Abstract

An etch method based on surface tension driven flows of hydrofluoric acid microdroplets for the fabrication of low-loss, subwavelength-diameter biconical fiber tapers is presented. Tapers with losses less than 0.1 dB/mm are demonstrated, corresponding to an order of magnitude increase in the optical transmission over previous acid-etch techniques. The etch method produces adiabatic taper transitions with minimal surface corrugations. A biconical fiber taper fabricated using this method is used to demonstrate an erbium doped silica microsphere laser.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. C. Knight, G. Cheung, F. Jacques, and T. A. Birks, “Phase-matched excitation of whispering-gallery-mode resonances by a fiber taper,” Opt. Lett. 22(15), 1129–1131 (1997), http://www.opticsinfobase.org/abstract.cfm?URI=ol-22-15-1129 .
    [CrossRef] [PubMed]
  2. J. P. Laine, B. E. Little, and H. A. Haus, “Etch-eroded fiber coupler for whispering-gallery-mode excitation in high-Q silica microspheres,” IEEE Photon. Technol. Lett. 11(11), 1429–1430 (1999).
    [CrossRef]
  3. M. Cai, O. Painter, K. J. Vahala, and P. C. Sercel, “Fiber-coupled microsphere laser,” Opt. Lett. 25(19), 1430–1432 (2000), http://www.opticsinfobase.org/abstract.cfm?URI=ol-25-19-1430 .
    [CrossRef]
  4. M. T. Rakher, R. Bose, C. W. Wong, and K. Srinivasan, “Spectroscopy of 1.55 μm PbS quantum dots on Si photonic crystal cavities with a fiber taper waveguide,” Appl. Phys. Lett. 96(16), 161108 (2010).
    [CrossRef]
  5. W. Liang, Y. Huang, Y. Xu, R. K. Lee, and A. Yariv, “Highly sensitive fiber Bragg grating refractive index sensors,” Appl. Phys. Lett. 86(15), 151122 (2005).
    [CrossRef]
  6. K. Q. Kieu and M. Mansuripur, “Biconical fiber taper sensors,” IEEE Photon. Technol. Lett. 18(21), 2239–2241 (2006).
    [CrossRef]
  7. A. Leung, P. M. Shankar, and R. Mutharasan, “A review of fiber-optic biosensors,” Sens. Actuators B Chem. 125(2), 688–703 (2007).
    [CrossRef]
  8. T. A. Birks, W. J. Wadsworth, and P. St. J. Russell, “Supercontinuum generation in tapered fibers,” Opt. Lett. 25(19), 1415–1417 (2000), http://www.opticsinfobase.org/abstract.cfm?uri=ol-25-19-1415 .
    [CrossRef]
  9. M. A. Foster, A. C. Turner, M. Lipson, and A. L. Gaeta, “Nonlinear optics in photonic nanowires,” Opt. Exp. 16, 1300–1320 (2008), http://www.opticsinfobase.org/abstract.cfm?URI=oe-16-2-1300 .
  10. G. Brambilla, V. Finazzi, and D. J. Richardson, “Ultra-low-loss optical fiber nanotapers,” Opt. Exp. 12, 2258–2263 (2004), http://www.opticsinfobase.org/abstract.cfm?URI=OPEX-12-10-2258 .
  11. L. Tong, R. R. Gattass, J. B. Ashcom, S. He, J. Lou, M. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature 426(6968), 816–819 (2003).
    [CrossRef] [PubMed]
  12. G. Brambilla, “Optical fiber nanowires and microwires: a review,” J. Opt. 12(4), 043001 (2010).
    [CrossRef]
  13. H. S. Haddock, P. M. Shankar, and R. Mutharasan, “Fabrication of biconical tapered optical fibers using hydrofluoric acid,” Mater. Sci. Eng. B 97(1), 87–93 (2003).
    [CrossRef]
  14. A. W. Snyder, “Coupling of modes on a tapered dielectric cylinder,” IEEE Trans. Microw. Theory Tech. 18(7), 383–392 (1970).
    [CrossRef]
  15. R. Tadmor, “Marangoni flow revisited,” J. Colloid Interface Sci. 332(2), 451–454 (2009).
    [CrossRef] [PubMed]
  16. U. Roth, O. Paulus, and U. Menyes, “Surface activity of amphiphiles in hydrogen fluoride – water solutions,” Colloid Polym. Sci. 273(8), 800–806 (1995).
    [CrossRef]
  17. M. T. Lee, “Reaction of high-silica optical fibers with hydrofluoric acid,” J. Am. Ceram. Soc. 67(2), C-21–C-22 (1984).
    [CrossRef]
  18. S. H. Behrens and D. G. Grier, “The charge of glass and silica surfaces,” J. Chem. Phys. 115(14), 6716–6721 (2001).
    [CrossRef]
  19. J. A. Voorthuyzen, K. Keskin, and P. Bergveld, “Investigations of the surface conductivity of silicon dioxide and methods to reduce it,” Surf. Sci. 187(1), 201–211 (1987).
    [CrossRef]
  20. T. J. Kippenberg, Nonlinear Optics in Ultra-high-Q Whispering-Gallery Optical Microcavities (Doctoral dissertation, California Institute of Technology, 2004), pp. 30.

2010 (2)

M. T. Rakher, R. Bose, C. W. Wong, and K. Srinivasan, “Spectroscopy of 1.55 μm PbS quantum dots on Si photonic crystal cavities with a fiber taper waveguide,” Appl. Phys. Lett. 96(16), 161108 (2010).
[CrossRef]

G. Brambilla, “Optical fiber nanowires and microwires: a review,” J. Opt. 12(4), 043001 (2010).
[CrossRef]

2009 (1)

R. Tadmor, “Marangoni flow revisited,” J. Colloid Interface Sci. 332(2), 451–454 (2009).
[CrossRef] [PubMed]

2007 (1)

A. Leung, P. M. Shankar, and R. Mutharasan, “A review of fiber-optic biosensors,” Sens. Actuators B Chem. 125(2), 688–703 (2007).
[CrossRef]

2006 (1)

K. Q. Kieu and M. Mansuripur, “Biconical fiber taper sensors,” IEEE Photon. Technol. Lett. 18(21), 2239–2241 (2006).
[CrossRef]

2005 (1)

W. Liang, Y. Huang, Y. Xu, R. K. Lee, and A. Yariv, “Highly sensitive fiber Bragg grating refractive index sensors,” Appl. Phys. Lett. 86(15), 151122 (2005).
[CrossRef]

2003 (2)

H. S. Haddock, P. M. Shankar, and R. Mutharasan, “Fabrication of biconical tapered optical fibers using hydrofluoric acid,” Mater. Sci. Eng. B 97(1), 87–93 (2003).
[CrossRef]

L. Tong, R. R. Gattass, J. B. Ashcom, S. He, J. Lou, M. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature 426(6968), 816–819 (2003).
[CrossRef] [PubMed]

2001 (1)

S. H. Behrens and D. G. Grier, “The charge of glass and silica surfaces,” J. Chem. Phys. 115(14), 6716–6721 (2001).
[CrossRef]

2000 (2)

1999 (1)

J. P. Laine, B. E. Little, and H. A. Haus, “Etch-eroded fiber coupler for whispering-gallery-mode excitation in high-Q silica microspheres,” IEEE Photon. Technol. Lett. 11(11), 1429–1430 (1999).
[CrossRef]

1997 (1)

1995 (1)

U. Roth, O. Paulus, and U. Menyes, “Surface activity of amphiphiles in hydrogen fluoride – water solutions,” Colloid Polym. Sci. 273(8), 800–806 (1995).
[CrossRef]

1987 (1)

J. A. Voorthuyzen, K. Keskin, and P. Bergveld, “Investigations of the surface conductivity of silicon dioxide and methods to reduce it,” Surf. Sci. 187(1), 201–211 (1987).
[CrossRef]

1984 (1)

M. T. Lee, “Reaction of high-silica optical fibers with hydrofluoric acid,” J. Am. Ceram. Soc. 67(2), C-21–C-22 (1984).
[CrossRef]

1970 (1)

A. W. Snyder, “Coupling of modes on a tapered dielectric cylinder,” IEEE Trans. Microw. Theory Tech. 18(7), 383–392 (1970).
[CrossRef]

Ashcom, J. B.

L. Tong, R. R. Gattass, J. B. Ashcom, S. He, J. Lou, M. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature 426(6968), 816–819 (2003).
[CrossRef] [PubMed]

Behrens, S. H.

S. H. Behrens and D. G. Grier, “The charge of glass and silica surfaces,” J. Chem. Phys. 115(14), 6716–6721 (2001).
[CrossRef]

Bergveld, P.

J. A. Voorthuyzen, K. Keskin, and P. Bergveld, “Investigations of the surface conductivity of silicon dioxide and methods to reduce it,” Surf. Sci. 187(1), 201–211 (1987).
[CrossRef]

Birks, T. A.

Bose, R.

M. T. Rakher, R. Bose, C. W. Wong, and K. Srinivasan, “Spectroscopy of 1.55 μm PbS quantum dots on Si photonic crystal cavities with a fiber taper waveguide,” Appl. Phys. Lett. 96(16), 161108 (2010).
[CrossRef]

Brambilla, G.

G. Brambilla, “Optical fiber nanowires and microwires: a review,” J. Opt. 12(4), 043001 (2010).
[CrossRef]

Cai, M.

Cheung, G.

Gattass, R. R.

L. Tong, R. R. Gattass, J. B. Ashcom, S. He, J. Lou, M. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature 426(6968), 816–819 (2003).
[CrossRef] [PubMed]

Grier, D. G.

S. H. Behrens and D. G. Grier, “The charge of glass and silica surfaces,” J. Chem. Phys. 115(14), 6716–6721 (2001).
[CrossRef]

Haddock, H. S.

H. S. Haddock, P. M. Shankar, and R. Mutharasan, “Fabrication of biconical tapered optical fibers using hydrofluoric acid,” Mater. Sci. Eng. B 97(1), 87–93 (2003).
[CrossRef]

Haus, H. A.

J. P. Laine, B. E. Little, and H. A. Haus, “Etch-eroded fiber coupler for whispering-gallery-mode excitation in high-Q silica microspheres,” IEEE Photon. Technol. Lett. 11(11), 1429–1430 (1999).
[CrossRef]

He, S.

L. Tong, R. R. Gattass, J. B. Ashcom, S. He, J. Lou, M. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature 426(6968), 816–819 (2003).
[CrossRef] [PubMed]

Huang, Y.

W. Liang, Y. Huang, Y. Xu, R. K. Lee, and A. Yariv, “Highly sensitive fiber Bragg grating refractive index sensors,” Appl. Phys. Lett. 86(15), 151122 (2005).
[CrossRef]

Jacques, F.

Keskin, K.

J. A. Voorthuyzen, K. Keskin, and P. Bergveld, “Investigations of the surface conductivity of silicon dioxide and methods to reduce it,” Surf. Sci. 187(1), 201–211 (1987).
[CrossRef]

Kieu, K. Q.

K. Q. Kieu and M. Mansuripur, “Biconical fiber taper sensors,” IEEE Photon. Technol. Lett. 18(21), 2239–2241 (2006).
[CrossRef]

Knight, J. C.

Laine, J. P.

J. P. Laine, B. E. Little, and H. A. Haus, “Etch-eroded fiber coupler for whispering-gallery-mode excitation in high-Q silica microspheres,” IEEE Photon. Technol. Lett. 11(11), 1429–1430 (1999).
[CrossRef]

Lee, M. T.

M. T. Lee, “Reaction of high-silica optical fibers with hydrofluoric acid,” J. Am. Ceram. Soc. 67(2), C-21–C-22 (1984).
[CrossRef]

Lee, R. K.

W. Liang, Y. Huang, Y. Xu, R. K. Lee, and A. Yariv, “Highly sensitive fiber Bragg grating refractive index sensors,” Appl. Phys. Lett. 86(15), 151122 (2005).
[CrossRef]

Leung, A.

A. Leung, P. M. Shankar, and R. Mutharasan, “A review of fiber-optic biosensors,” Sens. Actuators B Chem. 125(2), 688–703 (2007).
[CrossRef]

Liang, W.

W. Liang, Y. Huang, Y. Xu, R. K. Lee, and A. Yariv, “Highly sensitive fiber Bragg grating refractive index sensors,” Appl. Phys. Lett. 86(15), 151122 (2005).
[CrossRef]

Little, B. E.

J. P. Laine, B. E. Little, and H. A. Haus, “Etch-eroded fiber coupler for whispering-gallery-mode excitation in high-Q silica microspheres,” IEEE Photon. Technol. Lett. 11(11), 1429–1430 (1999).
[CrossRef]

Lou, J.

L. Tong, R. R. Gattass, J. B. Ashcom, S. He, J. Lou, M. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature 426(6968), 816–819 (2003).
[CrossRef] [PubMed]

Mansuripur, M.

K. Q. Kieu and M. Mansuripur, “Biconical fiber taper sensors,” IEEE Photon. Technol. Lett. 18(21), 2239–2241 (2006).
[CrossRef]

Maxwell, I.

L. Tong, R. R. Gattass, J. B. Ashcom, S. He, J. Lou, M. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature 426(6968), 816–819 (2003).
[CrossRef] [PubMed]

Mazur, E.

L. Tong, R. R. Gattass, J. B. Ashcom, S. He, J. Lou, M. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature 426(6968), 816–819 (2003).
[CrossRef] [PubMed]

Menyes, U.

U. Roth, O. Paulus, and U. Menyes, “Surface activity of amphiphiles in hydrogen fluoride – water solutions,” Colloid Polym. Sci. 273(8), 800–806 (1995).
[CrossRef]

Mutharasan, R.

A. Leung, P. M. Shankar, and R. Mutharasan, “A review of fiber-optic biosensors,” Sens. Actuators B Chem. 125(2), 688–703 (2007).
[CrossRef]

H. S. Haddock, P. M. Shankar, and R. Mutharasan, “Fabrication of biconical tapered optical fibers using hydrofluoric acid,” Mater. Sci. Eng. B 97(1), 87–93 (2003).
[CrossRef]

Painter, O.

Paulus, O.

U. Roth, O. Paulus, and U. Menyes, “Surface activity of amphiphiles in hydrogen fluoride – water solutions,” Colloid Polym. Sci. 273(8), 800–806 (1995).
[CrossRef]

Rakher, M. T.

M. T. Rakher, R. Bose, C. W. Wong, and K. Srinivasan, “Spectroscopy of 1.55 μm PbS quantum dots on Si photonic crystal cavities with a fiber taper waveguide,” Appl. Phys. Lett. 96(16), 161108 (2010).
[CrossRef]

Roth, U.

U. Roth, O. Paulus, and U. Menyes, “Surface activity of amphiphiles in hydrogen fluoride – water solutions,” Colloid Polym. Sci. 273(8), 800–806 (1995).
[CrossRef]

Russell, P. St. J.

Sercel, P. C.

Shankar, P. M.

A. Leung, P. M. Shankar, and R. Mutharasan, “A review of fiber-optic biosensors,” Sens. Actuators B Chem. 125(2), 688–703 (2007).
[CrossRef]

H. S. Haddock, P. M. Shankar, and R. Mutharasan, “Fabrication of biconical tapered optical fibers using hydrofluoric acid,” Mater. Sci. Eng. B 97(1), 87–93 (2003).
[CrossRef]

Shen, M.

L. Tong, R. R. Gattass, J. B. Ashcom, S. He, J. Lou, M. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature 426(6968), 816–819 (2003).
[CrossRef] [PubMed]

Snyder, A. W.

A. W. Snyder, “Coupling of modes on a tapered dielectric cylinder,” IEEE Trans. Microw. Theory Tech. 18(7), 383–392 (1970).
[CrossRef]

Srinivasan, K.

M. T. Rakher, R. Bose, C. W. Wong, and K. Srinivasan, “Spectroscopy of 1.55 μm PbS quantum dots on Si photonic crystal cavities with a fiber taper waveguide,” Appl. Phys. Lett. 96(16), 161108 (2010).
[CrossRef]

Tadmor, R.

R. Tadmor, “Marangoni flow revisited,” J. Colloid Interface Sci. 332(2), 451–454 (2009).
[CrossRef] [PubMed]

Tong, L.

L. Tong, R. R. Gattass, J. B. Ashcom, S. He, J. Lou, M. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature 426(6968), 816–819 (2003).
[CrossRef] [PubMed]

Vahala, K. J.

Voorthuyzen, J. A.

J. A. Voorthuyzen, K. Keskin, and P. Bergveld, “Investigations of the surface conductivity of silicon dioxide and methods to reduce it,” Surf. Sci. 187(1), 201–211 (1987).
[CrossRef]

Wadsworth, W. J.

Wong, C. W.

M. T. Rakher, R. Bose, C. W. Wong, and K. Srinivasan, “Spectroscopy of 1.55 μm PbS quantum dots on Si photonic crystal cavities with a fiber taper waveguide,” Appl. Phys. Lett. 96(16), 161108 (2010).
[CrossRef]

Xu, Y.

W. Liang, Y. Huang, Y. Xu, R. K. Lee, and A. Yariv, “Highly sensitive fiber Bragg grating refractive index sensors,” Appl. Phys. Lett. 86(15), 151122 (2005).
[CrossRef]

Yariv, A.

W. Liang, Y. Huang, Y. Xu, R. K. Lee, and A. Yariv, “Highly sensitive fiber Bragg grating refractive index sensors,” Appl. Phys. Lett. 86(15), 151122 (2005).
[CrossRef]

Appl. Phys. Lett. (2)

M. T. Rakher, R. Bose, C. W. Wong, and K. Srinivasan, “Spectroscopy of 1.55 μm PbS quantum dots on Si photonic crystal cavities with a fiber taper waveguide,” Appl. Phys. Lett. 96(16), 161108 (2010).
[CrossRef]

W. Liang, Y. Huang, Y. Xu, R. K. Lee, and A. Yariv, “Highly sensitive fiber Bragg grating refractive index sensors,” Appl. Phys. Lett. 86(15), 151122 (2005).
[CrossRef]

Colloid Polym. Sci. (1)

U. Roth, O. Paulus, and U. Menyes, “Surface activity of amphiphiles in hydrogen fluoride – water solutions,” Colloid Polym. Sci. 273(8), 800–806 (1995).
[CrossRef]

IEEE Photon. Technol. Lett. (2)

K. Q. Kieu and M. Mansuripur, “Biconical fiber taper sensors,” IEEE Photon. Technol. Lett. 18(21), 2239–2241 (2006).
[CrossRef]

J. P. Laine, B. E. Little, and H. A. Haus, “Etch-eroded fiber coupler for whispering-gallery-mode excitation in high-Q silica microspheres,” IEEE Photon. Technol. Lett. 11(11), 1429–1430 (1999).
[CrossRef]

IEEE Trans. Microw. Theory Tech. (1)

A. W. Snyder, “Coupling of modes on a tapered dielectric cylinder,” IEEE Trans. Microw. Theory Tech. 18(7), 383–392 (1970).
[CrossRef]

J. Am. Ceram. Soc. (1)

M. T. Lee, “Reaction of high-silica optical fibers with hydrofluoric acid,” J. Am. Ceram. Soc. 67(2), C-21–C-22 (1984).
[CrossRef]

J. Chem. Phys. (1)

S. H. Behrens and D. G. Grier, “The charge of glass and silica surfaces,” J. Chem. Phys. 115(14), 6716–6721 (2001).
[CrossRef]

J. Colloid Interface Sci. (1)

R. Tadmor, “Marangoni flow revisited,” J. Colloid Interface Sci. 332(2), 451–454 (2009).
[CrossRef] [PubMed]

J. Opt. (1)

G. Brambilla, “Optical fiber nanowires and microwires: a review,” J. Opt. 12(4), 043001 (2010).
[CrossRef]

Mater. Sci. Eng. B (1)

H. S. Haddock, P. M. Shankar, and R. Mutharasan, “Fabrication of biconical tapered optical fibers using hydrofluoric acid,” Mater. Sci. Eng. B 97(1), 87–93 (2003).
[CrossRef]

Nature (1)

L. Tong, R. R. Gattass, J. B. Ashcom, S. He, J. Lou, M. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature 426(6968), 816–819 (2003).
[CrossRef] [PubMed]

Opt. Lett. (3)

Sens. Actuators B Chem. (1)

A. Leung, P. M. Shankar, and R. Mutharasan, “A review of fiber-optic biosensors,” Sens. Actuators B Chem. 125(2), 688–703 (2007).
[CrossRef]

Surf. Sci. (1)

J. A. Voorthuyzen, K. Keskin, and P. Bergveld, “Investigations of the surface conductivity of silicon dioxide and methods to reduce it,” Surf. Sci. 187(1), 201–211 (1987).
[CrossRef]

Other (3)

T. J. Kippenberg, Nonlinear Optics in Ultra-high-Q Whispering-Gallery Optical Microcavities (Doctoral dissertation, California Institute of Technology, 2004), pp. 30.

M. A. Foster, A. C. Turner, M. Lipson, and A. L. Gaeta, “Nonlinear optics in photonic nanowires,” Opt. Exp. 16, 1300–1320 (2008), http://www.opticsinfobase.org/abstract.cfm?URI=oe-16-2-1300 .

G. Brambilla, V. Finazzi, and D. J. Richardson, “Ultra-low-loss optical fiber nanotapers,” Opt. Exp. 12, 2258–2263 (2004), http://www.opticsinfobase.org/abstract.cfm?URI=OPEX-12-10-2258 .

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

The etch setup, etch process and a final taper. (a) Schematic of the apparatus. (b) Optical micrographs of a taper waist for a typical etch progression. (c) An optical micrograph of the Marangoni flow at the droplet-fiber meniscus. The droplets move in the direction of the white arrow. (d) An optical micrograph of a fabricated taper. The insertion loss at 1550 nm was 0.05 dB

Fig. 2
Fig. 2

(a) Measurements of the waist diameter during an etch, with a final diameter of 920 nm. (b) In situ optical transmission measurements during the etch in (a). The dip occurs due to the extraction of the HF. The final loss is the insertion loss.

Fig. 3
Fig. 3

(a) SBFT loss measurements and SEM images. (a) The optical insertion losses of a series of tapers with various waist diameters. Taper lengths were 5.5 mm. (b) An SEM image of the waist surface. (c) Cross-section view near the waist region for the taper in (b). (d) An optical micrograph of the blue-green tinge of the 480 nm waist region under halogen lamp illumination.

Fig. 4
Fig. 4

(a) Output power at 1534 nm vs. launched input pump power at 980 nm. Insets show optical micrographs of the taper-coupled Er3+ microsphere laser and the Er3+ up-conversion fluorescence. (b) The multimode laser spectrum at a launched pump power of 6 mW showing the dominant lasing mode at 1534 nm.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

d γ / d x = ( d γ / d C H F ) ( d C H F / d x ) ,
D ˙ ( t ) = D ˙ ( t = 0 ) [ C H F ( t ) / C H F ( t = 0 ) ] ,

Metrics