systems and to develop dynamically reconfigurable microwave photonic filters.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Capmany and D. Novak, “Microwave photonics combines two worlds,” Nat. Photonics 1(6), 319–330 (2007).
    [CrossRef]
  2. R. J. Mailloux, Phased Array Antenna Handbook (Artech, 1994).
  3. H. Zmuda, and E. N. Toughlian, Photonic Aspects of Modern Radar (Artech, 1995).
  4. D. Dolfi, P. Joffre, J. Antoine, J.-P. Huignard, D. Philippet, and P. Granger, “Experimental demonstration of a phased-array antenna optically controlled with phase and time delays,” Appl. Opt. 35(26), 5293–5300 (1996).
    [CrossRef] [PubMed]
  5. Y. Liu, J. Yang, and J. Yao, “Continuous true-time-delay beamforming for phased array antenna using a tunable chirped fiber grating delay line,” Photon. Technol. Lett. 14(8), 1172–1174 (2002).
    [CrossRef]
  6. R. W. Boyd, and D. J. Gauthier, “‘Slow’ and ‘Fast’ light,” E. Wolf, ed., Progress in Optics (Elsevier, 2002), Vol. 43, Chap. 6, pp. 497–530.
  7. J. Mørk, R. Kjær, M. van der Poel, and K. Yvind, “Slow light in a semiconductor waveguide at gigahertz frequencies,” Opt. Express 13(20), 8136–8145 (2005).
    [CrossRef] [PubMed]
  8. H. Su, P. Kondratko, and S. L. Chuang, “Variable optical delay using population oscillation and four-wave-mixing in semiconductor optical amplifiers,” Opt. Express 14(11), 4800–4807 (2006).
    [CrossRef] [PubMed]
  9. J. B. Khurgin, and R. S. Tucker, Slow light: Science and Applications (CRC Press, 2009).
  10. Z. Shi and R. W. Boyd, “Discretely tunable optical packet delays using channelized slow light,” Phys. Rev. A 79(1), 013805 (2009).
    [CrossRef]
  11. P. A. Morton and J. B. Khurgin, “Microwave Photonic Delay Line With Separate Tuning of the Optical Carrier,” Photon. Technol. Lett. 21(22), 1686–1688 (2009).
    [CrossRef]
  12. K. Y. Song, M. Herráez, and L. Thévenaz, “Observation of pulse delaying and advancement in optical fibers using stimulated Brillouin scattering,” Opt. Express 13(1), 82–88 (2005).
    [CrossRef] [PubMed]
  13. J. Sancho, S. Chin, M. Sagues, A. Loayssa, J. Lloret, I. Gausulla, S. Sles, L. Thevenaz, and J. Capmany, “Dynamic Microwave Photonic Filter using Separate Carrier Tuning based on Stimulated Brillouin scattering in Fibers,” Photon. Technol. Lett. in press.
  14. L. Thévenaz, “Slow and fast light in optical fibers,” Nat. Photonics 2(8), 474–481 (2008).
    [CrossRef]
  15. M. Nikles, L. Thévenaz, and P. A. Robert, “Brillouin gain spectrum characterization in single mode optical fibers,” J. Lightwave Technol. 15(10), 1842–1851 (1997).
    [CrossRef]
  16. A. Loaysa and F. J. Lahoz, “Broad-band RF photonic phase shifter based on stimulated Brillouin scattering and single-sideband modulation,” Photon. Technol. Lett. 18(1), 208–210 (2006).
    [CrossRef]
  17. M. González Herráez, K. Y. Song, and L. Thévenaz, “Arbitrary-bandwidth Brillouin slow light in optical fibers,” Opt. Express 14(4), 1395–1400 (2006).
    [CrossRef] [PubMed]
  18. W. Xue, S. Sales, J. Mork, and J. Capmany, “Widely Tunable Microwave Photonic Notch Filter Based on Slow and Fast Light Effects,” Photon. Technol. Lett. 21(3), 167–169 (2009).
    [CrossRef]
  19. M. Sagues, R. García Olcina, A. Loayssa, S. Sales, and J. Capmany, “Multi-tap complex-coefficient incoherent microwave photonic filters based on optical single-sideband modulation and narrow band optical filtering,” Opt. Express 16(1), 295–303 (2008).
    [CrossRef] [PubMed]

2009

Z. Shi and R. W. Boyd, “Discretely tunable optical packet delays using channelized slow light,” Phys. Rev. A 79(1), 013805 (2009).
[CrossRef]

P. A. Morton and J. B. Khurgin, “Microwave Photonic Delay Line With Separate Tuning of the Optical Carrier,” Photon. Technol. Lett. 21(22), 1686–1688 (2009).
[CrossRef]

W. Xue, S. Sales, J. Mork, and J. Capmany, “Widely Tunable Microwave Photonic Notch Filter Based on Slow and Fast Light Effects,” Photon. Technol. Lett. 21(3), 167–169 (2009).
[CrossRef]

2008

2007

J. Capmany and D. Novak, “Microwave photonics combines two worlds,” Nat. Photonics 1(6), 319–330 (2007).
[CrossRef]

2006

2005

2002

Y. Liu, J. Yang, and J. Yao, “Continuous true-time-delay beamforming for phased array antenna using a tunable chirped fiber grating delay line,” Photon. Technol. Lett. 14(8), 1172–1174 (2002).
[CrossRef]

1997

M. Nikles, L. Thévenaz, and P. A. Robert, “Brillouin gain spectrum characterization in single mode optical fibers,” J. Lightwave Technol. 15(10), 1842–1851 (1997).
[CrossRef]

1996

Antoine, J.

Boyd, R. W.

Z. Shi and R. W. Boyd, “Discretely tunable optical packet delays using channelized slow light,” Phys. Rev. A 79(1), 013805 (2009).
[CrossRef]

Capmany, J.

W. Xue, S. Sales, J. Mork, and J. Capmany, “Widely Tunable Microwave Photonic Notch Filter Based on Slow and Fast Light Effects,” Photon. Technol. Lett. 21(3), 167–169 (2009).
[CrossRef]

M. Sagues, R. García Olcina, A. Loayssa, S. Sales, and J. Capmany, “Multi-tap complex-coefficient incoherent microwave photonic filters based on optical single-sideband modulation and narrow band optical filtering,” Opt. Express 16(1), 295–303 (2008).
[CrossRef] [PubMed]

J. Capmany and D. Novak, “Microwave photonics combines two worlds,” Nat. Photonics 1(6), 319–330 (2007).
[CrossRef]

J. Sancho, S. Chin, M. Sagues, A. Loayssa, J. Lloret, I. Gausulla, S. Sles, L. Thevenaz, and J. Capmany, “Dynamic Microwave Photonic Filter using Separate Carrier Tuning based on Stimulated Brillouin scattering in Fibers,” Photon. Technol. Lett. in press.

Chin, S.

J. Sancho, S. Chin, M. Sagues, A. Loayssa, J. Lloret, I. Gausulla, S. Sles, L. Thevenaz, and J. Capmany, “Dynamic Microwave Photonic Filter using Separate Carrier Tuning based on Stimulated Brillouin scattering in Fibers,” Photon. Technol. Lett. in press.

Chuang, S. L.

Dolfi, D.

García Olcina, R.

Gausulla, I.

J. Sancho, S. Chin, M. Sagues, A. Loayssa, J. Lloret, I. Gausulla, S. Sles, L. Thevenaz, and J. Capmany, “Dynamic Microwave Photonic Filter using Separate Carrier Tuning based on Stimulated Brillouin scattering in Fibers,” Photon. Technol. Lett. in press.

González Herráez, M.

Granger, P.

Herráez, M.

Huignard, J.-P.

Joffre, P.

Khurgin, J. B.

P. A. Morton and J. B. Khurgin, “Microwave Photonic Delay Line With Separate Tuning of the Optical Carrier,” Photon. Technol. Lett. 21(22), 1686–1688 (2009).
[CrossRef]

Kjær, R.

Kondratko, P.

Lahoz, F. J.

A. Loaysa and F. J. Lahoz, “Broad-band RF photonic phase shifter based on stimulated Brillouin scattering and single-sideband modulation,” Photon. Technol. Lett. 18(1), 208–210 (2006).
[CrossRef]

Liu, Y.

Y. Liu, J. Yang, and J. Yao, “Continuous true-time-delay beamforming for phased array antenna using a tunable chirped fiber grating delay line,” Photon. Technol. Lett. 14(8), 1172–1174 (2002).
[CrossRef]

Lloret, J.

J. Sancho, S. Chin, M. Sagues, A. Loayssa, J. Lloret, I. Gausulla, S. Sles, L. Thevenaz, and J. Capmany, “Dynamic Microwave Photonic Filter using Separate Carrier Tuning based on Stimulated Brillouin scattering in Fibers,” Photon. Technol. Lett. in press.

Loaysa, A.

A. Loaysa and F. J. Lahoz, “Broad-band RF photonic phase shifter based on stimulated Brillouin scattering and single-sideband modulation,” Photon. Technol. Lett. 18(1), 208–210 (2006).
[CrossRef]

Loayssa, A.

M. Sagues, R. García Olcina, A. Loayssa, S. Sales, and J. Capmany, “Multi-tap complex-coefficient incoherent microwave photonic filters based on optical single-sideband modulation and narrow band optical filtering,” Opt. Express 16(1), 295–303 (2008).
[CrossRef] [PubMed]

J. Sancho, S. Chin, M. Sagues, A. Loayssa, J. Lloret, I. Gausulla, S. Sles, L. Thevenaz, and J. Capmany, “Dynamic Microwave Photonic Filter using Separate Carrier Tuning based on Stimulated Brillouin scattering in Fibers,” Photon. Technol. Lett. in press.

Mork, J.

W. Xue, S. Sales, J. Mork, and J. Capmany, “Widely Tunable Microwave Photonic Notch Filter Based on Slow and Fast Light Effects,” Photon. Technol. Lett. 21(3), 167–169 (2009).
[CrossRef]

Mørk, J.

Morton, P. A.

P. A. Morton and J. B. Khurgin, “Microwave Photonic Delay Line With Separate Tuning of the Optical Carrier,” Photon. Technol. Lett. 21(22), 1686–1688 (2009).
[CrossRef]

Nikles, M.

M. Nikles, L. Thévenaz, and P. A. Robert, “Brillouin gain spectrum characterization in single mode optical fibers,” J. Lightwave Technol. 15(10), 1842–1851 (1997).
[CrossRef]

Novak, D.

J. Capmany and D. Novak, “Microwave photonics combines two worlds,” Nat. Photonics 1(6), 319–330 (2007).
[CrossRef]

Philippet, D.

Robert, P. A.

M. Nikles, L. Thévenaz, and P. A. Robert, “Brillouin gain spectrum characterization in single mode optical fibers,” J. Lightwave Technol. 15(10), 1842–1851 (1997).
[CrossRef]

Sagues, M.

M. Sagues, R. García Olcina, A. Loayssa, S. Sales, and J. Capmany, “Multi-tap complex-coefficient incoherent microwave photonic filters based on optical single-sideband modulation and narrow band optical filtering,” Opt. Express 16(1), 295–303 (2008).
[CrossRef] [PubMed]

J. Sancho, S. Chin, M. Sagues, A. Loayssa, J. Lloret, I. Gausulla, S. Sles, L. Thevenaz, and J. Capmany, “Dynamic Microwave Photonic Filter using Separate Carrier Tuning based on Stimulated Brillouin scattering in Fibers,” Photon. Technol. Lett. in press.

Sales, S.

Sancho, J.

J. Sancho, S. Chin, M. Sagues, A. Loayssa, J. Lloret, I. Gausulla, S. Sles, L. Thevenaz, and J. Capmany, “Dynamic Microwave Photonic Filter using Separate Carrier Tuning based on Stimulated Brillouin scattering in Fibers,” Photon. Technol. Lett. in press.

Shi, Z.

Z. Shi and R. W. Boyd, “Discretely tunable optical packet delays using channelized slow light,” Phys. Rev. A 79(1), 013805 (2009).
[CrossRef]

Sles, S.

J. Sancho, S. Chin, M. Sagues, A. Loayssa, J. Lloret, I. Gausulla, S. Sles, L. Thevenaz, and J. Capmany, “Dynamic Microwave Photonic Filter using Separate Carrier Tuning based on Stimulated Brillouin scattering in Fibers,” Photon. Technol. Lett. in press.

Song, K. Y.

Su, H.

Thevenaz, L.

J. Sancho, S. Chin, M. Sagues, A. Loayssa, J. Lloret, I. Gausulla, S. Sles, L. Thevenaz, and J. Capmany, “Dynamic Microwave Photonic Filter using Separate Carrier Tuning based on Stimulated Brillouin scattering in Fibers,” Photon. Technol. Lett. in press.

Thévenaz, L.

L. Thévenaz, “Slow and fast light in optical fibers,” Nat. Photonics 2(8), 474–481 (2008).
[CrossRef]

M. González Herráez, K. Y. Song, and L. Thévenaz, “Arbitrary-bandwidth Brillouin slow light in optical fibers,” Opt. Express 14(4), 1395–1400 (2006).
[CrossRef] [PubMed]

K. Y. Song, M. Herráez, and L. Thévenaz, “Observation of pulse delaying and advancement in optical fibers using stimulated Brillouin scattering,” Opt. Express 13(1), 82–88 (2005).
[CrossRef] [PubMed]

M. Nikles, L. Thévenaz, and P. A. Robert, “Brillouin gain spectrum characterization in single mode optical fibers,” J. Lightwave Technol. 15(10), 1842–1851 (1997).
[CrossRef]

van der Poel, M.

Xue, W.

W. Xue, S. Sales, J. Mork, and J. Capmany, “Widely Tunable Microwave Photonic Notch Filter Based on Slow and Fast Light Effects,” Photon. Technol. Lett. 21(3), 167–169 (2009).
[CrossRef]

Yang, J.

Y. Liu, J. Yang, and J. Yao, “Continuous true-time-delay beamforming for phased array antenna using a tunable chirped fiber grating delay line,” Photon. Technol. Lett. 14(8), 1172–1174 (2002).
[CrossRef]

Yao, J.

Y. Liu, J. Yang, and J. Yao, “Continuous true-time-delay beamforming for phased array antenna using a tunable chirped fiber grating delay line,” Photon. Technol. Lett. 14(8), 1172–1174 (2002).
[CrossRef]

Yvind, K.

Appl. Opt.

J. Lightwave Technol.

M. Nikles, L. Thévenaz, and P. A. Robert, “Brillouin gain spectrum characterization in single mode optical fibers,” J. Lightwave Technol. 15(10), 1842–1851 (1997).
[CrossRef]

Nat. Photonics

L. Thévenaz, “Slow and fast light in optical fibers,” Nat. Photonics 2(8), 474–481 (2008).
[CrossRef]

J. Capmany and D. Novak, “Microwave photonics combines two worlds,” Nat. Photonics 1(6), 319–330 (2007).
[CrossRef]

Opt. Express

Photon. Technol. Lett.

J. Sancho, S. Chin, M. Sagues, A. Loayssa, J. Lloret, I. Gausulla, S. Sles, L. Thevenaz, and J. Capmany, “Dynamic Microwave Photonic Filter using Separate Carrier Tuning based on Stimulated Brillouin scattering in Fibers,” Photon. Technol. Lett. in press.

A. Loaysa and F. J. Lahoz, “Broad-band RF photonic phase shifter based on stimulated Brillouin scattering and single-sideband modulation,” Photon. Technol. Lett. 18(1), 208–210 (2006).
[CrossRef]

W. Xue, S. Sales, J. Mork, and J. Capmany, “Widely Tunable Microwave Photonic Notch Filter Based on Slow and Fast Light Effects,” Photon. Technol. Lett. 21(3), 167–169 (2009).
[CrossRef]

P. A. Morton and J. B. Khurgin, “Microwave Photonic Delay Line With Separate Tuning of the Optical Carrier,” Photon. Technol. Lett. 21(22), 1686–1688 (2009).
[CrossRef]

Y. Liu, J. Yang, and J. Yao, “Continuous true-time-delay beamforming for phased array antenna using a tunable chirped fiber grating delay line,” Photon. Technol. Lett. 14(8), 1172–1174 (2002).
[CrossRef]

Phys. Rev. A

Z. Shi and R. W. Boyd, “Discretely tunable optical packet delays using channelized slow light,” Phys. Rev. A 79(1), 013805 (2009).
[CrossRef]

Other

J. B. Khurgin, and R. S. Tucker, Slow light: Science and Applications (CRC Press, 2009).

R. W. Boyd, and D. J. Gauthier, “‘Slow’ and ‘Fast’ light,” E. Wolf, ed., Progress in Optics (Elsevier, 2002), Vol. 43, Chap. 6, pp. 497–530.

R. J. Mailloux, Phased Array Antenna Handbook (Artech, 1994).

H. Zmuda, and E. N. Toughlian, Photonic Aspects of Modern Radar (Artech, 1995).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (14)

Fig. 1
Fig. 1

Brillouin gain and loss resonances and the associated optical phase shifts due to strong dispersion appearing around the resonance.

Fig. 2
Fig. 2

Principle to correctly operate true time delay over the RF signal bandwidth ΔνRF simply by controlling dispersion properties, separately at carrier frequency and signal bandwidth. νC ; optical carrier frequency, φ(νC); optical phase shift introduced to the optical carrier, νRF ; RF signal microwave frequency.

Fig. 3
Fig. 3

Schematic diagram of the generation of tunable true time delay, based on separate carrier tuning method. EOM; electro-optic modulator, DSF; dispersion shifted fiber, PC; polarization controller, EDFA; erbium doped fiber amplifier, VOA; variable optical attenuator, VNA; vector network analyzer.

Fig. 4
Fig. 4

Variation of the amplitude of RF signal as a function of RF frequency, representing the spectral profile of the effective Brillouin gain resonance induced by Pump 1.

Fig. 5
Fig. 5

Layout and transfer functions of generic microwave photonic filters and optically-fed phased array antenna.

Fig. 6
Fig. 6

Schematic diagram of the rth elementary single SBS delay line of the phase arrayed antenna.

Fig. 7
Fig. 7

Schematic setup of an elementary SCT-SBS true time delay line.

Fig. 8
Fig. 8

(a) Fixed RF signal delay, and tuning of the optical carrier phase shift: 2π phase tunability is achieved. (b) Fixed optical carrier phase shift and tuning of the RF signal delay from 0.5 to 10 ns and (c) associated phase offset as a function of the delay.

Fig. 9
Fig. 9

SBS-SCT based true-time delay line. For delays from 0.03 to 9.9 ns, the optical carrier phase shift is adjusted to ensure a constant extrapolated phase offset at the origin of RF frequencies (top inset). A 100 MHz instantaneous bandwidth is obtained.

Fig. 10
Fig. 10

Simulated antenna diagrams for 32 × 32 radiating elements and SBS based delay lines. (a): Use of SBS optical carrier phase shift only; (b): use of SBS delay only; (c) use of separate carrier tuning technique for true time delay lines. The RF frequency νRF is 6.025 GHz (in blue), νRF + 5% (in red), and νRF-5% (in magenta.

Fig. 11
Fig. 11

Experimental layout of dynamically reconfigurable microwave photonic filter, based on stimulated Brillouin scattering in fibers.

Fig. 12
Fig. 12

SBS gain profile within RF signal bandwidth and the associated linear phase shift.

Fig. 13
Fig. 13

Measured (symbol) and simulated (dashed line) filter frequency response (a) tuning the carrier phase shift for 110 mW Brillouin pump power.

Fig. 14
Fig. 14

Measured (symbol) and simulated (dashed line) frequency response of MPF with (red) and without (blue) Brillouin pump power at 110 mW.

Equations (20)

Equations on this page are rendered with MathJax. Learn more.

T S = 1 2 π ϕ ν | ν C + υ R F .
T R F = ϕ ( ν C + ν R F ) ϕ ( ν C ) 2 π ν R F = ϕ ( ν C ) 2 π ν R F ,
H ( f ) = r = 0 N a r e i ( 2 π r ν T ) ,
F ( θ ) = 1 N r = 0 N 1 a r e i 2 π r ν ( T d c sin θ ) ,
T = d c sin θ 0 .
S o u t ( ν ) = S i n ( ν ) × e i 2 π ν τ ,
ϕ r + 1 ( ν ) ϕ r ( ν ) = 2 π ν d c sin θ 0               ϕ r ( ν ) = 2 π r ν d c sin θ 0 + ϕ 0 .
ϕ r ( ν S ) = 2 π ( ν S ν R F ) τ r ,
τ r = 1 2 π ϕ r ν S | ν S = ν R F .
ϕ 0 , r = 2 π ν R F × τ r
F ( θ ) = 1 N r = 0 N 1 a r e i r ( ϕ r 2 π ν S d c sin θ ) = 1 N r = 0 N 1 a r e i 2 π r ( T ( ν S ν R F ) ν S d c sin θ ) .
sin ( θ 0 ) = c T d ν S ν R F ν S = ν S ν R F ν S × sin ( θ 0 ) | T T D ,
H ( ν ) = e i ϕ c × e i ( 2 π ν τ + ϕ o f f s e t ( τ ) ) ,
ϕ o f f s e t ( τ ) = mod ( ϕ o f f s e t ( τ ) ) n × 2 π ,
Δ ν R F × 15 ν R F = 10 n s × 120 M H z                 Δ ν R F ν R F = 8 % .
H ( ν ) = r = 0 N 1 a r e 2 i π r ( α ν ) T = H ( α ν ) .
a r a r × e i r ϕ ( ν C ) ,
H ( ν ) = r = 0 N 1 a r e i r ϕ ( ν C ) e 2 i π r ν T = r = 0 N 1 a r e 2 i π r ( ν ϕ ( ν C ) 2 π T ) T = H ( ν ϕ ( ν C ) 2 π T ) .
H ( ν ) = cos 2 ( ϕ ( ν c ) 2 π ν T 0 π ( ν ν R F ) T ) ,
ϕ ( ν c ) = mod ( π + 2 π ν n o t c h T 0 + 2 π T ( ν n o t c h ν R F ) ) ,

Metrics