Abstract

A line scan interferometer, which comprises a visible supercontinuum source coupled to Fourier domain Michelson interferometer, is used to obtain 3D images of ~300 μm high solder balls on a semiconductor die with 125 nm axial and 15 μm lateral resolution. The ability to measure curved surfaces enables the determination of solder ball shape defects in addition to ball height. We show that the maximum measurable angular tilt from the sample surface normal for a given source power depends on the surface roughness of the sample. As an example, we demonstrate height measurement over +/−20 degrees from the normal on the solder balls and over +/−60 degrees on a rough steel ball bearing sample.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. Reolon, M. Jacquot, I. Verrier, G. Brun, and C. Veillas, “Broadband supercontinuum interferometer for high-resolution profilometry,” Opt. Express 14(1), 128–137 (2006).
    [CrossRef] [PubMed]
  2. A. Ishii and J. Mitsudo, “Constant-magnification varifocal mirror and its application to measuring three-dimensional (3-D) shape of solder bump,” IEICE Trans. Electron,” E 90, 6–11 (2007).
  3. T. Ohta, N. Nishizawa, T. Ozawa, and K. Itoh, “Highly-sensitive and high-resolution all-fiber three-dimensional measurement system,” Appl. Opt. 47(13), 2503–2509 (2008).
    [CrossRef] [PubMed]
  4. T. Ohta, N. Nishizawa, T. Ozawa, and K. Itoh, “High-speed three-dimensional measurement using electronically controlled wavelength-tunable ultrashort pulse fiber laser,” Opt. Lett. 34(13), 1921–1923 (2009).
    [CrossRef] [PubMed]
  5. T. Endo, Y. Yasuno, S. Makita, M. Itoh, and T. Yatagai, “Profilometry with line-field Fourier-domain interferometry,” Opt. Express 13(3), 695–701 (2005).
    [CrossRef] [PubMed]
  6. Y. Yasuno, T. Endo, S. Makita, G. Aoki, M. Itoh, and T. Yatagai, “Three-dimensional line-field Fourier domain optical coherence tomography for in vivo dermatological investigation,” J. Biomed. Opt. 11(1), 014014 (2006).
    [CrossRef] [PubMed]
  7. Y. Nakamura, S. Makita, M. Yamanari, M. Itoh, T. Yatagai, and Y. Yasuno, “High-speed three-dimensional human retinal imaging by line-field spectral domain optical coherence tomography,” Opt. Express 15(12), 7103–7116 (2007).
    [CrossRef] [PubMed]
  8. M. Wojtkowski, V. Srinivasan, T. Ko, J. Fujimoto, A. Kowalczyk, and J. Duker, “Ultrahigh-resolution, high-speed, Fourier domain optical coherence tomography and methods for dispersion compensation,” Opt. Express 12(11), 2404–2422 (2004).
    [CrossRef] [PubMed]
  9. C. Dorrer, N. Belabas, J.-P. Likforman, and M. Joffre, “Spectral resolution and sampling issues in Fourier-transform spectral interferometry,” J. Opt. Soc. Am. B 17(10), 1795–1802 (2000).
    [CrossRef]
  10. M. Choma, M. Sarunic, C. Yang, and J. Izatt, “Sensitivity advantage of swept source and Fourier domain optical coherence tomography,” Opt. Express 11(18), 2183–2189 (2003).
    [CrossRef] [PubMed]
  11. M. Kumar, C. Xia, X. Ma, V. V. Alexander, M. N. Islam, F. L. Terry, C. C. Aleksoff, A. Klooster, and D. Davidson, “Power adjustable visible supercontinuum generation using amplified nanosecond gain-switched laser diode,” Opt. Express 16(9), 6194–6201 (2008).
    [CrossRef] [PubMed]
  12. N. Nassif, B. Cense, B. Park, M. Pierce, S. Yun, B. Bouma, G. Tearney, T. Chen, and J. de Boer, “In vivo high-resolution video-rate spectral-domain optical coherence tomography of the human retina and optic nerve,” Opt. Express 12(3), 367–376 (2004).
    [CrossRef] [PubMed]
  13. M. A. Choma, K. Hsu, and J. A. Izatt, “Swept source optical coherence tomography using an all-fiber 1300-nm ring laser source,” J. Biomed. Opt. 10(4), 44009 (2005).
    [CrossRef] [PubMed]
  14. R. Leitgeb, W. Drexler, A. Unterhuber, B. Hermann, T. Bajraszewski, T. Le, A. Stingl, and A. Fercher, “Ultrahigh resolution Fourier domain optical coherence tomography,” Opt. Express 12(10), 2156–2165 (2004).
    [CrossRef] [PubMed]
  15. Y. Watanabe, K. Yamada, and M. Sato, “Three-dimensional imaging by ultrahigh-speed axial-lateral parallel time domain optical coherence tomography,” Opt. Express 14(12), 5201–5209 (2006).
    [CrossRef] [PubMed]

2009 (1)

2008 (2)

2007 (2)

Y. Nakamura, S. Makita, M. Yamanari, M. Itoh, T. Yatagai, and Y. Yasuno, “High-speed three-dimensional human retinal imaging by line-field spectral domain optical coherence tomography,” Opt. Express 15(12), 7103–7116 (2007).
[CrossRef] [PubMed]

A. Ishii and J. Mitsudo, “Constant-magnification varifocal mirror and its application to measuring three-dimensional (3-D) shape of solder bump,” IEICE Trans. Electron,” E 90, 6–11 (2007).

2006 (3)

2005 (2)

M. A. Choma, K. Hsu, and J. A. Izatt, “Swept source optical coherence tomography using an all-fiber 1300-nm ring laser source,” J. Biomed. Opt. 10(4), 44009 (2005).
[CrossRef] [PubMed]

T. Endo, Y. Yasuno, S. Makita, M. Itoh, and T. Yatagai, “Profilometry with line-field Fourier-domain interferometry,” Opt. Express 13(3), 695–701 (2005).
[CrossRef] [PubMed]

2004 (3)

2003 (1)

2000 (1)

Aleksoff, C. C.

Alexander, V. V.

Aoki, G.

Y. Yasuno, T. Endo, S. Makita, G. Aoki, M. Itoh, and T. Yatagai, “Three-dimensional line-field Fourier domain optical coherence tomography for in vivo dermatological investigation,” J. Biomed. Opt. 11(1), 014014 (2006).
[CrossRef] [PubMed]

Bajraszewski, T.

Belabas, N.

Bouma, B.

Brun, G.

Cense, B.

Chen, T.

Choma, M.

Choma, M. A.

M. A. Choma, K. Hsu, and J. A. Izatt, “Swept source optical coherence tomography using an all-fiber 1300-nm ring laser source,” J. Biomed. Opt. 10(4), 44009 (2005).
[CrossRef] [PubMed]

Davidson, D.

de Boer, J.

Dorrer, C.

Drexler, W.

Duker, J.

Endo, T.

Y. Yasuno, T. Endo, S. Makita, G. Aoki, M. Itoh, and T. Yatagai, “Three-dimensional line-field Fourier domain optical coherence tomography for in vivo dermatological investigation,” J. Biomed. Opt. 11(1), 014014 (2006).
[CrossRef] [PubMed]

T. Endo, Y. Yasuno, S. Makita, M. Itoh, and T. Yatagai, “Profilometry with line-field Fourier-domain interferometry,” Opt. Express 13(3), 695–701 (2005).
[CrossRef] [PubMed]

Fercher, A.

Fujimoto, J.

Hermann, B.

Hsu, K.

M. A. Choma, K. Hsu, and J. A. Izatt, “Swept source optical coherence tomography using an all-fiber 1300-nm ring laser source,” J. Biomed. Opt. 10(4), 44009 (2005).
[CrossRef] [PubMed]

Ishii, A.

A. Ishii and J. Mitsudo, “Constant-magnification varifocal mirror and its application to measuring three-dimensional (3-D) shape of solder bump,” IEICE Trans. Electron,” E 90, 6–11 (2007).

Islam, M. N.

Itoh, K.

Itoh, M.

Izatt, J.

Izatt, J. A.

M. A. Choma, K. Hsu, and J. A. Izatt, “Swept source optical coherence tomography using an all-fiber 1300-nm ring laser source,” J. Biomed. Opt. 10(4), 44009 (2005).
[CrossRef] [PubMed]

Jacquot, M.

Joffre, M.

Klooster, A.

Ko, T.

Kowalczyk, A.

Kumar, M.

Le, T.

Leitgeb, R.

Likforman, J.-P.

Ma, X.

Makita, S.

Mitsudo, J.

A. Ishii and J. Mitsudo, “Constant-magnification varifocal mirror and its application to measuring three-dimensional (3-D) shape of solder bump,” IEICE Trans. Electron,” E 90, 6–11 (2007).

Nakamura, Y.

Nassif, N.

Nishizawa, N.

Ohta, T.

Ozawa, T.

Park, B.

Pierce, M.

Reolon, D.

Sarunic, M.

Sato, M.

Srinivasan, V.

Stingl, A.

Tearney, G.

Terry, F. L.

Unterhuber, A.

Veillas, C.

Verrier, I.

Watanabe, Y.

Wojtkowski, M.

Xia, C.

Yamada, K.

Yamanari, M.

Yang, C.

Yasuno, Y.

Yatagai, T.

Yun, S.

Appl. Opt. (1)

E (1)

A. Ishii and J. Mitsudo, “Constant-magnification varifocal mirror and its application to measuring three-dimensional (3-D) shape of solder bump,” IEICE Trans. Electron,” E 90, 6–11 (2007).

J. Biomed. Opt. (2)

Y. Yasuno, T. Endo, S. Makita, G. Aoki, M. Itoh, and T. Yatagai, “Three-dimensional line-field Fourier domain optical coherence tomography for in vivo dermatological investigation,” J. Biomed. Opt. 11(1), 014014 (2006).
[CrossRef] [PubMed]

M. A. Choma, K. Hsu, and J. A. Izatt, “Swept source optical coherence tomography using an all-fiber 1300-nm ring laser source,” J. Biomed. Opt. 10(4), 44009 (2005).
[CrossRef] [PubMed]

J. Opt. Soc. Am. B (1)

Opt. Express (9)

M. Choma, M. Sarunic, C. Yang, and J. Izatt, “Sensitivity advantage of swept source and Fourier domain optical coherence tomography,” Opt. Express 11(18), 2183–2189 (2003).
[CrossRef] [PubMed]

M. Kumar, C. Xia, X. Ma, V. V. Alexander, M. N. Islam, F. L. Terry, C. C. Aleksoff, A. Klooster, and D. Davidson, “Power adjustable visible supercontinuum generation using amplified nanosecond gain-switched laser diode,” Opt. Express 16(9), 6194–6201 (2008).
[CrossRef] [PubMed]

N. Nassif, B. Cense, B. Park, M. Pierce, S. Yun, B. Bouma, G. Tearney, T. Chen, and J. de Boer, “In vivo high-resolution video-rate spectral-domain optical coherence tomography of the human retina and optic nerve,” Opt. Express 12(3), 367–376 (2004).
[CrossRef] [PubMed]

D. Reolon, M. Jacquot, I. Verrier, G. Brun, and C. Veillas, “Broadband supercontinuum interferometer for high-resolution profilometry,” Opt. Express 14(1), 128–137 (2006).
[CrossRef] [PubMed]

R. Leitgeb, W. Drexler, A. Unterhuber, B. Hermann, T. Bajraszewski, T. Le, A. Stingl, and A. Fercher, “Ultrahigh resolution Fourier domain optical coherence tomography,” Opt. Express 12(10), 2156–2165 (2004).
[CrossRef] [PubMed]

Y. Watanabe, K. Yamada, and M. Sato, “Three-dimensional imaging by ultrahigh-speed axial-lateral parallel time domain optical coherence tomography,” Opt. Express 14(12), 5201–5209 (2006).
[CrossRef] [PubMed]

Y. Nakamura, S. Makita, M. Yamanari, M. Itoh, T. Yatagai, and Y. Yasuno, “High-speed three-dimensional human retinal imaging by line-field spectral domain optical coherence tomography,” Opt. Express 15(12), 7103–7116 (2007).
[CrossRef] [PubMed]

M. Wojtkowski, V. Srinivasan, T. Ko, J. Fujimoto, A. Kowalczyk, and J. Duker, “Ultrahigh-resolution, high-speed, Fourier domain optical coherence tomography and methods for dispersion compensation,” Opt. Express 12(11), 2404–2422 (2004).
[CrossRef] [PubMed]

T. Endo, Y. Yasuno, S. Makita, M. Itoh, and T. Yatagai, “Profilometry with line-field Fourier-domain interferometry,” Opt. Express 13(3), 695–701 (2005).
[CrossRef] [PubMed]

Opt. Lett. (1)

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1

Experimental layout for visible SC based Fourier domain line scan interferometer.

Fig. 2
Fig. 2

Experimental setup for visible supercontinuum generation.

Fig. 3
Fig. 3

Visible SC spectrum output.

Fig. 4
Fig. 4

Experimental determination of coherence length.

Fig. 5
Fig. 5

(color online) 3D view of calibration step height standard measured by the line scan system.

Fig. 6
Fig. 6

(Color online) Sample depth dependent decrease in system sensitivity.

Fig. 7
Fig. 7

Variation of dynamic range and Ns,max/Nsat versus γ.

Fig. 8
Fig. 8

(Color online) 3D scan of steel ball bearing – (a) Polished ball - top view, (b) Polished ball - side view, (c) Roughened ball - top view, (d) Roughened ball - side view.

Fig. 9
Fig. 9

(Color online) 3D height map (microns) of solder ball grid array. Row and column numbers 1 to 9 are used to identify the grid position of the solder balls.

Fig. 10
Fig. 10

(Color online) 3D view of solder ball defects – (a) Flat top, (b) Incomplete sphere, (c) Incorrect grid location.

Fig. 11
Fig. 11

2D microscope view of solder ball defects – (a) Flat top, (b) Incomplete sphere, (c) Incorrect grid location.

Tables (2)

Tables Icon

Table 1 Performance metrics of line scan system

Tables Icon

Table 2 Average solder ball heights (column 3 of the die) and standard deviation over 10 independent scans

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

S o u t ( ω ) = | E R ( ω ) | 2 + | E S ( ω ) | 2 + 2 Re { E R ( ω ) * E S ( ω ) } .
l c o h = ( 2 ln 2 / π ) * λ 0 2 / Δ λ 0.44 λ 0 2 / Δ λ ,
S N R F D = η P s a m p l e τ i / h v ,
z max = λ 0 2 / 4 δ λ
N s , max = N s a t ( 1 + γ 2 γ ) ,
D R = N s a t ( 1 + γ 2 γ ) / ( 2 / N ) ,

Metrics