Abstract

A broadband cholesteric liquid crystal (CLC) device with a multi-domain structure is demonstrated by using an aggregation of polyhedral oligomeric silsesquioxane (POSS) nanoparticles in the CLC layer. The aggregation pattern of the self-assembled POSS nanoparticles depends on the concentration of POSS doped in the mixture of POSS/CLC and the cooling rate of the mixture from a temperature higher than the clear point. POSS-induced changes in the bulk and surface properties of the cholesteric cells, such as a promotion of homeotropic alignment, help to form a cholesteric structure with a broadband reflection of light; the latter can be used for improvement of bistable CLC devices. A higher POSS concentration and a higher cooling rate both improve the appearance of the black-white CLC device.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Khan, I. Shiyanovskaya, T. Schneider, E. Montbach, D. J. Davis, N. Miller, D. Marhefka, T. Ernst, F. Nicholson, and J. W. Doane, “Progress in flexible and drapable reflective cholesteric displays,” J. Soc. Inf. Disp. 15(1), 9 (2007).
    [CrossRef]
  2. D. K. Yang, “Flexible bistable cholesteric reflective displays,” J. Display Technol. 2(1), 32–37 (2006).
    [CrossRef]
  3. D. K. Yang and J. W. Doane, “Cholesteric liquid crystal/polymer gel dispersion bistable at zero field,” SID Intl. Symp. Digest Tech. Papers 23, 759 (1992).
  4. D. K. Yang, J. L. West, L. C. Chien, and J. W. Doane, “Control of reflectivity and bistability in displays using cholesteric liquid crystals,” J. Appl. Phys. 76(2), 1331 (1994).
    [CrossRef]
  5. J. L. West, G. R. Magyar, and J. J. Francl, “Polymer-stabilized cholesteric texture materials for black-on-white displays,” SID Int. Symp. Digest Tech. Papers 25, 608–6106 (1994).
  6. R. Q. Ma and D. K. Yang, “Polymer-stabilized bistable black-white cholesteric reflective display,” SID Int. Symp. Digest Tech. 28, 101–104 (1997).
  7. R. Q. Ma and D. K. Yang, “Optimization of polymer-stabilized bistable black-white cholesteric reflective display,” J. Soc. Inf. Disp. 7(1), 61–65 (1999).
    [CrossRef]
  8. A. Lavernhe, M. Mitov, C. Binet, and C. Bourgerette, “How to broaden the light reflection band in colesteric liquid crystals? A new approach based on polymorphism,” Liq. Cryst. 28(5), 803–807 (2001).
    [CrossRef]
  9. R. Guo, H. Cao, H. Liu, K. Li, W. Huang, J. Xiao, X. Yuan, Z. Yang, and H. Yang, “Characteristics of wide-band reflection of polymer-stabilised cholesteric liquid crystal cell prepared from an unsticking technique,” Liq. Cryst. 36(9), 939–946 (2009).
    [CrossRef]
  10. S. Relaix, C. Bourgerette, and M. Mitov, “Broadband reflective cholesteric liquid crystalline gels: volume distribution of reflection properties and polymer network in relation with the geometry of the cell photopolymerization,” Liq. Cryst. 34(9), 1009–1018 (2007).
    [CrossRef]
  11. J. N. Hay, and S. J. Shaw, A Review for Nanocomposites 2000 Report to DTI by DERA Summarizing Nanocomposites 2000 Conference, Brussels, Belgium, (2000).
  12. J. Wu and P. T. Mather, “POSS Polymers: Physical Properties and Biomaterials Applications,” Pol. Rev. 49(1), 25–63 (2009).
    [CrossRef]
  13. A. J. Waddon, L. Zheng, R. J. Farris, and E. B. Coughlin, “Nanostructured Polyethylene-POSS Copolymers: Control of Crystallization and Aggregation,” Nano Lett. 2(10), 1149–1155 (2002).
    [CrossRef]
  14. S. C. Jeng, C. W. Kuo, H. L. Wang, and C. C. Liao, “Nanoparticles-induced vertical alignment in liquid crystal cell,” Appl. Phys. Lett. 91(6), 061112 (2007).
    [CrossRef]
  15. S. J. Hwang, S. C. Jeng, C. Y. Yang, C. W. Kuo, and C. C. Liao, “Characteristics of nanoparticle-doped homeotropic liquid crystal devices,” J. Phys. D 42(2), 025102 (2009).
    [CrossRef]
  16. E. F. Kelly, “Sensitivity of display reflection measurements to apparatus geometry,” SID Int. Symp. Digest Tech. 33, 1–4 (2002).
  17. D. A. Weitz, J. S. Huang, M. Y. Lin, and J. Sung, “Limits of the fractal dimension for irreversible kinetic aggregation of gold colloids,” Phys. Rev. Lett. 54(13), 1416–1419 (1985).
    [CrossRef] [PubMed]

2009

R. Guo, H. Cao, H. Liu, K. Li, W. Huang, J. Xiao, X. Yuan, Z. Yang, and H. Yang, “Characteristics of wide-band reflection of polymer-stabilised cholesteric liquid crystal cell prepared from an unsticking technique,” Liq. Cryst. 36(9), 939–946 (2009).
[CrossRef]

J. Wu and P. T. Mather, “POSS Polymers: Physical Properties and Biomaterials Applications,” Pol. Rev. 49(1), 25–63 (2009).
[CrossRef]

S. J. Hwang, S. C. Jeng, C. Y. Yang, C. W. Kuo, and C. C. Liao, “Characteristics of nanoparticle-doped homeotropic liquid crystal devices,” J. Phys. D 42(2), 025102 (2009).
[CrossRef]

2007

A. Khan, I. Shiyanovskaya, T. Schneider, E. Montbach, D. J. Davis, N. Miller, D. Marhefka, T. Ernst, F. Nicholson, and J. W. Doane, “Progress in flexible and drapable reflective cholesteric displays,” J. Soc. Inf. Disp. 15(1), 9 (2007).
[CrossRef]

S. C. Jeng, C. W. Kuo, H. L. Wang, and C. C. Liao, “Nanoparticles-induced vertical alignment in liquid crystal cell,” Appl. Phys. Lett. 91(6), 061112 (2007).
[CrossRef]

S. Relaix, C. Bourgerette, and M. Mitov, “Broadband reflective cholesteric liquid crystalline gels: volume distribution of reflection properties and polymer network in relation with the geometry of the cell photopolymerization,” Liq. Cryst. 34(9), 1009–1018 (2007).
[CrossRef]

2006

2002

E. F. Kelly, “Sensitivity of display reflection measurements to apparatus geometry,” SID Int. Symp. Digest Tech. 33, 1–4 (2002).

A. J. Waddon, L. Zheng, R. J. Farris, and E. B. Coughlin, “Nanostructured Polyethylene-POSS Copolymers: Control of Crystallization and Aggregation,” Nano Lett. 2(10), 1149–1155 (2002).
[CrossRef]

2001

A. Lavernhe, M. Mitov, C. Binet, and C. Bourgerette, “How to broaden the light reflection band in colesteric liquid crystals? A new approach based on polymorphism,” Liq. Cryst. 28(5), 803–807 (2001).
[CrossRef]

1999

R. Q. Ma and D. K. Yang, “Optimization of polymer-stabilized bistable black-white cholesteric reflective display,” J. Soc. Inf. Disp. 7(1), 61–65 (1999).
[CrossRef]

1997

R. Q. Ma and D. K. Yang, “Polymer-stabilized bistable black-white cholesteric reflective display,” SID Int. Symp. Digest Tech. 28, 101–104 (1997).

1994

D. K. Yang, J. L. West, L. C. Chien, and J. W. Doane, “Control of reflectivity and bistability in displays using cholesteric liquid crystals,” J. Appl. Phys. 76(2), 1331 (1994).
[CrossRef]

J. L. West, G. R. Magyar, and J. J. Francl, “Polymer-stabilized cholesteric texture materials for black-on-white displays,” SID Int. Symp. Digest Tech. Papers 25, 608–6106 (1994).

1992

D. K. Yang and J. W. Doane, “Cholesteric liquid crystal/polymer gel dispersion bistable at zero field,” SID Intl. Symp. Digest Tech. Papers 23, 759 (1992).

1985

D. A. Weitz, J. S. Huang, M. Y. Lin, and J. Sung, “Limits of the fractal dimension for irreversible kinetic aggregation of gold colloids,” Phys. Rev. Lett. 54(13), 1416–1419 (1985).
[CrossRef] [PubMed]

Binet, C.

A. Lavernhe, M. Mitov, C. Binet, and C. Bourgerette, “How to broaden the light reflection band in colesteric liquid crystals? A new approach based on polymorphism,” Liq. Cryst. 28(5), 803–807 (2001).
[CrossRef]

Bourgerette, C.

S. Relaix, C. Bourgerette, and M. Mitov, “Broadband reflective cholesteric liquid crystalline gels: volume distribution of reflection properties and polymer network in relation with the geometry of the cell photopolymerization,” Liq. Cryst. 34(9), 1009–1018 (2007).
[CrossRef]

A. Lavernhe, M. Mitov, C. Binet, and C. Bourgerette, “How to broaden the light reflection band in colesteric liquid crystals? A new approach based on polymorphism,” Liq. Cryst. 28(5), 803–807 (2001).
[CrossRef]

Cao, H.

R. Guo, H. Cao, H. Liu, K. Li, W. Huang, J. Xiao, X. Yuan, Z. Yang, and H. Yang, “Characteristics of wide-band reflection of polymer-stabilised cholesteric liquid crystal cell prepared from an unsticking technique,” Liq. Cryst. 36(9), 939–946 (2009).
[CrossRef]

Chien, L. C.

D. K. Yang, J. L. West, L. C. Chien, and J. W. Doane, “Control of reflectivity and bistability in displays using cholesteric liquid crystals,” J. Appl. Phys. 76(2), 1331 (1994).
[CrossRef]

Coughlin, E. B.

A. J. Waddon, L. Zheng, R. J. Farris, and E. B. Coughlin, “Nanostructured Polyethylene-POSS Copolymers: Control of Crystallization and Aggregation,” Nano Lett. 2(10), 1149–1155 (2002).
[CrossRef]

Davis, D. J.

A. Khan, I. Shiyanovskaya, T. Schneider, E. Montbach, D. J. Davis, N. Miller, D. Marhefka, T. Ernst, F. Nicholson, and J. W. Doane, “Progress in flexible and drapable reflective cholesteric displays,” J. Soc. Inf. Disp. 15(1), 9 (2007).
[CrossRef]

Doane, J. W.

A. Khan, I. Shiyanovskaya, T. Schneider, E. Montbach, D. J. Davis, N. Miller, D. Marhefka, T. Ernst, F. Nicholson, and J. W. Doane, “Progress in flexible and drapable reflective cholesteric displays,” J. Soc. Inf. Disp. 15(1), 9 (2007).
[CrossRef]

D. K. Yang, J. L. West, L. C. Chien, and J. W. Doane, “Control of reflectivity and bistability in displays using cholesteric liquid crystals,” J. Appl. Phys. 76(2), 1331 (1994).
[CrossRef]

D. K. Yang and J. W. Doane, “Cholesteric liquid crystal/polymer gel dispersion bistable at zero field,” SID Intl. Symp. Digest Tech. Papers 23, 759 (1992).

Ernst, T.

A. Khan, I. Shiyanovskaya, T. Schneider, E. Montbach, D. J. Davis, N. Miller, D. Marhefka, T. Ernst, F. Nicholson, and J. W. Doane, “Progress in flexible and drapable reflective cholesteric displays,” J. Soc. Inf. Disp. 15(1), 9 (2007).
[CrossRef]

Farris, R. J.

A. J. Waddon, L. Zheng, R. J. Farris, and E. B. Coughlin, “Nanostructured Polyethylene-POSS Copolymers: Control of Crystallization and Aggregation,” Nano Lett. 2(10), 1149–1155 (2002).
[CrossRef]

Francl, J. J.

J. L. West, G. R. Magyar, and J. J. Francl, “Polymer-stabilized cholesteric texture materials for black-on-white displays,” SID Int. Symp. Digest Tech. Papers 25, 608–6106 (1994).

Guo, R.

R. Guo, H. Cao, H. Liu, K. Li, W. Huang, J. Xiao, X. Yuan, Z. Yang, and H. Yang, “Characteristics of wide-band reflection of polymer-stabilised cholesteric liquid crystal cell prepared from an unsticking technique,” Liq. Cryst. 36(9), 939–946 (2009).
[CrossRef]

Huang, J. S.

D. A. Weitz, J. S. Huang, M. Y. Lin, and J. Sung, “Limits of the fractal dimension for irreversible kinetic aggregation of gold colloids,” Phys. Rev. Lett. 54(13), 1416–1419 (1985).
[CrossRef] [PubMed]

Huang, W.

R. Guo, H. Cao, H. Liu, K. Li, W. Huang, J. Xiao, X. Yuan, Z. Yang, and H. Yang, “Characteristics of wide-band reflection of polymer-stabilised cholesteric liquid crystal cell prepared from an unsticking technique,” Liq. Cryst. 36(9), 939–946 (2009).
[CrossRef]

Hwang, S. J.

S. J. Hwang, S. C. Jeng, C. Y. Yang, C. W. Kuo, and C. C. Liao, “Characteristics of nanoparticle-doped homeotropic liquid crystal devices,” J. Phys. D 42(2), 025102 (2009).
[CrossRef]

Jeng, S. C.

S. J. Hwang, S. C. Jeng, C. Y. Yang, C. W. Kuo, and C. C. Liao, “Characteristics of nanoparticle-doped homeotropic liquid crystal devices,” J. Phys. D 42(2), 025102 (2009).
[CrossRef]

S. C. Jeng, C. W. Kuo, H. L. Wang, and C. C. Liao, “Nanoparticles-induced vertical alignment in liquid crystal cell,” Appl. Phys. Lett. 91(6), 061112 (2007).
[CrossRef]

Kelly, E. F.

E. F. Kelly, “Sensitivity of display reflection measurements to apparatus geometry,” SID Int. Symp. Digest Tech. 33, 1–4 (2002).

Khan, A.

A. Khan, I. Shiyanovskaya, T. Schneider, E. Montbach, D. J. Davis, N. Miller, D. Marhefka, T. Ernst, F. Nicholson, and J. W. Doane, “Progress in flexible and drapable reflective cholesteric displays,” J. Soc. Inf. Disp. 15(1), 9 (2007).
[CrossRef]

Kuo, C. W.

S. J. Hwang, S. C. Jeng, C. Y. Yang, C. W. Kuo, and C. C. Liao, “Characteristics of nanoparticle-doped homeotropic liquid crystal devices,” J. Phys. D 42(2), 025102 (2009).
[CrossRef]

S. C. Jeng, C. W. Kuo, H. L. Wang, and C. C. Liao, “Nanoparticles-induced vertical alignment in liquid crystal cell,” Appl. Phys. Lett. 91(6), 061112 (2007).
[CrossRef]

Lavernhe, A.

A. Lavernhe, M. Mitov, C. Binet, and C. Bourgerette, “How to broaden the light reflection band in colesteric liquid crystals? A new approach based on polymorphism,” Liq. Cryst. 28(5), 803–807 (2001).
[CrossRef]

Li, K.

R. Guo, H. Cao, H. Liu, K. Li, W. Huang, J. Xiao, X. Yuan, Z. Yang, and H. Yang, “Characteristics of wide-band reflection of polymer-stabilised cholesteric liquid crystal cell prepared from an unsticking technique,” Liq. Cryst. 36(9), 939–946 (2009).
[CrossRef]

Liao, C. C.

S. J. Hwang, S. C. Jeng, C. Y. Yang, C. W. Kuo, and C. C. Liao, “Characteristics of nanoparticle-doped homeotropic liquid crystal devices,” J. Phys. D 42(2), 025102 (2009).
[CrossRef]

S. C. Jeng, C. W. Kuo, H. L. Wang, and C. C. Liao, “Nanoparticles-induced vertical alignment in liquid crystal cell,” Appl. Phys. Lett. 91(6), 061112 (2007).
[CrossRef]

Lin, M. Y.

D. A. Weitz, J. S. Huang, M. Y. Lin, and J. Sung, “Limits of the fractal dimension for irreversible kinetic aggregation of gold colloids,” Phys. Rev. Lett. 54(13), 1416–1419 (1985).
[CrossRef] [PubMed]

Liu, H.

R. Guo, H. Cao, H. Liu, K. Li, W. Huang, J. Xiao, X. Yuan, Z. Yang, and H. Yang, “Characteristics of wide-band reflection of polymer-stabilised cholesteric liquid crystal cell prepared from an unsticking technique,” Liq. Cryst. 36(9), 939–946 (2009).
[CrossRef]

Ma, R. Q.

R. Q. Ma and D. K. Yang, “Optimization of polymer-stabilized bistable black-white cholesteric reflective display,” J. Soc. Inf. Disp. 7(1), 61–65 (1999).
[CrossRef]

R. Q. Ma and D. K. Yang, “Polymer-stabilized bistable black-white cholesteric reflective display,” SID Int. Symp. Digest Tech. 28, 101–104 (1997).

Magyar, G. R.

J. L. West, G. R. Magyar, and J. J. Francl, “Polymer-stabilized cholesteric texture materials for black-on-white displays,” SID Int. Symp. Digest Tech. Papers 25, 608–6106 (1994).

Marhefka, D.

A. Khan, I. Shiyanovskaya, T. Schneider, E. Montbach, D. J. Davis, N. Miller, D. Marhefka, T. Ernst, F. Nicholson, and J. W. Doane, “Progress in flexible and drapable reflective cholesteric displays,” J. Soc. Inf. Disp. 15(1), 9 (2007).
[CrossRef]

Mather, P. T.

J. Wu and P. T. Mather, “POSS Polymers: Physical Properties and Biomaterials Applications,” Pol. Rev. 49(1), 25–63 (2009).
[CrossRef]

Miller, N.

A. Khan, I. Shiyanovskaya, T. Schneider, E. Montbach, D. J. Davis, N. Miller, D. Marhefka, T. Ernst, F. Nicholson, and J. W. Doane, “Progress in flexible and drapable reflective cholesteric displays,” J. Soc. Inf. Disp. 15(1), 9 (2007).
[CrossRef]

Mitov, M.

S. Relaix, C. Bourgerette, and M. Mitov, “Broadband reflective cholesteric liquid crystalline gels: volume distribution of reflection properties and polymer network in relation with the geometry of the cell photopolymerization,” Liq. Cryst. 34(9), 1009–1018 (2007).
[CrossRef]

A. Lavernhe, M. Mitov, C. Binet, and C. Bourgerette, “How to broaden the light reflection band in colesteric liquid crystals? A new approach based on polymorphism,” Liq. Cryst. 28(5), 803–807 (2001).
[CrossRef]

Montbach, E.

A. Khan, I. Shiyanovskaya, T. Schneider, E. Montbach, D. J. Davis, N. Miller, D. Marhefka, T. Ernst, F. Nicholson, and J. W. Doane, “Progress in flexible and drapable reflective cholesteric displays,” J. Soc. Inf. Disp. 15(1), 9 (2007).
[CrossRef]

Nicholson, F.

A. Khan, I. Shiyanovskaya, T. Schneider, E. Montbach, D. J. Davis, N. Miller, D. Marhefka, T. Ernst, F. Nicholson, and J. W. Doane, “Progress in flexible and drapable reflective cholesteric displays,” J. Soc. Inf. Disp. 15(1), 9 (2007).
[CrossRef]

Relaix, S.

S. Relaix, C. Bourgerette, and M. Mitov, “Broadband reflective cholesteric liquid crystalline gels: volume distribution of reflection properties and polymer network in relation with the geometry of the cell photopolymerization,” Liq. Cryst. 34(9), 1009–1018 (2007).
[CrossRef]

Schneider, T.

A. Khan, I. Shiyanovskaya, T. Schneider, E. Montbach, D. J. Davis, N. Miller, D. Marhefka, T. Ernst, F. Nicholson, and J. W. Doane, “Progress in flexible and drapable reflective cholesteric displays,” J. Soc. Inf. Disp. 15(1), 9 (2007).
[CrossRef]

Shiyanovskaya, I.

A. Khan, I. Shiyanovskaya, T. Schneider, E. Montbach, D. J. Davis, N. Miller, D. Marhefka, T. Ernst, F. Nicholson, and J. W. Doane, “Progress in flexible and drapable reflective cholesteric displays,” J. Soc. Inf. Disp. 15(1), 9 (2007).
[CrossRef]

Sung, J.

D. A. Weitz, J. S. Huang, M. Y. Lin, and J. Sung, “Limits of the fractal dimension for irreversible kinetic aggregation of gold colloids,” Phys. Rev. Lett. 54(13), 1416–1419 (1985).
[CrossRef] [PubMed]

Waddon, A. J.

A. J. Waddon, L. Zheng, R. J. Farris, and E. B. Coughlin, “Nanostructured Polyethylene-POSS Copolymers: Control of Crystallization and Aggregation,” Nano Lett. 2(10), 1149–1155 (2002).
[CrossRef]

Wang, H. L.

S. C. Jeng, C. W. Kuo, H. L. Wang, and C. C. Liao, “Nanoparticles-induced vertical alignment in liquid crystal cell,” Appl. Phys. Lett. 91(6), 061112 (2007).
[CrossRef]

Weitz, D. A.

D. A. Weitz, J. S. Huang, M. Y. Lin, and J. Sung, “Limits of the fractal dimension for irreversible kinetic aggregation of gold colloids,” Phys. Rev. Lett. 54(13), 1416–1419 (1985).
[CrossRef] [PubMed]

West, J. L.

J. L. West, G. R. Magyar, and J. J. Francl, “Polymer-stabilized cholesteric texture materials for black-on-white displays,” SID Int. Symp. Digest Tech. Papers 25, 608–6106 (1994).

D. K. Yang, J. L. West, L. C. Chien, and J. W. Doane, “Control of reflectivity and bistability in displays using cholesteric liquid crystals,” J. Appl. Phys. 76(2), 1331 (1994).
[CrossRef]

Wu, J.

J. Wu and P. T. Mather, “POSS Polymers: Physical Properties and Biomaterials Applications,” Pol. Rev. 49(1), 25–63 (2009).
[CrossRef]

Xiao, J.

R. Guo, H. Cao, H. Liu, K. Li, W. Huang, J. Xiao, X. Yuan, Z. Yang, and H. Yang, “Characteristics of wide-band reflection of polymer-stabilised cholesteric liquid crystal cell prepared from an unsticking technique,” Liq. Cryst. 36(9), 939–946 (2009).
[CrossRef]

Yang, C. Y.

S. J. Hwang, S. C. Jeng, C. Y. Yang, C. W. Kuo, and C. C. Liao, “Characteristics of nanoparticle-doped homeotropic liquid crystal devices,” J. Phys. D 42(2), 025102 (2009).
[CrossRef]

Yang, D. K.

D. K. Yang, “Flexible bistable cholesteric reflective displays,” J. Display Technol. 2(1), 32–37 (2006).
[CrossRef]

R. Q. Ma and D. K. Yang, “Optimization of polymer-stabilized bistable black-white cholesteric reflective display,” J. Soc. Inf. Disp. 7(1), 61–65 (1999).
[CrossRef]

R. Q. Ma and D. K. Yang, “Polymer-stabilized bistable black-white cholesteric reflective display,” SID Int. Symp. Digest Tech. 28, 101–104 (1997).

D. K. Yang, J. L. West, L. C. Chien, and J. W. Doane, “Control of reflectivity and bistability in displays using cholesteric liquid crystals,” J. Appl. Phys. 76(2), 1331 (1994).
[CrossRef]

D. K. Yang and J. W. Doane, “Cholesteric liquid crystal/polymer gel dispersion bistable at zero field,” SID Intl. Symp. Digest Tech. Papers 23, 759 (1992).

Yang, H.

R. Guo, H. Cao, H. Liu, K. Li, W. Huang, J. Xiao, X. Yuan, Z. Yang, and H. Yang, “Characteristics of wide-band reflection of polymer-stabilised cholesteric liquid crystal cell prepared from an unsticking technique,” Liq. Cryst. 36(9), 939–946 (2009).
[CrossRef]

Yang, Z.

R. Guo, H. Cao, H. Liu, K. Li, W. Huang, J. Xiao, X. Yuan, Z. Yang, and H. Yang, “Characteristics of wide-band reflection of polymer-stabilised cholesteric liquid crystal cell prepared from an unsticking technique,” Liq. Cryst. 36(9), 939–946 (2009).
[CrossRef]

Yuan, X.

R. Guo, H. Cao, H. Liu, K. Li, W. Huang, J. Xiao, X. Yuan, Z. Yang, and H. Yang, “Characteristics of wide-band reflection of polymer-stabilised cholesteric liquid crystal cell prepared from an unsticking technique,” Liq. Cryst. 36(9), 939–946 (2009).
[CrossRef]

Zheng, L.

A. J. Waddon, L. Zheng, R. J. Farris, and E. B. Coughlin, “Nanostructured Polyethylene-POSS Copolymers: Control of Crystallization and Aggregation,” Nano Lett. 2(10), 1149–1155 (2002).
[CrossRef]

Appl. Phys. Lett.

S. C. Jeng, C. W. Kuo, H. L. Wang, and C. C. Liao, “Nanoparticles-induced vertical alignment in liquid crystal cell,” Appl. Phys. Lett. 91(6), 061112 (2007).
[CrossRef]

J. Appl. Phys.

D. K. Yang, J. L. West, L. C. Chien, and J. W. Doane, “Control of reflectivity and bistability in displays using cholesteric liquid crystals,” J. Appl. Phys. 76(2), 1331 (1994).
[CrossRef]

J. Display Technol.

J. Phys. D

S. J. Hwang, S. C. Jeng, C. Y. Yang, C. W. Kuo, and C. C. Liao, “Characteristics of nanoparticle-doped homeotropic liquid crystal devices,” J. Phys. D 42(2), 025102 (2009).
[CrossRef]

J. Soc. Inf. Disp.

A. Khan, I. Shiyanovskaya, T. Schneider, E. Montbach, D. J. Davis, N. Miller, D. Marhefka, T. Ernst, F. Nicholson, and J. W. Doane, “Progress in flexible and drapable reflective cholesteric displays,” J. Soc. Inf. Disp. 15(1), 9 (2007).
[CrossRef]

R. Q. Ma and D. K. Yang, “Optimization of polymer-stabilized bistable black-white cholesteric reflective display,” J. Soc. Inf. Disp. 7(1), 61–65 (1999).
[CrossRef]

Liq. Cryst.

A. Lavernhe, M. Mitov, C. Binet, and C. Bourgerette, “How to broaden the light reflection band in colesteric liquid crystals? A new approach based on polymorphism,” Liq. Cryst. 28(5), 803–807 (2001).
[CrossRef]

R. Guo, H. Cao, H. Liu, K. Li, W. Huang, J. Xiao, X. Yuan, Z. Yang, and H. Yang, “Characteristics of wide-band reflection of polymer-stabilised cholesteric liquid crystal cell prepared from an unsticking technique,” Liq. Cryst. 36(9), 939–946 (2009).
[CrossRef]

S. Relaix, C. Bourgerette, and M. Mitov, “Broadband reflective cholesteric liquid crystalline gels: volume distribution of reflection properties and polymer network in relation with the geometry of the cell photopolymerization,” Liq. Cryst. 34(9), 1009–1018 (2007).
[CrossRef]

Nano Lett.

A. J. Waddon, L. Zheng, R. J. Farris, and E. B. Coughlin, “Nanostructured Polyethylene-POSS Copolymers: Control of Crystallization and Aggregation,” Nano Lett. 2(10), 1149–1155 (2002).
[CrossRef]

Phys. Rev. Lett.

D. A. Weitz, J. S. Huang, M. Y. Lin, and J. Sung, “Limits of the fractal dimension for irreversible kinetic aggregation of gold colloids,” Phys. Rev. Lett. 54(13), 1416–1419 (1985).
[CrossRef] [PubMed]

Pol. Rev.

J. Wu and P. T. Mather, “POSS Polymers: Physical Properties and Biomaterials Applications,” Pol. Rev. 49(1), 25–63 (2009).
[CrossRef]

SID Int. Symp. Digest Tech.

E. F. Kelly, “Sensitivity of display reflection measurements to apparatus geometry,” SID Int. Symp. Digest Tech. 33, 1–4 (2002).

R. Q. Ma and D. K. Yang, “Polymer-stabilized bistable black-white cholesteric reflective display,” SID Int. Symp. Digest Tech. 28, 101–104 (1997).

SID Int. Symp. Digest Tech. Papers

J. L. West, G. R. Magyar, and J. J. Francl, “Polymer-stabilized cholesteric texture materials for black-on-white displays,” SID Int. Symp. Digest Tech. Papers 25, 608–6106 (1994).

SID Intl. Symp. Digest Tech. Papers

D. K. Yang and J. W. Doane, “Cholesteric liquid crystal/polymer gel dispersion bistable at zero field,” SID Intl. Symp. Digest Tech. Papers 23, 759 (1992).

Other

J. N. Hay, and S. J. Shaw, A Review for Nanocomposites 2000 Report to DTI by DERA Summarizing Nanocomposites 2000 Conference, Brussels, Belgium, (2000).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

The experimental setup for measuring the transmission spectrum of a CLC device.

Fig. 2
Fig. 2

The structure of 1,2-Propanediollsobutyl POSS.

Fig. 3
Fig. 3

The aggregation patterns of CLC cells doped with different POSS concentration (5 wt%, 10 wt%, 15 wt%, 20 wt%) and different cooling treatment (0.5 °C/min, 5°C/min, 80°C/min)observed by a polarizing optical microscopy.

Fig. 4
Fig. 4

The influence of POSS concentration on the reflection spectra of CLC cells operated in the multi-domain planar state.

Fig. 5
Fig. 5

The influence of cooling rate on the reflection spectra of CLC cells operated in the multi-domain planar state.

Fig. 6
Fig. 6

The appearances of CLC cells operated in multi-domain planar state and focal-conic state with 10 wt% POSS concentration and 80°C/min cooling rate comparing with a pure CLC cell without POSS.

Fig. 7
Fig. 7

Reflectance as a function of driving voltage for a CLC cell (10 wt% POSS concentration and 80°C/min cooling rate) operated in the multi-domain planar state prior to the driving voltage.

Metrics