Abstract

We present experimental results for the plasmonic laser ablation of silicon with nanoscale features as small as 22 x 66 nm using single near-infrared, femtosecond laser pulses incident on gold nanorods. Near the ablation threshold, these features are photo-imprints of gold nanorod particles positioned on the surface of the silicon and have feature sizes similar to the nanorods. The single rod-shaped ablation pattern matches the enhancement patterns of the Poynting vector magnitude on the surface of silicon, implying that the ablation is a result of the plasmonic enhancement of the incident electromagnetic waves in the near-field of the particles. Interestingly, the ablation pattern is different from the two separated holes at the ends of the nanorod, as would be expected from the electric field – |E|2 enhancement pattern. We measured the plasmonic ablation threshold fluence to be almost two orders of magnitude less than the femtosecond laser ablation threshold of silica, present in the thin native oxide layer on the surface of silicon. This value also agrees with the enhancement of the Poynting vector of a nanorod on silicon as calculated with electromagnetic simulations. We thus conclude that plasmonic ablation with plasmonic nanoparticles depends directly on the polarization and the value of the near-field enhancement of the Poynting vector and not the square of the electric field as previously suggested.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. Tan, C. S. Peng, J. Pakarinen, M. Pessa, V. N. Petryakov, Y. K. Verevkin, J. Zhang, Z. Wang, S. M. Olaizola, T. Berthou, and S. Tisserand, “Ordered nanostructures written directly by laser interference,” Nanotechnology 20(12), 125303 (2009).
    [CrossRef] [PubMed]
  2. A. Chimmalgi, T. Y. Choi, C. P. Grigoropoulos, and K. Komvopoulos, “Femtosecond laser aperturless near-field nanomachining of metals assisted by scanning probe microscopy,” Appl. Phys. Lett. 82(8), 1146 (2003).
    [CrossRef]
  3. J. Serbin, A. Egbert, A. Ostendorf, B. N. Chichkov, R. Houbertz, G. Domann, J. Schulz, C. Cronauer, L. Fröhlich, and M. Popall, “Femtosecond laser-induced two-photon polymerization of inorganic-organic hybrid materials for applications in photonics,” Opt. Lett. 28(5), 301–303 (2003).
    [CrossRef] [PubMed]
  4. A. P. Joglekar, H. H. Liu, E. Meyhöfer, G. Mourou, and A. J. Hunt, “Optics at critical intensity: applications to nanomorphing,” Proc. Natl. Acad. Sci. U.S.A. 101(16), 5856–5861 (2004).
    [CrossRef] [PubMed]
  5. H. J. Münzer, M. Mosbacher, M. Bertsch, O. Dubbers, F. Burmeister, A. Pack, R. Wannemacher, B. U. Runge, D. Bӓ uerle, J. Boneberg, and P. Leiderer, “Optical near field effects in surface nanostructuring and laser cleaning,” Proc. SPIE 4426, 180–183 (2002).
    [CrossRef]
  6. D. Brodoceanu, L. Landström, and D. Bäuerle, “Laser-induced nanopatterning of silicon with colloidal monolayers,” Appl. Phys., A Mater. Sci. Process. 86(3), 313–314 (2007).
    [CrossRef]
  7. N. N. Nedyalkov, P. A. Atanasov, and M. Obara, “Near-field properties of a gold nanoparticle array on different substrates excited by a femtosecond laser,” Nanotechnology 18(30), 305703 (2007).
    [CrossRef]
  8. D. Eversole, B. Luk’yanchuk, and A. Ben-Yakar, “Plasmonic laser nanoablation of silicon by the scattering of femtosecond pulses near gold nanospheres,” Appl. Phys. A: Mater. Sci. Process. 89(2), 283–291 (2007).
    [CrossRef]
  9. H. Wang, Y. Wu, B. Lassiter, C. L. Nehl, J. H. Hafner, P. Nordlander, and N. J. Halas, “Symmetry breaking in individual plasmonic nanoparticles,” Proc. Natl. Acad. Sci. U.S.A. 103(29), 10856–10860 (2006).
    [CrossRef] [PubMed]
  10. C. Sönnichsen, T. Franzl, T. Wilk, G. von Plessen, J. Feldmann, O. Wilson, and P. Mulvaney, “Drastic reduction of plasmon damping in gold nanorods,” Phys. Rev. Lett. 88(7), 077402 (2002).
    [CrossRef] [PubMed]
  11. T. R. Jensen, M. D. Malinsky, C. L. Haynes, and R. P. Van Duyne, “Nanosphere Lithography: Tunable Localized Surface Plasmon Resonance Spectra of Silver Nanoparticles,” J. Phys. Chem. B 104(45), 10549–10556 (2000).
    [CrossRef]
  12. K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, “The Optical Properties of Metal Nanoparticles: The Influence of Size, Shape, and Dielectric Environment,” J. Phys. Chem. B 107(3), 668–677 (2003).
    [CrossRef]
  13. N. J. Durr, T. Larson, D. K. Smith, B. A. Korgel, K. Sokolov, and A. Ben-Yakar, “Two-photon luminescence imaging of cancer cells using molecularly targeted gold nanorods,” Nano Lett. 7(4), 941–945 (2007).
    [CrossRef] [PubMed]
  14. A. L. Oldenburg, M. N. Hansen, D. A. Zweifel, A. Wei, and S. A. Boppart, “Plasmon-resonant gold nanorods as low backscattering albedo contrast agents for optical coherence tomography,” Opt. Express 14(15), 6724–6738 (2006).
    [CrossRef] [PubMed]
  15. P. Zijlstra, J. W. M. Chon, and M. Gu, “Five-dimensional optical recording mediated by surface plasmons in gold nanorods,” Nature 459(7245), 410–413 (2009).
    [CrossRef] [PubMed]
  16. N. Arnold, “Influence of the substrate, metal overlayer and lattice neighbors on the focusing properties of colloidal microspheres,” Appl. Phys. A: Mater. Sci. Process. 92(4), 1005–1012 (2008).
    [CrossRef]
  17. T. Sakai, T. Miyanishi, N. Nedyalkov, Y. Nishizawa, and M. Obara, “Nano-dimple processing of silicon surfaces by femtosecond laser irradiation with dielectric particle templates in the Mie scattering domain,” J. Phys. D 42(2), 025502 (2009).
    [CrossRef]
  18. B. S. Luk’yanchuk, N. Arnold, S. M. Huang, Z. B. Wang, and M. H. Hong, “Three-dimensional effects in dry laser cleaning,” Appl. Phys., A Mater. Sci. Process. 77, 209–215 (2003).
  19. A. Plech, V. Kotaidis, M. Lorenc, and J. Boneberg, “Femtosecond laser near-field ablation from gold nanoparticles,” Nat. Phys. 2(1), 44–47 (2006).
    [CrossRef]
  20. A. Ben-Yakar and R. L. Byer, “Femtosecond laser ablation properties of borosilicate glass,” J. Appl. Phys. 96(9), 5316–5323 (2004).
    [CrossRef]
  21. H. Urey, “Spot size, depth-of-focus, and diffraction ring intensity formulas for truncated Gaussian beams,” Appl. Opt. 43(3), 620–625 (2004).
    [CrossRef] [PubMed]
  22. P. P. Pronko, P. A. VanRompay, C. Horvath, F. Loesel, T. Juhasz, X. Liu, and G. Mourou, “Avalanche ionization and dielectric breakdown in silicon with ultrafast laser pulses,” Phys. Rev. B 58(5), 2387–2390 (1998).
    [CrossRef]
  23. S. Besner, “Surface modifications during femtosecond laser ablation in vacuum, air, and water,” Proc. SPIE 5578, 554–558 (2004).
    [CrossRef]
  24. D. Giguère, G. Olivié, F. Vidal, S. Toetsch, G. Girard, T. Ozaki, J. C. Kieffer, O. Nada, and I. Brunette, “Laser ablation threshold dependence on pulse duration for fused silica and corneal tissues: experiments and modeling,” J. Opt. Soc. Am. A 24(6), 1562–1568 (2007).
    [CrossRef]
  25. I. Chowdhury, A. Wu, X. Xu, and A. Weiner, “Ultra-fast laser absorption and ablation dynamics in wide-band-gap dielectrics,” Appl. Phys. A: Mater. Sci. Process. 81(8), 1627–1632 (2005).
    [CrossRef]
  26. Y. Wang, X. Xu, and L. Zheng, “Molecular dynamics simulation of ultrafast laser ablation of fused silica film,” Appl. Phys., A Mater. Sci. Process. 92(4), 849–852 (2008).
    [CrossRef]
  27. S. E. Kirkwood, M. R. Shadnam, A. Amirfazli, and R. Fedosejevs, “Mechanism for femtosecond laser pulse patterning of self-assembled monolayers on gold-coated substrates,” J. Phys. Conf. Ser. 59, 428–431 (2007).
    [CrossRef]
  28. X. Ni, C. Wang, L. Yang, J. Li, L. Chai, W. Jia, R. Zhang, and Z. Zhang, “Parametric study on femtosecond laser pulse ablation of Au films,” Appl. Surf. Sci. 253(3), 1616–1619 (2006).
    [CrossRef]
  29. S. Amoruso, X. Wang, C. Altucci, C. De Lisio, M. Armenante, R. Bruzzese, N. Spinelli, and R. Velotta, “Double-peak distribution of electron and ion emission profile during femtosecond laser ablation of metals,” Appl. Surf. Sci. 186(1-4), 358–363 (2002).
    [CrossRef]
  30. S. Wellershoff, J. Hohlfeld, J. Güdde, and E. Matthias, “The role of electron–phonon coupling in femtosecond laser damage of metals,” Appl. Phys. A: Mater. Sci. Process. 69, S99–S107 (1999).
  31. B. T. Draine, “The discrete-dipole approximation and its application to interstellar graphite grains,” Astrophys. J. 333, 848–872 (1988).
    [CrossRef]
  32. A. Penttilä, E. Zubko, K. Lumme, K. Muinonen, M. A. Yurkin, B. Draine, J. Rahola, A. G. Hoekstra, and Y. Shkuratov, “Comparison between discrete dipole implementations and exact techniques,” JQSRT 106, 417–436 (2007).
  33. B. T. Draine and J. C. Weingartner, “Radiative torques on interstellar grains. I. Superthermal spin-up,” Astrophys. J. 470, 551–565 (1996).
    [CrossRef]
  34. P. K. Jain, K. S. Lee, I. H. El-Sayed, and M. A. El-Sayed, “Calculated absorption and scattering properties of gold nanoparticles of different size, shape, and composition: applications in biological imaging and biomedicine,” J. Phys. Chem. B 110(14), 7238–7248 (2006).
    [CrossRef] [PubMed]
  35. M. A. Yurkin, V. P. Maltsev, and A. G. Hoekstra, “The discrete dipole approximation for simulation of light scattering by particles much larger than the wavelength,” JQSRT 106, 546–557 (2007).
  36. E. D. Palik, ed., Handbook of Optical Constants of Solids (Academic, New York, 1985).
  37. L. B. Scaffardi and J. O. Tocho, “Size dependence of refractive index of gold nanoparticles,” Nanotechnology 17(5), 1309–1315 (2006).
    [CrossRef]
  38. E. A. Coronado and G. C. Schatz, “Surface plasmon broadening for arbitrary shape nanoparticles: A geometrical probability approach,” J. Chem. Phys. 119(7), 3926–3934 (2003).
    [CrossRef]
  39. M. A. Yurkin, D. de Kanter, and A. G. Hoekstra, “Accuracy of the discrete dipole approximation for simulation of optical properties of gold nanoparticles,” J. Nanophotonics 4(1), 041585 (2010).
    [CrossRef]
  40. J. D. Jackson, Classical Electrodynamics (Wiley, New York, 1975).
  41. C. F. Bohren, and D. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, New York, 1983).
  42. M. A. Yurkin and A. G. Hoekstra, “The discrete dipole approximation: an overview and recent developments,” JQSRT 106, 558–589 (2007).
  43. B. T. Draine and P. J. Flatau, “Discrete-dipole approximation for scattering calculations,” J. Opt. Soc. Am. A 11(4), 1491–1499 (1994).
    [CrossRef]
  44. J. H. Kim, S. H. Ehrman, G. W. Mulholland, and T. A. Germer, “Polarized light scattering by dielectric and metallic spheres on silicon wafers,” Appl. Opt. 41(25), 5405–5412 (2002).
    [CrossRef] [PubMed]
  45. P. A. Bobbert and J. Vlieger, “Light scattering by a sphere on a substrate,” Physica A 137(1-2), 209–242 (1986).
    [CrossRef]
  46. C. Ungureanu, R. G. Rayavarapu, S. Manohar, and T. G. van Leeuwen, “Discrete dipole approximation simulations of gold nanorod optical properties: Choice of input parameters and comparison with experiment,” J. Appl. Phys. 105(10), 102032 (2009).
    [CrossRef]
  47. S. W. Prescott and P. Mulvaney, “Gold nanorod extinction spectra,” J. Appl. Phys. 99(12), 123504 (2006).
    [CrossRef]
  48. E. Cappelli, S. Orlando, D. Sciti, M. Montozzi, and L. Pandolfi, “Ceramic surface modifications induced by pulsed laser treatment,” Appl. Surf. Sci. 154-155 (1-4), 682–688 (2000).
    [CrossRef]
  49. K. Sokolowski-Tinten, J. Bialkowski, A. Cavalleri, D. von der Linde, A. Oparin, J. Meyer-ter-Vehn, and S. I. Anisimov, “Transient states of matter during short pulse laser ablation,” Phys. Rev. Lett. 81(1), 224–227 (1998).
    [CrossRef]
  50. S. Link, C. Burda, B. Nikoobakht, and M. A. El-Sayed, “How long does it take to melt a gold nanorod? A femtosecond pump-probe absorption spectroscopic study,” Chem. Phys. Lett. 315(1-2), 12–18 (1999).
    [CrossRef]
  51. A. Ben-Yakar, A. Harkin, J. Ashmore, R. L. Byer, and H. A. Stone, “Thermal and fluid processes of a thin melt zone during femtosecond laser ablation of glass: the formation of rims by single laser pulses,” J. Phys. D 40(5), 1447–1459 (2007).
    [CrossRef]

2010

M. A. Yurkin, D. de Kanter, and A. G. Hoekstra, “Accuracy of the discrete dipole approximation for simulation of optical properties of gold nanoparticles,” J. Nanophotonics 4(1), 041585 (2010).
[CrossRef]

2009

C. Ungureanu, R. G. Rayavarapu, S. Manohar, and T. G. van Leeuwen, “Discrete dipole approximation simulations of gold nanorod optical properties: Choice of input parameters and comparison with experiment,” J. Appl. Phys. 105(10), 102032 (2009).
[CrossRef]

P. Zijlstra, J. W. M. Chon, and M. Gu, “Five-dimensional optical recording mediated by surface plasmons in gold nanorods,” Nature 459(7245), 410–413 (2009).
[CrossRef] [PubMed]

T. Sakai, T. Miyanishi, N. Nedyalkov, Y. Nishizawa, and M. Obara, “Nano-dimple processing of silicon surfaces by femtosecond laser irradiation with dielectric particle templates in the Mie scattering domain,” J. Phys. D 42(2), 025502 (2009).
[CrossRef]

C. Tan, C. S. Peng, J. Pakarinen, M. Pessa, V. N. Petryakov, Y. K. Verevkin, J. Zhang, Z. Wang, S. M. Olaizola, T. Berthou, and S. Tisserand, “Ordered nanostructures written directly by laser interference,” Nanotechnology 20(12), 125303 (2009).
[CrossRef] [PubMed]

2008

N. Arnold, “Influence of the substrate, metal overlayer and lattice neighbors on the focusing properties of colloidal microspheres,” Appl. Phys. A: Mater. Sci. Process. 92(4), 1005–1012 (2008).
[CrossRef]

Y. Wang, X. Xu, and L. Zheng, “Molecular dynamics simulation of ultrafast laser ablation of fused silica film,” Appl. Phys., A Mater. Sci. Process. 92(4), 849–852 (2008).
[CrossRef]

2007

S. E. Kirkwood, M. R. Shadnam, A. Amirfazli, and R. Fedosejevs, “Mechanism for femtosecond laser pulse patterning of self-assembled monolayers on gold-coated substrates,” J. Phys. Conf. Ser. 59, 428–431 (2007).
[CrossRef]

A. Penttilä, E. Zubko, K. Lumme, K. Muinonen, M. A. Yurkin, B. Draine, J. Rahola, A. G. Hoekstra, and Y. Shkuratov, “Comparison between discrete dipole implementations and exact techniques,” JQSRT 106, 417–436 (2007).

M. A. Yurkin and A. G. Hoekstra, “The discrete dipole approximation: an overview and recent developments,” JQSRT 106, 558–589 (2007).

M. A. Yurkin, V. P. Maltsev, and A. G. Hoekstra, “The discrete dipole approximation for simulation of light scattering by particles much larger than the wavelength,” JQSRT 106, 546–557 (2007).

D. Brodoceanu, L. Landström, and D. Bäuerle, “Laser-induced nanopatterning of silicon with colloidal monolayers,” Appl. Phys., A Mater. Sci. Process. 86(3), 313–314 (2007).
[CrossRef]

N. N. Nedyalkov, P. A. Atanasov, and M. Obara, “Near-field properties of a gold nanoparticle array on different substrates excited by a femtosecond laser,” Nanotechnology 18(30), 305703 (2007).
[CrossRef]

D. Eversole, B. Luk’yanchuk, and A. Ben-Yakar, “Plasmonic laser nanoablation of silicon by the scattering of femtosecond pulses near gold nanospheres,” Appl. Phys. A: Mater. Sci. Process. 89(2), 283–291 (2007).
[CrossRef]

N. J. Durr, T. Larson, D. K. Smith, B. A. Korgel, K. Sokolov, and A. Ben-Yakar, “Two-photon luminescence imaging of cancer cells using molecularly targeted gold nanorods,” Nano Lett. 7(4), 941–945 (2007).
[CrossRef] [PubMed]

A. Ben-Yakar, A. Harkin, J. Ashmore, R. L. Byer, and H. A. Stone, “Thermal and fluid processes of a thin melt zone during femtosecond laser ablation of glass: the formation of rims by single laser pulses,” J. Phys. D 40(5), 1447–1459 (2007).
[CrossRef]

D. Giguère, G. Olivié, F. Vidal, S. Toetsch, G. Girard, T. Ozaki, J. C. Kieffer, O. Nada, and I. Brunette, “Laser ablation threshold dependence on pulse duration for fused silica and corneal tissues: experiments and modeling,” J. Opt. Soc. Am. A 24(6), 1562–1568 (2007).
[CrossRef]

2006

P. K. Jain, K. S. Lee, I. H. El-Sayed, and M. A. El-Sayed, “Calculated absorption and scattering properties of gold nanoparticles of different size, shape, and composition: applications in biological imaging and biomedicine,” J. Phys. Chem. B 110(14), 7238–7248 (2006).
[CrossRef] [PubMed]

A. L. Oldenburg, M. N. Hansen, D. A. Zweifel, A. Wei, and S. A. Boppart, “Plasmon-resonant gold nanorods as low backscattering albedo contrast agents for optical coherence tomography,” Opt. Express 14(15), 6724–6738 (2006).
[CrossRef] [PubMed]

H. Wang, Y. Wu, B. Lassiter, C. L. Nehl, J. H. Hafner, P. Nordlander, and N. J. Halas, “Symmetry breaking in individual plasmonic nanoparticles,” Proc. Natl. Acad. Sci. U.S.A. 103(29), 10856–10860 (2006).
[CrossRef] [PubMed]

A. Plech, V. Kotaidis, M. Lorenc, and J. Boneberg, “Femtosecond laser near-field ablation from gold nanoparticles,” Nat. Phys. 2(1), 44–47 (2006).
[CrossRef]

L. B. Scaffardi and J. O. Tocho, “Size dependence of refractive index of gold nanoparticles,” Nanotechnology 17(5), 1309–1315 (2006).
[CrossRef]

S. W. Prescott and P. Mulvaney, “Gold nanorod extinction spectra,” J. Appl. Phys. 99(12), 123504 (2006).
[CrossRef]

X. Ni, C. Wang, L. Yang, J. Li, L. Chai, W. Jia, R. Zhang, and Z. Zhang, “Parametric study on femtosecond laser pulse ablation of Au films,” Appl. Surf. Sci. 253(3), 1616–1619 (2006).
[CrossRef]

2005

I. Chowdhury, A. Wu, X. Xu, and A. Weiner, “Ultra-fast laser absorption and ablation dynamics in wide-band-gap dielectrics,” Appl. Phys. A: Mater. Sci. Process. 81(8), 1627–1632 (2005).
[CrossRef]

2004

S. Besner, “Surface modifications during femtosecond laser ablation in vacuum, air, and water,” Proc. SPIE 5578, 554–558 (2004).
[CrossRef]

A. Ben-Yakar and R. L. Byer, “Femtosecond laser ablation properties of borosilicate glass,” J. Appl. Phys. 96(9), 5316–5323 (2004).
[CrossRef]

A. P. Joglekar, H. H. Liu, E. Meyhöfer, G. Mourou, and A. J. Hunt, “Optics at critical intensity: applications to nanomorphing,” Proc. Natl. Acad. Sci. U.S.A. 101(16), 5856–5861 (2004).
[CrossRef] [PubMed]

H. Urey, “Spot size, depth-of-focus, and diffraction ring intensity formulas for truncated Gaussian beams,” Appl. Opt. 43(3), 620–625 (2004).
[CrossRef] [PubMed]

2003

J. Serbin, A. Egbert, A. Ostendorf, B. N. Chichkov, R. Houbertz, G. Domann, J. Schulz, C. Cronauer, L. Fröhlich, and M. Popall, “Femtosecond laser-induced two-photon polymerization of inorganic-organic hybrid materials for applications in photonics,” Opt. Lett. 28(5), 301–303 (2003).
[CrossRef] [PubMed]

K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, “The Optical Properties of Metal Nanoparticles: The Influence of Size, Shape, and Dielectric Environment,” J. Phys. Chem. B 107(3), 668–677 (2003).
[CrossRef]

A. Chimmalgi, T. Y. Choi, C. P. Grigoropoulos, and K. Komvopoulos, “Femtosecond laser aperturless near-field nanomachining of metals assisted by scanning probe microscopy,” Appl. Phys. Lett. 82(8), 1146 (2003).
[CrossRef]

B. S. Luk’yanchuk, N. Arnold, S. M. Huang, Z. B. Wang, and M. H. Hong, “Three-dimensional effects in dry laser cleaning,” Appl. Phys., A Mater. Sci. Process. 77, 209–215 (2003).

E. A. Coronado and G. C. Schatz, “Surface plasmon broadening for arbitrary shape nanoparticles: A geometrical probability approach,” J. Chem. Phys. 119(7), 3926–3934 (2003).
[CrossRef]

2002

S. Amoruso, X. Wang, C. Altucci, C. De Lisio, M. Armenante, R. Bruzzese, N. Spinelli, and R. Velotta, “Double-peak distribution of electron and ion emission profile during femtosecond laser ablation of metals,” Appl. Surf. Sci. 186(1-4), 358–363 (2002).
[CrossRef]

H. J. Münzer, M. Mosbacher, M. Bertsch, O. Dubbers, F. Burmeister, A. Pack, R. Wannemacher, B. U. Runge, D. Bӓ uerle, J. Boneberg, and P. Leiderer, “Optical near field effects in surface nanostructuring and laser cleaning,” Proc. SPIE 4426, 180–183 (2002).
[CrossRef]

C. Sönnichsen, T. Franzl, T. Wilk, G. von Plessen, J. Feldmann, O. Wilson, and P. Mulvaney, “Drastic reduction of plasmon damping in gold nanorods,” Phys. Rev. Lett. 88(7), 077402 (2002).
[CrossRef] [PubMed]

J. H. Kim, S. H. Ehrman, G. W. Mulholland, and T. A. Germer, “Polarized light scattering by dielectric and metallic spheres on silicon wafers,” Appl. Opt. 41(25), 5405–5412 (2002).
[CrossRef] [PubMed]

2000

T. R. Jensen, M. D. Malinsky, C. L. Haynes, and R. P. Van Duyne, “Nanosphere Lithography: Tunable Localized Surface Plasmon Resonance Spectra of Silver Nanoparticles,” J. Phys. Chem. B 104(45), 10549–10556 (2000).
[CrossRef]

E. Cappelli, S. Orlando, D. Sciti, M. Montozzi, and L. Pandolfi, “Ceramic surface modifications induced by pulsed laser treatment,” Appl. Surf. Sci. 154-155 (1-4), 682–688 (2000).
[CrossRef]

1999

S. Wellershoff, J. Hohlfeld, J. Güdde, and E. Matthias, “The role of electron–phonon coupling in femtosecond laser damage of metals,” Appl. Phys. A: Mater. Sci. Process. 69, S99–S107 (1999).

S. Link, C. Burda, B. Nikoobakht, and M. A. El-Sayed, “How long does it take to melt a gold nanorod? A femtosecond pump-probe absorption spectroscopic study,” Chem. Phys. Lett. 315(1-2), 12–18 (1999).
[CrossRef]

1998

K. Sokolowski-Tinten, J. Bialkowski, A. Cavalleri, D. von der Linde, A. Oparin, J. Meyer-ter-Vehn, and S. I. Anisimov, “Transient states of matter during short pulse laser ablation,” Phys. Rev. Lett. 81(1), 224–227 (1998).
[CrossRef]

P. P. Pronko, P. A. VanRompay, C. Horvath, F. Loesel, T. Juhasz, X. Liu, and G. Mourou, “Avalanche ionization and dielectric breakdown in silicon with ultrafast laser pulses,” Phys. Rev. B 58(5), 2387–2390 (1998).
[CrossRef]

1996

B. T. Draine and J. C. Weingartner, “Radiative torques on interstellar grains. I. Superthermal spin-up,” Astrophys. J. 470, 551–565 (1996).
[CrossRef]

1994

1988

B. T. Draine, “The discrete-dipole approximation and its application to interstellar graphite grains,” Astrophys. J. 333, 848–872 (1988).
[CrossRef]

1986

P. A. Bobbert and J. Vlieger, “Light scattering by a sphere on a substrate,” Physica A 137(1-2), 209–242 (1986).
[CrossRef]

Altucci, C.

S. Amoruso, X. Wang, C. Altucci, C. De Lisio, M. Armenante, R. Bruzzese, N. Spinelli, and R. Velotta, “Double-peak distribution of electron and ion emission profile during femtosecond laser ablation of metals,” Appl. Surf. Sci. 186(1-4), 358–363 (2002).
[CrossRef]

Amirfazli, A.

S. E. Kirkwood, M. R. Shadnam, A. Amirfazli, and R. Fedosejevs, “Mechanism for femtosecond laser pulse patterning of self-assembled monolayers on gold-coated substrates,” J. Phys. Conf. Ser. 59, 428–431 (2007).
[CrossRef]

Amoruso, S.

S. Amoruso, X. Wang, C. Altucci, C. De Lisio, M. Armenante, R. Bruzzese, N. Spinelli, and R. Velotta, “Double-peak distribution of electron and ion emission profile during femtosecond laser ablation of metals,” Appl. Surf. Sci. 186(1-4), 358–363 (2002).
[CrossRef]

Anisimov, S. I.

K. Sokolowski-Tinten, J. Bialkowski, A. Cavalleri, D. von der Linde, A. Oparin, J. Meyer-ter-Vehn, and S. I. Anisimov, “Transient states of matter during short pulse laser ablation,” Phys. Rev. Lett. 81(1), 224–227 (1998).
[CrossRef]

Armenante, M.

S. Amoruso, X. Wang, C. Altucci, C. De Lisio, M. Armenante, R. Bruzzese, N. Spinelli, and R. Velotta, “Double-peak distribution of electron and ion emission profile during femtosecond laser ablation of metals,” Appl. Surf. Sci. 186(1-4), 358–363 (2002).
[CrossRef]

Arnold, N.

N. Arnold, “Influence of the substrate, metal overlayer and lattice neighbors on the focusing properties of colloidal microspheres,” Appl. Phys. A: Mater. Sci. Process. 92(4), 1005–1012 (2008).
[CrossRef]

B. S. Luk’yanchuk, N. Arnold, S. M. Huang, Z. B. Wang, and M. H. Hong, “Three-dimensional effects in dry laser cleaning,” Appl. Phys., A Mater. Sci. Process. 77, 209–215 (2003).

Ashmore, J.

A. Ben-Yakar, A. Harkin, J. Ashmore, R. L. Byer, and H. A. Stone, “Thermal and fluid processes of a thin melt zone during femtosecond laser ablation of glass: the formation of rims by single laser pulses,” J. Phys. D 40(5), 1447–1459 (2007).
[CrossRef]

Atanasov, P. A.

N. N. Nedyalkov, P. A. Atanasov, and M. Obara, “Near-field properties of a gold nanoparticle array on different substrates excited by a femtosecond laser,” Nanotechnology 18(30), 305703 (2007).
[CrossRef]

Bäuerle, D.

D. Brodoceanu, L. Landström, and D. Bäuerle, “Laser-induced nanopatterning of silicon with colloidal monolayers,” Appl. Phys., A Mater. Sci. Process. 86(3), 313–314 (2007).
[CrossRef]

Ben-Yakar, A.

A. Ben-Yakar, A. Harkin, J. Ashmore, R. L. Byer, and H. A. Stone, “Thermal and fluid processes of a thin melt zone during femtosecond laser ablation of glass: the formation of rims by single laser pulses,” J. Phys. D 40(5), 1447–1459 (2007).
[CrossRef]

N. J. Durr, T. Larson, D. K. Smith, B. A. Korgel, K. Sokolov, and A. Ben-Yakar, “Two-photon luminescence imaging of cancer cells using molecularly targeted gold nanorods,” Nano Lett. 7(4), 941–945 (2007).
[CrossRef] [PubMed]

D. Eversole, B. Luk’yanchuk, and A. Ben-Yakar, “Plasmonic laser nanoablation of silicon by the scattering of femtosecond pulses near gold nanospheres,” Appl. Phys. A: Mater. Sci. Process. 89(2), 283–291 (2007).
[CrossRef]

A. Ben-Yakar and R. L. Byer, “Femtosecond laser ablation properties of borosilicate glass,” J. Appl. Phys. 96(9), 5316–5323 (2004).
[CrossRef]

Berthou, T.

C. Tan, C. S. Peng, J. Pakarinen, M. Pessa, V. N. Petryakov, Y. K. Verevkin, J. Zhang, Z. Wang, S. M. Olaizola, T. Berthou, and S. Tisserand, “Ordered nanostructures written directly by laser interference,” Nanotechnology 20(12), 125303 (2009).
[CrossRef] [PubMed]

Bertsch, M.

H. J. Münzer, M. Mosbacher, M. Bertsch, O. Dubbers, F. Burmeister, A. Pack, R. Wannemacher, B. U. Runge, D. Bӓ uerle, J. Boneberg, and P. Leiderer, “Optical near field effects in surface nanostructuring and laser cleaning,” Proc. SPIE 4426, 180–183 (2002).
[CrossRef]

Besner, S.

S. Besner, “Surface modifications during femtosecond laser ablation in vacuum, air, and water,” Proc. SPIE 5578, 554–558 (2004).
[CrossRef]

Bialkowski, J.

K. Sokolowski-Tinten, J. Bialkowski, A. Cavalleri, D. von der Linde, A. Oparin, J. Meyer-ter-Vehn, and S. I. Anisimov, “Transient states of matter during short pulse laser ablation,” Phys. Rev. Lett. 81(1), 224–227 (1998).
[CrossRef]

Bobbert, P. A.

P. A. Bobbert and J. Vlieger, “Light scattering by a sphere on a substrate,” Physica A 137(1-2), 209–242 (1986).
[CrossRef]

Boneberg, J.

A. Plech, V. Kotaidis, M. Lorenc, and J. Boneberg, “Femtosecond laser near-field ablation from gold nanoparticles,” Nat. Phys. 2(1), 44–47 (2006).
[CrossRef]

H. J. Münzer, M. Mosbacher, M. Bertsch, O. Dubbers, F. Burmeister, A. Pack, R. Wannemacher, B. U. Runge, D. Bӓ uerle, J. Boneberg, and P. Leiderer, “Optical near field effects in surface nanostructuring and laser cleaning,” Proc. SPIE 4426, 180–183 (2002).
[CrossRef]

Boppart, S. A.

Brodoceanu, D.

D. Brodoceanu, L. Landström, and D. Bäuerle, “Laser-induced nanopatterning of silicon with colloidal monolayers,” Appl. Phys., A Mater. Sci. Process. 86(3), 313–314 (2007).
[CrossRef]

Brunette, I.

Bruzzese, R.

S. Amoruso, X. Wang, C. Altucci, C. De Lisio, M. Armenante, R. Bruzzese, N. Spinelli, and R. Velotta, “Double-peak distribution of electron and ion emission profile during femtosecond laser ablation of metals,” Appl. Surf. Sci. 186(1-4), 358–363 (2002).
[CrossRef]

Burda, C.

S. Link, C. Burda, B. Nikoobakht, and M. A. El-Sayed, “How long does it take to melt a gold nanorod? A femtosecond pump-probe absorption spectroscopic study,” Chem. Phys. Lett. 315(1-2), 12–18 (1999).
[CrossRef]

Burmeister, F.

H. J. Münzer, M. Mosbacher, M. Bertsch, O. Dubbers, F. Burmeister, A. Pack, R. Wannemacher, B. U. Runge, D. Bӓ uerle, J. Boneberg, and P. Leiderer, “Optical near field effects in surface nanostructuring and laser cleaning,” Proc. SPIE 4426, 180–183 (2002).
[CrossRef]

Byer, R. L.

A. Ben-Yakar, A. Harkin, J. Ashmore, R. L. Byer, and H. A. Stone, “Thermal and fluid processes of a thin melt zone during femtosecond laser ablation of glass: the formation of rims by single laser pulses,” J. Phys. D 40(5), 1447–1459 (2007).
[CrossRef]

A. Ben-Yakar and R. L. Byer, “Femtosecond laser ablation properties of borosilicate glass,” J. Appl. Phys. 96(9), 5316–5323 (2004).
[CrossRef]

Cappelli, E.

E. Cappelli, S. Orlando, D. Sciti, M. Montozzi, and L. Pandolfi, “Ceramic surface modifications induced by pulsed laser treatment,” Appl. Surf. Sci. 154-155 (1-4), 682–688 (2000).
[CrossRef]

Cavalleri, A.

K. Sokolowski-Tinten, J. Bialkowski, A. Cavalleri, D. von der Linde, A. Oparin, J. Meyer-ter-Vehn, and S. I. Anisimov, “Transient states of matter during short pulse laser ablation,” Phys. Rev. Lett. 81(1), 224–227 (1998).
[CrossRef]

Chai, L.

X. Ni, C. Wang, L. Yang, J. Li, L. Chai, W. Jia, R. Zhang, and Z. Zhang, “Parametric study on femtosecond laser pulse ablation of Au films,” Appl. Surf. Sci. 253(3), 1616–1619 (2006).
[CrossRef]

Chichkov, B. N.

Chimmalgi, A.

A. Chimmalgi, T. Y. Choi, C. P. Grigoropoulos, and K. Komvopoulos, “Femtosecond laser aperturless near-field nanomachining of metals assisted by scanning probe microscopy,” Appl. Phys. Lett. 82(8), 1146 (2003).
[CrossRef]

Choi, T. Y.

A. Chimmalgi, T. Y. Choi, C. P. Grigoropoulos, and K. Komvopoulos, “Femtosecond laser aperturless near-field nanomachining of metals assisted by scanning probe microscopy,” Appl. Phys. Lett. 82(8), 1146 (2003).
[CrossRef]

Chon, J. W. M.

P. Zijlstra, J. W. M. Chon, and M. Gu, “Five-dimensional optical recording mediated by surface plasmons in gold nanorods,” Nature 459(7245), 410–413 (2009).
[CrossRef] [PubMed]

Chowdhury, I.

I. Chowdhury, A. Wu, X. Xu, and A. Weiner, “Ultra-fast laser absorption and ablation dynamics in wide-band-gap dielectrics,” Appl. Phys. A: Mater. Sci. Process. 81(8), 1627–1632 (2005).
[CrossRef]

Coronado, E.

K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, “The Optical Properties of Metal Nanoparticles: The Influence of Size, Shape, and Dielectric Environment,” J. Phys. Chem. B 107(3), 668–677 (2003).
[CrossRef]

Coronado, E. A.

E. A. Coronado and G. C. Schatz, “Surface plasmon broadening for arbitrary shape nanoparticles: A geometrical probability approach,” J. Chem. Phys. 119(7), 3926–3934 (2003).
[CrossRef]

Cronauer, C.

de Kanter, D.

M. A. Yurkin, D. de Kanter, and A. G. Hoekstra, “Accuracy of the discrete dipole approximation for simulation of optical properties of gold nanoparticles,” J. Nanophotonics 4(1), 041585 (2010).
[CrossRef]

De Lisio, C.

S. Amoruso, X. Wang, C. Altucci, C. De Lisio, M. Armenante, R. Bruzzese, N. Spinelli, and R. Velotta, “Double-peak distribution of electron and ion emission profile during femtosecond laser ablation of metals,” Appl. Surf. Sci. 186(1-4), 358–363 (2002).
[CrossRef]

Domann, G.

Draine, B.

A. Penttilä, E. Zubko, K. Lumme, K. Muinonen, M. A. Yurkin, B. Draine, J. Rahola, A. G. Hoekstra, and Y. Shkuratov, “Comparison between discrete dipole implementations and exact techniques,” JQSRT 106, 417–436 (2007).

Draine, B. T.

B. T. Draine and J. C. Weingartner, “Radiative torques on interstellar grains. I. Superthermal spin-up,” Astrophys. J. 470, 551–565 (1996).
[CrossRef]

B. T. Draine and P. J. Flatau, “Discrete-dipole approximation for scattering calculations,” J. Opt. Soc. Am. A 11(4), 1491–1499 (1994).
[CrossRef]

B. T. Draine, “The discrete-dipole approximation and its application to interstellar graphite grains,” Astrophys. J. 333, 848–872 (1988).
[CrossRef]

Dubbers, O.

H. J. Münzer, M. Mosbacher, M. Bertsch, O. Dubbers, F. Burmeister, A. Pack, R. Wannemacher, B. U. Runge, D. Bӓ uerle, J. Boneberg, and P. Leiderer, “Optical near field effects in surface nanostructuring and laser cleaning,” Proc. SPIE 4426, 180–183 (2002).
[CrossRef]

Durr, N. J.

N. J. Durr, T. Larson, D. K. Smith, B. A. Korgel, K. Sokolov, and A. Ben-Yakar, “Two-photon luminescence imaging of cancer cells using molecularly targeted gold nanorods,” Nano Lett. 7(4), 941–945 (2007).
[CrossRef] [PubMed]

Egbert, A.

Ehrman, S. H.

El-Sayed, I. H.

P. K. Jain, K. S. Lee, I. H. El-Sayed, and M. A. El-Sayed, “Calculated absorption and scattering properties of gold nanoparticles of different size, shape, and composition: applications in biological imaging and biomedicine,” J. Phys. Chem. B 110(14), 7238–7248 (2006).
[CrossRef] [PubMed]

El-Sayed, M. A.

P. K. Jain, K. S. Lee, I. H. El-Sayed, and M. A. El-Sayed, “Calculated absorption and scattering properties of gold nanoparticles of different size, shape, and composition: applications in biological imaging and biomedicine,” J. Phys. Chem. B 110(14), 7238–7248 (2006).
[CrossRef] [PubMed]

S. Link, C. Burda, B. Nikoobakht, and M. A. El-Sayed, “How long does it take to melt a gold nanorod? A femtosecond pump-probe absorption spectroscopic study,” Chem. Phys. Lett. 315(1-2), 12–18 (1999).
[CrossRef]

Eversole, D.

D. Eversole, B. Luk’yanchuk, and A. Ben-Yakar, “Plasmonic laser nanoablation of silicon by the scattering of femtosecond pulses near gold nanospheres,” Appl. Phys. A: Mater. Sci. Process. 89(2), 283–291 (2007).
[CrossRef]

Fedosejevs, R.

S. E. Kirkwood, M. R. Shadnam, A. Amirfazli, and R. Fedosejevs, “Mechanism for femtosecond laser pulse patterning of self-assembled monolayers on gold-coated substrates,” J. Phys. Conf. Ser. 59, 428–431 (2007).
[CrossRef]

Feldmann, J.

C. Sönnichsen, T. Franzl, T. Wilk, G. von Plessen, J. Feldmann, O. Wilson, and P. Mulvaney, “Drastic reduction of plasmon damping in gold nanorods,” Phys. Rev. Lett. 88(7), 077402 (2002).
[CrossRef] [PubMed]

Flatau, P. J.

Franzl, T.

C. Sönnichsen, T. Franzl, T. Wilk, G. von Plessen, J. Feldmann, O. Wilson, and P. Mulvaney, “Drastic reduction of plasmon damping in gold nanorods,” Phys. Rev. Lett. 88(7), 077402 (2002).
[CrossRef] [PubMed]

Fröhlich, L.

Germer, T. A.

Giguère, D.

Girard, G.

Grigoropoulos, C. P.

A. Chimmalgi, T. Y. Choi, C. P. Grigoropoulos, and K. Komvopoulos, “Femtosecond laser aperturless near-field nanomachining of metals assisted by scanning probe microscopy,” Appl. Phys. Lett. 82(8), 1146 (2003).
[CrossRef]

Gu, M.

P. Zijlstra, J. W. M. Chon, and M. Gu, “Five-dimensional optical recording mediated by surface plasmons in gold nanorods,” Nature 459(7245), 410–413 (2009).
[CrossRef] [PubMed]

Güdde, J.

S. Wellershoff, J. Hohlfeld, J. Güdde, and E. Matthias, “The role of electron–phonon coupling in femtosecond laser damage of metals,” Appl. Phys. A: Mater. Sci. Process. 69, S99–S107 (1999).

Hafner, J. H.

H. Wang, Y. Wu, B. Lassiter, C. L. Nehl, J. H. Hafner, P. Nordlander, and N. J. Halas, “Symmetry breaking in individual plasmonic nanoparticles,” Proc. Natl. Acad. Sci. U.S.A. 103(29), 10856–10860 (2006).
[CrossRef] [PubMed]

Halas, N. J.

H. Wang, Y. Wu, B. Lassiter, C. L. Nehl, J. H. Hafner, P. Nordlander, and N. J. Halas, “Symmetry breaking in individual plasmonic nanoparticles,” Proc. Natl. Acad. Sci. U.S.A. 103(29), 10856–10860 (2006).
[CrossRef] [PubMed]

Hansen, M. N.

Harkin, A.

A. Ben-Yakar, A. Harkin, J. Ashmore, R. L. Byer, and H. A. Stone, “Thermal and fluid processes of a thin melt zone during femtosecond laser ablation of glass: the formation of rims by single laser pulses,” J. Phys. D 40(5), 1447–1459 (2007).
[CrossRef]

Haynes, C. L.

T. R. Jensen, M. D. Malinsky, C. L. Haynes, and R. P. Van Duyne, “Nanosphere Lithography: Tunable Localized Surface Plasmon Resonance Spectra of Silver Nanoparticles,” J. Phys. Chem. B 104(45), 10549–10556 (2000).
[CrossRef]

Hoekstra, A. G.

M. A. Yurkin, D. de Kanter, and A. G. Hoekstra, “Accuracy of the discrete dipole approximation for simulation of optical properties of gold nanoparticles,” J. Nanophotonics 4(1), 041585 (2010).
[CrossRef]

M. A. Yurkin and A. G. Hoekstra, “The discrete dipole approximation: an overview and recent developments,” JQSRT 106, 558–589 (2007).

M. A. Yurkin, V. P. Maltsev, and A. G. Hoekstra, “The discrete dipole approximation for simulation of light scattering by particles much larger than the wavelength,” JQSRT 106, 546–557 (2007).

A. Penttilä, E. Zubko, K. Lumme, K. Muinonen, M. A. Yurkin, B. Draine, J. Rahola, A. G. Hoekstra, and Y. Shkuratov, “Comparison between discrete dipole implementations and exact techniques,” JQSRT 106, 417–436 (2007).

Hohlfeld, J.

S. Wellershoff, J. Hohlfeld, J. Güdde, and E. Matthias, “The role of electron–phonon coupling in femtosecond laser damage of metals,” Appl. Phys. A: Mater. Sci. Process. 69, S99–S107 (1999).

Hong, M. H.

B. S. Luk’yanchuk, N. Arnold, S. M. Huang, Z. B. Wang, and M. H. Hong, “Three-dimensional effects in dry laser cleaning,” Appl. Phys., A Mater. Sci. Process. 77, 209–215 (2003).

Horvath, C.

P. P. Pronko, P. A. VanRompay, C. Horvath, F. Loesel, T. Juhasz, X. Liu, and G. Mourou, “Avalanche ionization and dielectric breakdown in silicon with ultrafast laser pulses,” Phys. Rev. B 58(5), 2387–2390 (1998).
[CrossRef]

Houbertz, R.

Huang, S. M.

B. S. Luk’yanchuk, N. Arnold, S. M. Huang, Z. B. Wang, and M. H. Hong, “Three-dimensional effects in dry laser cleaning,” Appl. Phys., A Mater. Sci. Process. 77, 209–215 (2003).

Hunt, A. J.

A. P. Joglekar, H. H. Liu, E. Meyhöfer, G. Mourou, and A. J. Hunt, “Optics at critical intensity: applications to nanomorphing,” Proc. Natl. Acad. Sci. U.S.A. 101(16), 5856–5861 (2004).
[CrossRef] [PubMed]

Jain, P. K.

P. K. Jain, K. S. Lee, I. H. El-Sayed, and M. A. El-Sayed, “Calculated absorption and scattering properties of gold nanoparticles of different size, shape, and composition: applications in biological imaging and biomedicine,” J. Phys. Chem. B 110(14), 7238–7248 (2006).
[CrossRef] [PubMed]

Jensen, T. R.

T. R. Jensen, M. D. Malinsky, C. L. Haynes, and R. P. Van Duyne, “Nanosphere Lithography: Tunable Localized Surface Plasmon Resonance Spectra of Silver Nanoparticles,” J. Phys. Chem. B 104(45), 10549–10556 (2000).
[CrossRef]

Jia, W.

X. Ni, C. Wang, L. Yang, J. Li, L. Chai, W. Jia, R. Zhang, and Z. Zhang, “Parametric study on femtosecond laser pulse ablation of Au films,” Appl. Surf. Sci. 253(3), 1616–1619 (2006).
[CrossRef]

Joglekar, A. P.

A. P. Joglekar, H. H. Liu, E. Meyhöfer, G. Mourou, and A. J. Hunt, “Optics at critical intensity: applications to nanomorphing,” Proc. Natl. Acad. Sci. U.S.A. 101(16), 5856–5861 (2004).
[CrossRef] [PubMed]

Juhasz, T.

P. P. Pronko, P. A. VanRompay, C. Horvath, F. Loesel, T. Juhasz, X. Liu, and G. Mourou, “Avalanche ionization and dielectric breakdown in silicon with ultrafast laser pulses,” Phys. Rev. B 58(5), 2387–2390 (1998).
[CrossRef]

Kelly, K. L.

K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, “The Optical Properties of Metal Nanoparticles: The Influence of Size, Shape, and Dielectric Environment,” J. Phys. Chem. B 107(3), 668–677 (2003).
[CrossRef]

Kieffer, J. C.

Kim, J. H.

Kirkwood, S. E.

S. E. Kirkwood, M. R. Shadnam, A. Amirfazli, and R. Fedosejevs, “Mechanism for femtosecond laser pulse patterning of self-assembled monolayers on gold-coated substrates,” J. Phys. Conf. Ser. 59, 428–431 (2007).
[CrossRef]

Komvopoulos, K.

A. Chimmalgi, T. Y. Choi, C. P. Grigoropoulos, and K. Komvopoulos, “Femtosecond laser aperturless near-field nanomachining of metals assisted by scanning probe microscopy,” Appl. Phys. Lett. 82(8), 1146 (2003).
[CrossRef]

Korgel, B. A.

N. J. Durr, T. Larson, D. K. Smith, B. A. Korgel, K. Sokolov, and A. Ben-Yakar, “Two-photon luminescence imaging of cancer cells using molecularly targeted gold nanorods,” Nano Lett. 7(4), 941–945 (2007).
[CrossRef] [PubMed]

Kotaidis, V.

A. Plech, V. Kotaidis, M. Lorenc, and J. Boneberg, “Femtosecond laser near-field ablation from gold nanoparticles,” Nat. Phys. 2(1), 44–47 (2006).
[CrossRef]

Landström, L.

D. Brodoceanu, L. Landström, and D. Bäuerle, “Laser-induced nanopatterning of silicon with colloidal monolayers,” Appl. Phys., A Mater. Sci. Process. 86(3), 313–314 (2007).
[CrossRef]

Larson, T.

N. J. Durr, T. Larson, D. K. Smith, B. A. Korgel, K. Sokolov, and A. Ben-Yakar, “Two-photon luminescence imaging of cancer cells using molecularly targeted gold nanorods,” Nano Lett. 7(4), 941–945 (2007).
[CrossRef] [PubMed]

Lassiter, B.

H. Wang, Y. Wu, B. Lassiter, C. L. Nehl, J. H. Hafner, P. Nordlander, and N. J. Halas, “Symmetry breaking in individual plasmonic nanoparticles,” Proc. Natl. Acad. Sci. U.S.A. 103(29), 10856–10860 (2006).
[CrossRef] [PubMed]

Lee, K. S.

P. K. Jain, K. S. Lee, I. H. El-Sayed, and M. A. El-Sayed, “Calculated absorption and scattering properties of gold nanoparticles of different size, shape, and composition: applications in biological imaging and biomedicine,” J. Phys. Chem. B 110(14), 7238–7248 (2006).
[CrossRef] [PubMed]

Leiderer, P.

H. J. Münzer, M. Mosbacher, M. Bertsch, O. Dubbers, F. Burmeister, A. Pack, R. Wannemacher, B. U. Runge, D. Bӓ uerle, J. Boneberg, and P. Leiderer, “Optical near field effects in surface nanostructuring and laser cleaning,” Proc. SPIE 4426, 180–183 (2002).
[CrossRef]

Li, J.

X. Ni, C. Wang, L. Yang, J. Li, L. Chai, W. Jia, R. Zhang, and Z. Zhang, “Parametric study on femtosecond laser pulse ablation of Au films,” Appl. Surf. Sci. 253(3), 1616–1619 (2006).
[CrossRef]

Link, S.

S. Link, C. Burda, B. Nikoobakht, and M. A. El-Sayed, “How long does it take to melt a gold nanorod? A femtosecond pump-probe absorption spectroscopic study,” Chem. Phys. Lett. 315(1-2), 12–18 (1999).
[CrossRef]

Liu, H. H.

A. P. Joglekar, H. H. Liu, E. Meyhöfer, G. Mourou, and A. J. Hunt, “Optics at critical intensity: applications to nanomorphing,” Proc. Natl. Acad. Sci. U.S.A. 101(16), 5856–5861 (2004).
[CrossRef] [PubMed]

Liu, X.

P. P. Pronko, P. A. VanRompay, C. Horvath, F. Loesel, T. Juhasz, X. Liu, and G. Mourou, “Avalanche ionization and dielectric breakdown in silicon with ultrafast laser pulses,” Phys. Rev. B 58(5), 2387–2390 (1998).
[CrossRef]

Loesel, F.

P. P. Pronko, P. A. VanRompay, C. Horvath, F. Loesel, T. Juhasz, X. Liu, and G. Mourou, “Avalanche ionization and dielectric breakdown in silicon with ultrafast laser pulses,” Phys. Rev. B 58(5), 2387–2390 (1998).
[CrossRef]

Lorenc, M.

A. Plech, V. Kotaidis, M. Lorenc, and J. Boneberg, “Femtosecond laser near-field ablation from gold nanoparticles,” Nat. Phys. 2(1), 44–47 (2006).
[CrossRef]

Luk’yanchuk, B.

D. Eversole, B. Luk’yanchuk, and A. Ben-Yakar, “Plasmonic laser nanoablation of silicon by the scattering of femtosecond pulses near gold nanospheres,” Appl. Phys. A: Mater. Sci. Process. 89(2), 283–291 (2007).
[CrossRef]

Luk’yanchuk, B. S.

B. S. Luk’yanchuk, N. Arnold, S. M. Huang, Z. B. Wang, and M. H. Hong, “Three-dimensional effects in dry laser cleaning,” Appl. Phys., A Mater. Sci. Process. 77, 209–215 (2003).

Lumme, K.

A. Penttilä, E. Zubko, K. Lumme, K. Muinonen, M. A. Yurkin, B. Draine, J. Rahola, A. G. Hoekstra, and Y. Shkuratov, “Comparison between discrete dipole implementations and exact techniques,” JQSRT 106, 417–436 (2007).

Malinsky, M. D.

T. R. Jensen, M. D. Malinsky, C. L. Haynes, and R. P. Van Duyne, “Nanosphere Lithography: Tunable Localized Surface Plasmon Resonance Spectra of Silver Nanoparticles,” J. Phys. Chem. B 104(45), 10549–10556 (2000).
[CrossRef]

Maltsev, V. P.

M. A. Yurkin, V. P. Maltsev, and A. G. Hoekstra, “The discrete dipole approximation for simulation of light scattering by particles much larger than the wavelength,” JQSRT 106, 546–557 (2007).

Manohar, S.

C. Ungureanu, R. G. Rayavarapu, S. Manohar, and T. G. van Leeuwen, “Discrete dipole approximation simulations of gold nanorod optical properties: Choice of input parameters and comparison with experiment,” J. Appl. Phys. 105(10), 102032 (2009).
[CrossRef]

Matthias, E.

S. Wellershoff, J. Hohlfeld, J. Güdde, and E. Matthias, “The role of electron–phonon coupling in femtosecond laser damage of metals,” Appl. Phys. A: Mater. Sci. Process. 69, S99–S107 (1999).

Meyer-ter-Vehn, J.

K. Sokolowski-Tinten, J. Bialkowski, A. Cavalleri, D. von der Linde, A. Oparin, J. Meyer-ter-Vehn, and S. I. Anisimov, “Transient states of matter during short pulse laser ablation,” Phys. Rev. Lett. 81(1), 224–227 (1998).
[CrossRef]

Meyhöfer, E.

A. P. Joglekar, H. H. Liu, E. Meyhöfer, G. Mourou, and A. J. Hunt, “Optics at critical intensity: applications to nanomorphing,” Proc. Natl. Acad. Sci. U.S.A. 101(16), 5856–5861 (2004).
[CrossRef] [PubMed]

Miyanishi, T.

T. Sakai, T. Miyanishi, N. Nedyalkov, Y. Nishizawa, and M. Obara, “Nano-dimple processing of silicon surfaces by femtosecond laser irradiation with dielectric particle templates in the Mie scattering domain,” J. Phys. D 42(2), 025502 (2009).
[CrossRef]

Montozzi, M.

E. Cappelli, S. Orlando, D. Sciti, M. Montozzi, and L. Pandolfi, “Ceramic surface modifications induced by pulsed laser treatment,” Appl. Surf. Sci. 154-155 (1-4), 682–688 (2000).
[CrossRef]

Mosbacher, M.

H. J. Münzer, M. Mosbacher, M. Bertsch, O. Dubbers, F. Burmeister, A. Pack, R. Wannemacher, B. U. Runge, D. Bӓ uerle, J. Boneberg, and P. Leiderer, “Optical near field effects in surface nanostructuring and laser cleaning,” Proc. SPIE 4426, 180–183 (2002).
[CrossRef]

Mourou, G.

A. P. Joglekar, H. H. Liu, E. Meyhöfer, G. Mourou, and A. J. Hunt, “Optics at critical intensity: applications to nanomorphing,” Proc. Natl. Acad. Sci. U.S.A. 101(16), 5856–5861 (2004).
[CrossRef] [PubMed]

P. P. Pronko, P. A. VanRompay, C. Horvath, F. Loesel, T. Juhasz, X. Liu, and G. Mourou, “Avalanche ionization and dielectric breakdown in silicon with ultrafast laser pulses,” Phys. Rev. B 58(5), 2387–2390 (1998).
[CrossRef]

Muinonen, K.

A. Penttilä, E. Zubko, K. Lumme, K. Muinonen, M. A. Yurkin, B. Draine, J. Rahola, A. G. Hoekstra, and Y. Shkuratov, “Comparison between discrete dipole implementations and exact techniques,” JQSRT 106, 417–436 (2007).

Mulholland, G. W.

Mulvaney, P.

S. W. Prescott and P. Mulvaney, “Gold nanorod extinction spectra,” J. Appl. Phys. 99(12), 123504 (2006).
[CrossRef]

C. Sönnichsen, T. Franzl, T. Wilk, G. von Plessen, J. Feldmann, O. Wilson, and P. Mulvaney, “Drastic reduction of plasmon damping in gold nanorods,” Phys. Rev. Lett. 88(7), 077402 (2002).
[CrossRef] [PubMed]

Münzer, H. J.

H. J. Münzer, M. Mosbacher, M. Bertsch, O. Dubbers, F. Burmeister, A. Pack, R. Wannemacher, B. U. Runge, D. Bӓ uerle, J. Boneberg, and P. Leiderer, “Optical near field effects in surface nanostructuring and laser cleaning,” Proc. SPIE 4426, 180–183 (2002).
[CrossRef]

Nada, O.

Nedyalkov, N.

T. Sakai, T. Miyanishi, N. Nedyalkov, Y. Nishizawa, and M. Obara, “Nano-dimple processing of silicon surfaces by femtosecond laser irradiation with dielectric particle templates in the Mie scattering domain,” J. Phys. D 42(2), 025502 (2009).
[CrossRef]

Nedyalkov, N. N.

N. N. Nedyalkov, P. A. Atanasov, and M. Obara, “Near-field properties of a gold nanoparticle array on different substrates excited by a femtosecond laser,” Nanotechnology 18(30), 305703 (2007).
[CrossRef]

Nehl, C. L.

H. Wang, Y. Wu, B. Lassiter, C. L. Nehl, J. H. Hafner, P. Nordlander, and N. J. Halas, “Symmetry breaking in individual plasmonic nanoparticles,” Proc. Natl. Acad. Sci. U.S.A. 103(29), 10856–10860 (2006).
[CrossRef] [PubMed]

Ni, X.

X. Ni, C. Wang, L. Yang, J. Li, L. Chai, W. Jia, R. Zhang, and Z. Zhang, “Parametric study on femtosecond laser pulse ablation of Au films,” Appl. Surf. Sci. 253(3), 1616–1619 (2006).
[CrossRef]

Nikoobakht, B.

S. Link, C. Burda, B. Nikoobakht, and M. A. El-Sayed, “How long does it take to melt a gold nanorod? A femtosecond pump-probe absorption spectroscopic study,” Chem. Phys. Lett. 315(1-2), 12–18 (1999).
[CrossRef]

Nishizawa, Y.

T. Sakai, T. Miyanishi, N. Nedyalkov, Y. Nishizawa, and M. Obara, “Nano-dimple processing of silicon surfaces by femtosecond laser irradiation with dielectric particle templates in the Mie scattering domain,” J. Phys. D 42(2), 025502 (2009).
[CrossRef]

Nordlander, P.

H. Wang, Y. Wu, B. Lassiter, C. L. Nehl, J. H. Hafner, P. Nordlander, and N. J. Halas, “Symmetry breaking in individual plasmonic nanoparticles,” Proc. Natl. Acad. Sci. U.S.A. 103(29), 10856–10860 (2006).
[CrossRef] [PubMed]

Obara, M.

T. Sakai, T. Miyanishi, N. Nedyalkov, Y. Nishizawa, and M. Obara, “Nano-dimple processing of silicon surfaces by femtosecond laser irradiation with dielectric particle templates in the Mie scattering domain,” J. Phys. D 42(2), 025502 (2009).
[CrossRef]

N. N. Nedyalkov, P. A. Atanasov, and M. Obara, “Near-field properties of a gold nanoparticle array on different substrates excited by a femtosecond laser,” Nanotechnology 18(30), 305703 (2007).
[CrossRef]

Olaizola, S. M.

C. Tan, C. S. Peng, J. Pakarinen, M. Pessa, V. N. Petryakov, Y. K. Verevkin, J. Zhang, Z. Wang, S. M. Olaizola, T. Berthou, and S. Tisserand, “Ordered nanostructures written directly by laser interference,” Nanotechnology 20(12), 125303 (2009).
[CrossRef] [PubMed]

Oldenburg, A. L.

Olivié, G.

Oparin, A.

K. Sokolowski-Tinten, J. Bialkowski, A. Cavalleri, D. von der Linde, A. Oparin, J. Meyer-ter-Vehn, and S. I. Anisimov, “Transient states of matter during short pulse laser ablation,” Phys. Rev. Lett. 81(1), 224–227 (1998).
[CrossRef]

Orlando, S.

E. Cappelli, S. Orlando, D. Sciti, M. Montozzi, and L. Pandolfi, “Ceramic surface modifications induced by pulsed laser treatment,” Appl. Surf. Sci. 154-155 (1-4), 682–688 (2000).
[CrossRef]

Ostendorf, A.

Ozaki, T.

Pack, A.

H. J. Münzer, M. Mosbacher, M. Bertsch, O. Dubbers, F. Burmeister, A. Pack, R. Wannemacher, B. U. Runge, D. Bӓ uerle, J. Boneberg, and P. Leiderer, “Optical near field effects in surface nanostructuring and laser cleaning,” Proc. SPIE 4426, 180–183 (2002).
[CrossRef]

Pakarinen, J.

C. Tan, C. S. Peng, J. Pakarinen, M. Pessa, V. N. Petryakov, Y. K. Verevkin, J. Zhang, Z. Wang, S. M. Olaizola, T. Berthou, and S. Tisserand, “Ordered nanostructures written directly by laser interference,” Nanotechnology 20(12), 125303 (2009).
[CrossRef] [PubMed]

Pandolfi, L.

E. Cappelli, S. Orlando, D. Sciti, M. Montozzi, and L. Pandolfi, “Ceramic surface modifications induced by pulsed laser treatment,” Appl. Surf. Sci. 154-155 (1-4), 682–688 (2000).
[CrossRef]

Peng, C. S.

C. Tan, C. S. Peng, J. Pakarinen, M. Pessa, V. N. Petryakov, Y. K. Verevkin, J. Zhang, Z. Wang, S. M. Olaizola, T. Berthou, and S. Tisserand, “Ordered nanostructures written directly by laser interference,” Nanotechnology 20(12), 125303 (2009).
[CrossRef] [PubMed]

Penttilä, A.

A. Penttilä, E. Zubko, K. Lumme, K. Muinonen, M. A. Yurkin, B. Draine, J. Rahola, A. G. Hoekstra, and Y. Shkuratov, “Comparison between discrete dipole implementations and exact techniques,” JQSRT 106, 417–436 (2007).

Pessa, M.

C. Tan, C. S. Peng, J. Pakarinen, M. Pessa, V. N. Petryakov, Y. K. Verevkin, J. Zhang, Z. Wang, S. M. Olaizola, T. Berthou, and S. Tisserand, “Ordered nanostructures written directly by laser interference,” Nanotechnology 20(12), 125303 (2009).
[CrossRef] [PubMed]

Petryakov, V. N.

C. Tan, C. S. Peng, J. Pakarinen, M. Pessa, V. N. Petryakov, Y. K. Verevkin, J. Zhang, Z. Wang, S. M. Olaizola, T. Berthou, and S. Tisserand, “Ordered nanostructures written directly by laser interference,” Nanotechnology 20(12), 125303 (2009).
[CrossRef] [PubMed]

Plech, A.

A. Plech, V. Kotaidis, M. Lorenc, and J. Boneberg, “Femtosecond laser near-field ablation from gold nanoparticles,” Nat. Phys. 2(1), 44–47 (2006).
[CrossRef]

Popall, M.

Prescott, S. W.

S. W. Prescott and P. Mulvaney, “Gold nanorod extinction spectra,” J. Appl. Phys. 99(12), 123504 (2006).
[CrossRef]

Pronko, P. P.

P. P. Pronko, P. A. VanRompay, C. Horvath, F. Loesel, T. Juhasz, X. Liu, and G. Mourou, “Avalanche ionization and dielectric breakdown in silicon with ultrafast laser pulses,” Phys. Rev. B 58(5), 2387–2390 (1998).
[CrossRef]

Rahola, J.

A. Penttilä, E. Zubko, K. Lumme, K. Muinonen, M. A. Yurkin, B. Draine, J. Rahola, A. G. Hoekstra, and Y. Shkuratov, “Comparison between discrete dipole implementations and exact techniques,” JQSRT 106, 417–436 (2007).

Rayavarapu, R. G.

C. Ungureanu, R. G. Rayavarapu, S. Manohar, and T. G. van Leeuwen, “Discrete dipole approximation simulations of gold nanorod optical properties: Choice of input parameters and comparison with experiment,” J. Appl. Phys. 105(10), 102032 (2009).
[CrossRef]

Runge, B. U.

H. J. Münzer, M. Mosbacher, M. Bertsch, O. Dubbers, F. Burmeister, A. Pack, R. Wannemacher, B. U. Runge, D. Bӓ uerle, J. Boneberg, and P. Leiderer, “Optical near field effects in surface nanostructuring and laser cleaning,” Proc. SPIE 4426, 180–183 (2002).
[CrossRef]

Sakai, T.

T. Sakai, T. Miyanishi, N. Nedyalkov, Y. Nishizawa, and M. Obara, “Nano-dimple processing of silicon surfaces by femtosecond laser irradiation with dielectric particle templates in the Mie scattering domain,” J. Phys. D 42(2), 025502 (2009).
[CrossRef]

Scaffardi, L. B.

L. B. Scaffardi and J. O. Tocho, “Size dependence of refractive index of gold nanoparticles,” Nanotechnology 17(5), 1309–1315 (2006).
[CrossRef]

Schatz, G. C.

E. A. Coronado and G. C. Schatz, “Surface plasmon broadening for arbitrary shape nanoparticles: A geometrical probability approach,” J. Chem. Phys. 119(7), 3926–3934 (2003).
[CrossRef]

K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, “The Optical Properties of Metal Nanoparticles: The Influence of Size, Shape, and Dielectric Environment,” J. Phys. Chem. B 107(3), 668–677 (2003).
[CrossRef]

Schulz, J.

Sciti, D.

E. Cappelli, S. Orlando, D. Sciti, M. Montozzi, and L. Pandolfi, “Ceramic surface modifications induced by pulsed laser treatment,” Appl. Surf. Sci. 154-155 (1-4), 682–688 (2000).
[CrossRef]

Serbin, J.

Shadnam, M. R.

S. E. Kirkwood, M. R. Shadnam, A. Amirfazli, and R. Fedosejevs, “Mechanism for femtosecond laser pulse patterning of self-assembled monolayers on gold-coated substrates,” J. Phys. Conf. Ser. 59, 428–431 (2007).
[CrossRef]

Shkuratov, Y.

A. Penttilä, E. Zubko, K. Lumme, K. Muinonen, M. A. Yurkin, B. Draine, J. Rahola, A. G. Hoekstra, and Y. Shkuratov, “Comparison between discrete dipole implementations and exact techniques,” JQSRT 106, 417–436 (2007).

Smith, D. K.

N. J. Durr, T. Larson, D. K. Smith, B. A. Korgel, K. Sokolov, and A. Ben-Yakar, “Two-photon luminescence imaging of cancer cells using molecularly targeted gold nanorods,” Nano Lett. 7(4), 941–945 (2007).
[CrossRef] [PubMed]

Sokolov, K.

N. J. Durr, T. Larson, D. K. Smith, B. A. Korgel, K. Sokolov, and A. Ben-Yakar, “Two-photon luminescence imaging of cancer cells using molecularly targeted gold nanorods,” Nano Lett. 7(4), 941–945 (2007).
[CrossRef] [PubMed]

Sokolowski-Tinten, K.

K. Sokolowski-Tinten, J. Bialkowski, A. Cavalleri, D. von der Linde, A. Oparin, J. Meyer-ter-Vehn, and S. I. Anisimov, “Transient states of matter during short pulse laser ablation,” Phys. Rev. Lett. 81(1), 224–227 (1998).
[CrossRef]

Sönnichsen, C.

C. Sönnichsen, T. Franzl, T. Wilk, G. von Plessen, J. Feldmann, O. Wilson, and P. Mulvaney, “Drastic reduction of plasmon damping in gold nanorods,” Phys. Rev. Lett. 88(7), 077402 (2002).
[CrossRef] [PubMed]

Spinelli, N.

S. Amoruso, X. Wang, C. Altucci, C. De Lisio, M. Armenante, R. Bruzzese, N. Spinelli, and R. Velotta, “Double-peak distribution of electron and ion emission profile during femtosecond laser ablation of metals,” Appl. Surf. Sci. 186(1-4), 358–363 (2002).
[CrossRef]

Stone, H. A.

A. Ben-Yakar, A. Harkin, J. Ashmore, R. L. Byer, and H. A. Stone, “Thermal and fluid processes of a thin melt zone during femtosecond laser ablation of glass: the formation of rims by single laser pulses,” J. Phys. D 40(5), 1447–1459 (2007).
[CrossRef]

Tan, C.

C. Tan, C. S. Peng, J. Pakarinen, M. Pessa, V. N. Petryakov, Y. K. Verevkin, J. Zhang, Z. Wang, S. M. Olaizola, T. Berthou, and S. Tisserand, “Ordered nanostructures written directly by laser interference,” Nanotechnology 20(12), 125303 (2009).
[CrossRef] [PubMed]

Tisserand, S.

C. Tan, C. S. Peng, J. Pakarinen, M. Pessa, V. N. Petryakov, Y. K. Verevkin, J. Zhang, Z. Wang, S. M. Olaizola, T. Berthou, and S. Tisserand, “Ordered nanostructures written directly by laser interference,” Nanotechnology 20(12), 125303 (2009).
[CrossRef] [PubMed]

Tocho, J. O.

L. B. Scaffardi and J. O. Tocho, “Size dependence of refractive index of gold nanoparticles,” Nanotechnology 17(5), 1309–1315 (2006).
[CrossRef]

Toetsch, S.

uerle, D. B?

H. J. Münzer, M. Mosbacher, M. Bertsch, O. Dubbers, F. Burmeister, A. Pack, R. Wannemacher, B. U. Runge, D. Bӓ uerle, J. Boneberg, and P. Leiderer, “Optical near field effects in surface nanostructuring and laser cleaning,” Proc. SPIE 4426, 180–183 (2002).
[CrossRef]

Ungureanu, C.

C. Ungureanu, R. G. Rayavarapu, S. Manohar, and T. G. van Leeuwen, “Discrete dipole approximation simulations of gold nanorod optical properties: Choice of input parameters and comparison with experiment,” J. Appl. Phys. 105(10), 102032 (2009).
[CrossRef]

Urey, H.

Van Duyne, R. P.

T. R. Jensen, M. D. Malinsky, C. L. Haynes, and R. P. Van Duyne, “Nanosphere Lithography: Tunable Localized Surface Plasmon Resonance Spectra of Silver Nanoparticles,” J. Phys. Chem. B 104(45), 10549–10556 (2000).
[CrossRef]

van Leeuwen, T. G.

C. Ungureanu, R. G. Rayavarapu, S. Manohar, and T. G. van Leeuwen, “Discrete dipole approximation simulations of gold nanorod optical properties: Choice of input parameters and comparison with experiment,” J. Appl. Phys. 105(10), 102032 (2009).
[CrossRef]

VanRompay, P. A.

P. P. Pronko, P. A. VanRompay, C. Horvath, F. Loesel, T. Juhasz, X. Liu, and G. Mourou, “Avalanche ionization and dielectric breakdown in silicon with ultrafast laser pulses,” Phys. Rev. B 58(5), 2387–2390 (1998).
[CrossRef]

Velotta, R.

S. Amoruso, X. Wang, C. Altucci, C. De Lisio, M. Armenante, R. Bruzzese, N. Spinelli, and R. Velotta, “Double-peak distribution of electron and ion emission profile during femtosecond laser ablation of metals,” Appl. Surf. Sci. 186(1-4), 358–363 (2002).
[CrossRef]

Verevkin, Y. K.

C. Tan, C. S. Peng, J. Pakarinen, M. Pessa, V. N. Petryakov, Y. K. Verevkin, J. Zhang, Z. Wang, S. M. Olaizola, T. Berthou, and S. Tisserand, “Ordered nanostructures written directly by laser interference,” Nanotechnology 20(12), 125303 (2009).
[CrossRef] [PubMed]

Vidal, F.

Vlieger, J.

P. A. Bobbert and J. Vlieger, “Light scattering by a sphere on a substrate,” Physica A 137(1-2), 209–242 (1986).
[CrossRef]

von der Linde, D.

K. Sokolowski-Tinten, J. Bialkowski, A. Cavalleri, D. von der Linde, A. Oparin, J. Meyer-ter-Vehn, and S. I. Anisimov, “Transient states of matter during short pulse laser ablation,” Phys. Rev. Lett. 81(1), 224–227 (1998).
[CrossRef]

von Plessen, G.

C. Sönnichsen, T. Franzl, T. Wilk, G. von Plessen, J. Feldmann, O. Wilson, and P. Mulvaney, “Drastic reduction of plasmon damping in gold nanorods,” Phys. Rev. Lett. 88(7), 077402 (2002).
[CrossRef] [PubMed]

Wang, C.

X. Ni, C. Wang, L. Yang, J. Li, L. Chai, W. Jia, R. Zhang, and Z. Zhang, “Parametric study on femtosecond laser pulse ablation of Au films,” Appl. Surf. Sci. 253(3), 1616–1619 (2006).
[CrossRef]

Wang, H.

H. Wang, Y. Wu, B. Lassiter, C. L. Nehl, J. H. Hafner, P. Nordlander, and N. J. Halas, “Symmetry breaking in individual plasmonic nanoparticles,” Proc. Natl. Acad. Sci. U.S.A. 103(29), 10856–10860 (2006).
[CrossRef] [PubMed]

Wang, X.

S. Amoruso, X. Wang, C. Altucci, C. De Lisio, M. Armenante, R. Bruzzese, N. Spinelli, and R. Velotta, “Double-peak distribution of electron and ion emission profile during femtosecond laser ablation of metals,” Appl. Surf. Sci. 186(1-4), 358–363 (2002).
[CrossRef]

Wang, Y.

Y. Wang, X. Xu, and L. Zheng, “Molecular dynamics simulation of ultrafast laser ablation of fused silica film,” Appl. Phys., A Mater. Sci. Process. 92(4), 849–852 (2008).
[CrossRef]

Wang, Z.

C. Tan, C. S. Peng, J. Pakarinen, M. Pessa, V. N. Petryakov, Y. K. Verevkin, J. Zhang, Z. Wang, S. M. Olaizola, T. Berthou, and S. Tisserand, “Ordered nanostructures written directly by laser interference,” Nanotechnology 20(12), 125303 (2009).
[CrossRef] [PubMed]

Wang, Z. B.

B. S. Luk’yanchuk, N. Arnold, S. M. Huang, Z. B. Wang, and M. H. Hong, “Three-dimensional effects in dry laser cleaning,” Appl. Phys., A Mater. Sci. Process. 77, 209–215 (2003).

Wannemacher, R.

H. J. Münzer, M. Mosbacher, M. Bertsch, O. Dubbers, F. Burmeister, A. Pack, R. Wannemacher, B. U. Runge, D. Bӓ uerle, J. Boneberg, and P. Leiderer, “Optical near field effects in surface nanostructuring and laser cleaning,” Proc. SPIE 4426, 180–183 (2002).
[CrossRef]

Wei, A.

Weiner, A.

I. Chowdhury, A. Wu, X. Xu, and A. Weiner, “Ultra-fast laser absorption and ablation dynamics in wide-band-gap dielectrics,” Appl. Phys. A: Mater. Sci. Process. 81(8), 1627–1632 (2005).
[CrossRef]

Weingartner, J. C.

B. T. Draine and J. C. Weingartner, “Radiative torques on interstellar grains. I. Superthermal spin-up,” Astrophys. J. 470, 551–565 (1996).
[CrossRef]

Wellershoff, S.

S. Wellershoff, J. Hohlfeld, J. Güdde, and E. Matthias, “The role of electron–phonon coupling in femtosecond laser damage of metals,” Appl. Phys. A: Mater. Sci. Process. 69, S99–S107 (1999).

Wilk, T.

C. Sönnichsen, T. Franzl, T. Wilk, G. von Plessen, J. Feldmann, O. Wilson, and P. Mulvaney, “Drastic reduction of plasmon damping in gold nanorods,” Phys. Rev. Lett. 88(7), 077402 (2002).
[CrossRef] [PubMed]

Wilson, O.

C. Sönnichsen, T. Franzl, T. Wilk, G. von Plessen, J. Feldmann, O. Wilson, and P. Mulvaney, “Drastic reduction of plasmon damping in gold nanorods,” Phys. Rev. Lett. 88(7), 077402 (2002).
[CrossRef] [PubMed]

Wu, A.

I. Chowdhury, A. Wu, X. Xu, and A. Weiner, “Ultra-fast laser absorption and ablation dynamics in wide-band-gap dielectrics,” Appl. Phys. A: Mater. Sci. Process. 81(8), 1627–1632 (2005).
[CrossRef]

Wu, Y.

H. Wang, Y. Wu, B. Lassiter, C. L. Nehl, J. H. Hafner, P. Nordlander, and N. J. Halas, “Symmetry breaking in individual plasmonic nanoparticles,” Proc. Natl. Acad. Sci. U.S.A. 103(29), 10856–10860 (2006).
[CrossRef] [PubMed]

Xu, X.

Y. Wang, X. Xu, and L. Zheng, “Molecular dynamics simulation of ultrafast laser ablation of fused silica film,” Appl. Phys., A Mater. Sci. Process. 92(4), 849–852 (2008).
[CrossRef]

I. Chowdhury, A. Wu, X. Xu, and A. Weiner, “Ultra-fast laser absorption and ablation dynamics in wide-band-gap dielectrics,” Appl. Phys. A: Mater. Sci. Process. 81(8), 1627–1632 (2005).
[CrossRef]

Yang, L.

X. Ni, C. Wang, L. Yang, J. Li, L. Chai, W. Jia, R. Zhang, and Z. Zhang, “Parametric study on femtosecond laser pulse ablation of Au films,” Appl. Surf. Sci. 253(3), 1616–1619 (2006).
[CrossRef]

Yurkin, M. A.

M. A. Yurkin, D. de Kanter, and A. G. Hoekstra, “Accuracy of the discrete dipole approximation for simulation of optical properties of gold nanoparticles,” J. Nanophotonics 4(1), 041585 (2010).
[CrossRef]

M. A. Yurkin and A. G. Hoekstra, “The discrete dipole approximation: an overview and recent developments,” JQSRT 106, 558–589 (2007).

M. A. Yurkin, V. P. Maltsev, and A. G. Hoekstra, “The discrete dipole approximation for simulation of light scattering by particles much larger than the wavelength,” JQSRT 106, 546–557 (2007).

A. Penttilä, E. Zubko, K. Lumme, K. Muinonen, M. A. Yurkin, B. Draine, J. Rahola, A. G. Hoekstra, and Y. Shkuratov, “Comparison between discrete dipole implementations and exact techniques,” JQSRT 106, 417–436 (2007).

Zhang, J.

C. Tan, C. S. Peng, J. Pakarinen, M. Pessa, V. N. Petryakov, Y. K. Verevkin, J. Zhang, Z. Wang, S. M. Olaizola, T. Berthou, and S. Tisserand, “Ordered nanostructures written directly by laser interference,” Nanotechnology 20(12), 125303 (2009).
[CrossRef] [PubMed]

Zhang, R.

X. Ni, C. Wang, L. Yang, J. Li, L. Chai, W. Jia, R. Zhang, and Z. Zhang, “Parametric study on femtosecond laser pulse ablation of Au films,” Appl. Surf. Sci. 253(3), 1616–1619 (2006).
[CrossRef]

Zhang, Z.

X. Ni, C. Wang, L. Yang, J. Li, L. Chai, W. Jia, R. Zhang, and Z. Zhang, “Parametric study on femtosecond laser pulse ablation of Au films,” Appl. Surf. Sci. 253(3), 1616–1619 (2006).
[CrossRef]

Zhao, L. L.

K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, “The Optical Properties of Metal Nanoparticles: The Influence of Size, Shape, and Dielectric Environment,” J. Phys. Chem. B 107(3), 668–677 (2003).
[CrossRef]

Zheng, L.

Y. Wang, X. Xu, and L. Zheng, “Molecular dynamics simulation of ultrafast laser ablation of fused silica film,” Appl. Phys., A Mater. Sci. Process. 92(4), 849–852 (2008).
[CrossRef]

Zijlstra, P.

P. Zijlstra, J. W. M. Chon, and M. Gu, “Five-dimensional optical recording mediated by surface plasmons in gold nanorods,” Nature 459(7245), 410–413 (2009).
[CrossRef] [PubMed]

Zubko, E.

A. Penttilä, E. Zubko, K. Lumme, K. Muinonen, M. A. Yurkin, B. Draine, J. Rahola, A. G. Hoekstra, and Y. Shkuratov, “Comparison between discrete dipole implementations and exact techniques,” JQSRT 106, 417–436 (2007).

Zweifel, D. A.

Appl. Opt.

Appl. Phys. A: Mater. Sci. Process.

D. Eversole, B. Luk’yanchuk, and A. Ben-Yakar, “Plasmonic laser nanoablation of silicon by the scattering of femtosecond pulses near gold nanospheres,” Appl. Phys. A: Mater. Sci. Process. 89(2), 283–291 (2007).
[CrossRef]

N. Arnold, “Influence of the substrate, metal overlayer and lattice neighbors on the focusing properties of colloidal microspheres,” Appl. Phys. A: Mater. Sci. Process. 92(4), 1005–1012 (2008).
[CrossRef]

I. Chowdhury, A. Wu, X. Xu, and A. Weiner, “Ultra-fast laser absorption and ablation dynamics in wide-band-gap dielectrics,” Appl. Phys. A: Mater. Sci. Process. 81(8), 1627–1632 (2005).
[CrossRef]

S. Wellershoff, J. Hohlfeld, J. Güdde, and E. Matthias, “The role of electron–phonon coupling in femtosecond laser damage of metals,” Appl. Phys. A: Mater. Sci. Process. 69, S99–S107 (1999).

Appl. Phys. Lett.

A. Chimmalgi, T. Y. Choi, C. P. Grigoropoulos, and K. Komvopoulos, “Femtosecond laser aperturless near-field nanomachining of metals assisted by scanning probe microscopy,” Appl. Phys. Lett. 82(8), 1146 (2003).
[CrossRef]

Appl. Phys., A Mater. Sci. Process.

Y. Wang, X. Xu, and L. Zheng, “Molecular dynamics simulation of ultrafast laser ablation of fused silica film,” Appl. Phys., A Mater. Sci. Process. 92(4), 849–852 (2008).
[CrossRef]

B. S. Luk’yanchuk, N. Arnold, S. M. Huang, Z. B. Wang, and M. H. Hong, “Three-dimensional effects in dry laser cleaning,” Appl. Phys., A Mater. Sci. Process. 77, 209–215 (2003).

D. Brodoceanu, L. Landström, and D. Bäuerle, “Laser-induced nanopatterning of silicon with colloidal monolayers,” Appl. Phys., A Mater. Sci. Process. 86(3), 313–314 (2007).
[CrossRef]

Appl. Surf. Sci.

X. Ni, C. Wang, L. Yang, J. Li, L. Chai, W. Jia, R. Zhang, and Z. Zhang, “Parametric study on femtosecond laser pulse ablation of Au films,” Appl. Surf. Sci. 253(3), 1616–1619 (2006).
[CrossRef]

S. Amoruso, X. Wang, C. Altucci, C. De Lisio, M. Armenante, R. Bruzzese, N. Spinelli, and R. Velotta, “Double-peak distribution of electron and ion emission profile during femtosecond laser ablation of metals,” Appl. Surf. Sci. 186(1-4), 358–363 (2002).
[CrossRef]

E. Cappelli, S. Orlando, D. Sciti, M. Montozzi, and L. Pandolfi, “Ceramic surface modifications induced by pulsed laser treatment,” Appl. Surf. Sci. 154-155 (1-4), 682–688 (2000).
[CrossRef]

Astrophys. J.

B. T. Draine, “The discrete-dipole approximation and its application to interstellar graphite grains,” Astrophys. J. 333, 848–872 (1988).
[CrossRef]

B. T. Draine and J. C. Weingartner, “Radiative torques on interstellar grains. I. Superthermal spin-up,” Astrophys. J. 470, 551–565 (1996).
[CrossRef]

Chem. Phys. Lett.

S. Link, C. Burda, B. Nikoobakht, and M. A. El-Sayed, “How long does it take to melt a gold nanorod? A femtosecond pump-probe absorption spectroscopic study,” Chem. Phys. Lett. 315(1-2), 12–18 (1999).
[CrossRef]

J. Appl. Phys.

C. Ungureanu, R. G. Rayavarapu, S. Manohar, and T. G. van Leeuwen, “Discrete dipole approximation simulations of gold nanorod optical properties: Choice of input parameters and comparison with experiment,” J. Appl. Phys. 105(10), 102032 (2009).
[CrossRef]

S. W. Prescott and P. Mulvaney, “Gold nanorod extinction spectra,” J. Appl. Phys. 99(12), 123504 (2006).
[CrossRef]

A. Ben-Yakar and R. L. Byer, “Femtosecond laser ablation properties of borosilicate glass,” J. Appl. Phys. 96(9), 5316–5323 (2004).
[CrossRef]

J. Chem. Phys.

E. A. Coronado and G. C. Schatz, “Surface plasmon broadening for arbitrary shape nanoparticles: A geometrical probability approach,” J. Chem. Phys. 119(7), 3926–3934 (2003).
[CrossRef]

J. Nanophotonics

M. A. Yurkin, D. de Kanter, and A. G. Hoekstra, “Accuracy of the discrete dipole approximation for simulation of optical properties of gold nanoparticles,” J. Nanophotonics 4(1), 041585 (2010).
[CrossRef]

J. Opt. Soc. Am. A

J. Phys. Chem. B

P. K. Jain, K. S. Lee, I. H. El-Sayed, and M. A. El-Sayed, “Calculated absorption and scattering properties of gold nanoparticles of different size, shape, and composition: applications in biological imaging and biomedicine,” J. Phys. Chem. B 110(14), 7238–7248 (2006).
[CrossRef] [PubMed]

T. R. Jensen, M. D. Malinsky, C. L. Haynes, and R. P. Van Duyne, “Nanosphere Lithography: Tunable Localized Surface Plasmon Resonance Spectra of Silver Nanoparticles,” J. Phys. Chem. B 104(45), 10549–10556 (2000).
[CrossRef]

K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, “The Optical Properties of Metal Nanoparticles: The Influence of Size, Shape, and Dielectric Environment,” J. Phys. Chem. B 107(3), 668–677 (2003).
[CrossRef]

J. Phys. Conf. Ser.

S. E. Kirkwood, M. R. Shadnam, A. Amirfazli, and R. Fedosejevs, “Mechanism for femtosecond laser pulse patterning of self-assembled monolayers on gold-coated substrates,” J. Phys. Conf. Ser. 59, 428–431 (2007).
[CrossRef]

J. Phys. D

T. Sakai, T. Miyanishi, N. Nedyalkov, Y. Nishizawa, and M. Obara, “Nano-dimple processing of silicon surfaces by femtosecond laser irradiation with dielectric particle templates in the Mie scattering domain,” J. Phys. D 42(2), 025502 (2009).
[CrossRef]

A. Ben-Yakar, A. Harkin, J. Ashmore, R. L. Byer, and H. A. Stone, “Thermal and fluid processes of a thin melt zone during femtosecond laser ablation of glass: the formation of rims by single laser pulses,” J. Phys. D 40(5), 1447–1459 (2007).
[CrossRef]

JQSRT

M. A. Yurkin and A. G. Hoekstra, “The discrete dipole approximation: an overview and recent developments,” JQSRT 106, 558–589 (2007).

A. Penttilä, E. Zubko, K. Lumme, K. Muinonen, M. A. Yurkin, B. Draine, J. Rahola, A. G. Hoekstra, and Y. Shkuratov, “Comparison between discrete dipole implementations and exact techniques,” JQSRT 106, 417–436 (2007).

M. A. Yurkin, V. P. Maltsev, and A. G. Hoekstra, “The discrete dipole approximation for simulation of light scattering by particles much larger than the wavelength,” JQSRT 106, 546–557 (2007).

Nano Lett.

N. J. Durr, T. Larson, D. K. Smith, B. A. Korgel, K. Sokolov, and A. Ben-Yakar, “Two-photon luminescence imaging of cancer cells using molecularly targeted gold nanorods,” Nano Lett. 7(4), 941–945 (2007).
[CrossRef] [PubMed]

Nanotechnology

N. N. Nedyalkov, P. A. Atanasov, and M. Obara, “Near-field properties of a gold nanoparticle array on different substrates excited by a femtosecond laser,” Nanotechnology 18(30), 305703 (2007).
[CrossRef]

C. Tan, C. S. Peng, J. Pakarinen, M. Pessa, V. N. Petryakov, Y. K. Verevkin, J. Zhang, Z. Wang, S. M. Olaizola, T. Berthou, and S. Tisserand, “Ordered nanostructures written directly by laser interference,” Nanotechnology 20(12), 125303 (2009).
[CrossRef] [PubMed]

L. B. Scaffardi and J. O. Tocho, “Size dependence of refractive index of gold nanoparticles,” Nanotechnology 17(5), 1309–1315 (2006).
[CrossRef]

Nat. Phys.

A. Plech, V. Kotaidis, M. Lorenc, and J. Boneberg, “Femtosecond laser near-field ablation from gold nanoparticles,” Nat. Phys. 2(1), 44–47 (2006).
[CrossRef]

Nature

P. Zijlstra, J. W. M. Chon, and M. Gu, “Five-dimensional optical recording mediated by surface plasmons in gold nanorods,” Nature 459(7245), 410–413 (2009).
[CrossRef] [PubMed]

Opt. Express

Opt. Lett.

Phys. Rev. B

P. P. Pronko, P. A. VanRompay, C. Horvath, F. Loesel, T. Juhasz, X. Liu, and G. Mourou, “Avalanche ionization and dielectric breakdown in silicon with ultrafast laser pulses,” Phys. Rev. B 58(5), 2387–2390 (1998).
[CrossRef]

Phys. Rev. Lett.

C. Sönnichsen, T. Franzl, T. Wilk, G. von Plessen, J. Feldmann, O. Wilson, and P. Mulvaney, “Drastic reduction of plasmon damping in gold nanorods,” Phys. Rev. Lett. 88(7), 077402 (2002).
[CrossRef] [PubMed]

K. Sokolowski-Tinten, J. Bialkowski, A. Cavalleri, D. von der Linde, A. Oparin, J. Meyer-ter-Vehn, and S. I. Anisimov, “Transient states of matter during short pulse laser ablation,” Phys. Rev. Lett. 81(1), 224–227 (1998).
[CrossRef]

Physica A

P. A. Bobbert and J. Vlieger, “Light scattering by a sphere on a substrate,” Physica A 137(1-2), 209–242 (1986).
[CrossRef]

Proc. Natl. Acad. Sci. U.S.A.

A. P. Joglekar, H. H. Liu, E. Meyhöfer, G. Mourou, and A. J. Hunt, “Optics at critical intensity: applications to nanomorphing,” Proc. Natl. Acad. Sci. U.S.A. 101(16), 5856–5861 (2004).
[CrossRef] [PubMed]

H. Wang, Y. Wu, B. Lassiter, C. L. Nehl, J. H. Hafner, P. Nordlander, and N. J. Halas, “Symmetry breaking in individual plasmonic nanoparticles,” Proc. Natl. Acad. Sci. U.S.A. 103(29), 10856–10860 (2006).
[CrossRef] [PubMed]

Proc. SPIE

H. J. Münzer, M. Mosbacher, M. Bertsch, O. Dubbers, F. Burmeister, A. Pack, R. Wannemacher, B. U. Runge, D. Bӓ uerle, J. Boneberg, and P. Leiderer, “Optical near field effects in surface nanostructuring and laser cleaning,” Proc. SPIE 4426, 180–183 (2002).
[CrossRef]

S. Besner, “Surface modifications during femtosecond laser ablation in vacuum, air, and water,” Proc. SPIE 5578, 554–558 (2004).
[CrossRef]

Other

E. D. Palik, ed., Handbook of Optical Constants of Solids (Academic, New York, 1985).

J. D. Jackson, Classical Electrodynamics (Wiley, New York, 1975).

C. F. Bohren, and D. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, New York, 1983).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Extinction Spectra of Gold Nanorods: The measured Vis-NIR extinction spectrum for gold nanorods as compared with simulated extinction spectra for two different rod shapes. The red curve represents a spherically-capped cylinder and the blue curve represents an elliptically-capped bone. The inset shows a high-resolution SEM image of a single rod. It is clear that the bone shape reproduces both the extinction spectra and SEM appearance more accurately. Both sets of simulations were completed with the same length, maximum width, and overall aspect ratio as the measured average values of the nanorods (28 x 77, AR = 2.8), but the bone-shaped rod simulation also includes the broadening effect of the observed nanorod size distribution (28 ± 4 x 77 ± 9 nm, AR = 2.8 ± 0.3), where the given ranges represent two standard deviations in nanorod size.

Fig. 2
Fig. 2

Calculated near-field enhancement around a gold nanorod (28 x 77 nm2) on a silicon substrate: Images a) and c) show the |E|2 enhancement, while b) and d) show the enhancement in the Poynting vector magnitude |S|. The incident light has λ = 780 nm and its polarization is parallel to long axis of the nanorod. The images a) and b) show the enhancement in the central cross-section of the rod. Images c) and d) show the field enhancements in the top layer of the substrate. The black outline shows the initial position of the nanorod. Note that the substrate simulated is much larger than the expanse shown in a) – d).

Fig. 3
Fig. 3

Nanorod removal from a silicon surface: The percentage of nanorods removed following single-shot irradiation as a function of the effective local fluence (peak fluence) for linearly polarized laser light with cumulative Weibull fits. The data points present nanorod outcomes grouped into logarithmic fluence bins. We calculated the effective peak fluence by multiplying the local fluence by the cos2θ of the angle between the polarization and nanorod long axis.

Fig. 4
Fig. 4

Nanoscale ablation site and depth profile: SEM images of the nanorods before and after laser irradiation at a local effective fluence of a) 54 mJ/cm2, right at the ablation threshold, and b) 218 mJ/cm2. The scale bars correspond to 75 nm and the yellow arrows indicate the incident polarization. c) The depth profile of the ablation site shown in (b), along the long axis shown with the dotted line as obtained using AFM. Note the different scales for the horizontal and vertical axes in (c).

Fig. 5
Fig. 5

PLN threshold of silicon: Logarithmic dependence of ablation depth as a function of peak fluence at various sites where nanorods were present before the irradiation. Extrapolation of the linear fit to zero provides the single-shot ablation threshold (50 ± 20 mJ/cm2) for nanorod-enhanced PLN. The direct fs-laser ablation thresholds of silicon and silica are also given for comparison with the PLN threshold. The dashed gray line describes the thickness of the native oxide layer on silicon.

Tables (1)

Tables Icon

Table 1 Single-shot ultrafast laser ablation thresholds of various materials.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

C e x t =     C a b s + C s c a t
Q e x t =     C e x t A
E s c a t , m = n m N e i k R m n R m n 3 { ( 3 r ^ m n ( r ^ m n P n ) P n ) ( 1 i k R m n ) + k 2 R m n 2 ( ( r ^ m n × P n ) × r ^ m n ) }
H s c a t , m = n m N e i k R m n R m n 3 ( r ^ m n × P n ) { k 2 R m n 2 + i k R m n }
P R = 1 e ( F F t h F 0 ) β
h a = α e f f 1 ln ( F F t h )

Metrics