Abstract

To enhance terahertz emission from an optically excited semiconductor surface, we propose to sandwich a thin (as compared to the terahertz wavelength) semiconductor layer between a dielectric hyperhemispherical lens and metal substrate. The layer is excited through the lens. The substrate provides constructive interference of terahertz waves emitted to the lens directly from the layer and reflected by the substrate. The lens outcouples terahertz radiation into free space. For InAs layer sandwiched between MgO (or sapphire) lens and metal substrate, our theory predicts order of magnitude increase in the terahertz yield as compared to the previous schemes of terahertz emission from semiconductor surfaces.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. X.-C. Zhang, B. B. Hu, J. T. Darrow, and D. H. Auston, “Generation of femtosecond electromagnetic pulses from semiconductor surfaces,” Appl. Phys. Lett. 56(11), 1011–1013 (1990).
    [CrossRef]
  2. X.-C. Zhang and D. H. Auston, “Optoelectronic measurement of semiconductor surfaces and interfaces with femtosecond optics,” J. Appl. Phys. 71(1), 326–338 (1992).
    [CrossRef]
  3. Y. Hu, P. Huang, L. Guo, X. Wang, and C. Zhang, “Terahertz spectroscopic investigations of explosives,” Phys. Lett. A 359(6), 728–732 (2006).
    [CrossRef]
  4. Y.-C. Shen and P. F. Taday, “Development and application of terahertz pulsed imaging for nondestructive inspection of pharmaceutical tablet,” IEEE J. Sel. Top. Quantum Electron. 14(2), 407–415 (2008).
    [CrossRef]
  5. T. Dekorsy, H. Auer, H. J. Bakker, H. G. Roskos, and H. Kurz, “THz electromagnetic emission by coherent infrared-active phonons,” Phys. Rev. B Condens. Matter 53(7), 4005–4014 (1996).
    [CrossRef] [PubMed]
  6. M. B. Johnston, D. M. Whittaker, A. Dowd, A. G. Davies, E. H. Linfield, X. Li, and D. A. Ritchie, “Generation of high-power terahertz pulses in a prism,” Opt. Lett. 27(21), 1935–1937 (2002).
    [CrossRef]
  7. X.-C. Zhang, Y. Jin, T. D. Hewitt, T. Sangsiri, L. E. Kingsley, and M. Weiner, “Magnetic switching of THz beams,” Appl. Phys. Lett. 62(17), 2003–2005 (1993).
    [CrossRef]
  8. N. Sarukura, H. Ohtake, S. Izumida, and Z. Liu, “High average-power THz radiation from femtosecond laser-irradiated InAs in a magnetic field and its elliptical polarization characteristics,” J. Appl. Phys. 84(1), 654–656 (1998).
    [CrossRef]
  9. J. Shan, C. Weiss, R. Wallenstein, R. Beigang, and T. F. Heinz, “Origin of magnetic field enhancement in the generation of terahertz radiation from semiconductor surfaces,” Opt. Lett. 26(11), 849–851 (2001).
    [CrossRef]
  10. M. B. Johnston, D. M. Whittaker, A. Corchia, A. G. Davies, and E. H. Linfield, “Simulation of terahertz generation at semiconductor surfaces,” Phys. Rev. B 65(16), 165301 (2002).
    [CrossRef]
  11. G. Klatt, F. Hilser, W. Qiao, M. Beck, R. Gebs, A. Bartels, K. Huska, U. Lemmer, G. Bastian, M. B. Johnston, M. Fischer, J. Faist, and T. Dekorsy, “Terahertz emission from lateral photo-Dember currents,” Opt. Express 18(5), 4939–4947 (2010), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-18-5-4939 .
    [CrossRef] [PubMed]
  12. H. Ahn, Y.-P. Ku, C.-H. Chuang, C.-L. Pan, H.-W. Lin, Y.-L. Hong, and S. Gwo, “Intense terahertz emission from a-plane InN surface,” Appl. Phys. Lett. 92(10), 102103 (2008).
    [CrossRef]
  13. M. Nakajima, K. Uchida, M. Tani, and M. Hangyo, “Strong enhancement of terahertz radiation from semiconductor surfaces using MgO hemispherical lens coupler,” Appl. Phys. Lett. 85(2), 191–193 (2004).
    [CrossRef]
  14. B. B. Hu, J. T. Darrow, X. C. Zhang, D. H. Auston, and P. R. Smith, “Optically steerable photoconducting antennas,” Appl. Phys. Lett. 56(10), 886–888 (1990).
    [CrossRef]
  15. M. B. Johnston, A. Dowd, R. Driver, E. H. Linfield, A. G. Davies, and D. M. Whittaker, “Emission of collimated THz pulses from photo-excited semiconductors,” Semicond. Sci. Technol. 19(4), S449–S451 (2004).
    [CrossRef]
  16. D. R. Jackson and N. G. Alexopoulos, “Gain enhancement methods for printed circuit antennas,” IEEE Trans. Antenn. Propag. 33(9), 976–987 (1985).
    [CrossRef]

2010

2008

Y.-C. Shen and P. F. Taday, “Development and application of terahertz pulsed imaging for nondestructive inspection of pharmaceutical tablet,” IEEE J. Sel. Top. Quantum Electron. 14(2), 407–415 (2008).
[CrossRef]

H. Ahn, Y.-P. Ku, C.-H. Chuang, C.-L. Pan, H.-W. Lin, Y.-L. Hong, and S. Gwo, “Intense terahertz emission from a-plane InN surface,” Appl. Phys. Lett. 92(10), 102103 (2008).
[CrossRef]

2006

Y. Hu, P. Huang, L. Guo, X. Wang, and C. Zhang, “Terahertz spectroscopic investigations of explosives,” Phys. Lett. A 359(6), 728–732 (2006).
[CrossRef]

2004

M. Nakajima, K. Uchida, M. Tani, and M. Hangyo, “Strong enhancement of terahertz radiation from semiconductor surfaces using MgO hemispherical lens coupler,” Appl. Phys. Lett. 85(2), 191–193 (2004).
[CrossRef]

M. B. Johnston, A. Dowd, R. Driver, E. H. Linfield, A. G. Davies, and D. M. Whittaker, “Emission of collimated THz pulses from photo-excited semiconductors,” Semicond. Sci. Technol. 19(4), S449–S451 (2004).
[CrossRef]

2002

M. B. Johnston, D. M. Whittaker, A. Corchia, A. G. Davies, and E. H. Linfield, “Simulation of terahertz generation at semiconductor surfaces,” Phys. Rev. B 65(16), 165301 (2002).
[CrossRef]

M. B. Johnston, D. M. Whittaker, A. Dowd, A. G. Davies, E. H. Linfield, X. Li, and D. A. Ritchie, “Generation of high-power terahertz pulses in a prism,” Opt. Lett. 27(21), 1935–1937 (2002).
[CrossRef]

2001

1998

N. Sarukura, H. Ohtake, S. Izumida, and Z. Liu, “High average-power THz radiation from femtosecond laser-irradiated InAs in a magnetic field and its elliptical polarization characteristics,” J. Appl. Phys. 84(1), 654–656 (1998).
[CrossRef]

1996

T. Dekorsy, H. Auer, H. J. Bakker, H. G. Roskos, and H. Kurz, “THz electromagnetic emission by coherent infrared-active phonons,” Phys. Rev. B Condens. Matter 53(7), 4005–4014 (1996).
[CrossRef] [PubMed]

1993

X.-C. Zhang, Y. Jin, T. D. Hewitt, T. Sangsiri, L. E. Kingsley, and M. Weiner, “Magnetic switching of THz beams,” Appl. Phys. Lett. 62(17), 2003–2005 (1993).
[CrossRef]

1992

X.-C. Zhang and D. H. Auston, “Optoelectronic measurement of semiconductor surfaces and interfaces with femtosecond optics,” J. Appl. Phys. 71(1), 326–338 (1992).
[CrossRef]

1990

X.-C. Zhang, B. B. Hu, J. T. Darrow, and D. H. Auston, “Generation of femtosecond electromagnetic pulses from semiconductor surfaces,” Appl. Phys. Lett. 56(11), 1011–1013 (1990).
[CrossRef]

B. B. Hu, J. T. Darrow, X. C. Zhang, D. H. Auston, and P. R. Smith, “Optically steerable photoconducting antennas,” Appl. Phys. Lett. 56(10), 886–888 (1990).
[CrossRef]

1985

D. R. Jackson and N. G. Alexopoulos, “Gain enhancement methods for printed circuit antennas,” IEEE Trans. Antenn. Propag. 33(9), 976–987 (1985).
[CrossRef]

Ahn, H.

H. Ahn, Y.-P. Ku, C.-H. Chuang, C.-L. Pan, H.-W. Lin, Y.-L. Hong, and S. Gwo, “Intense terahertz emission from a-plane InN surface,” Appl. Phys. Lett. 92(10), 102103 (2008).
[CrossRef]

Alexopoulos, N. G.

D. R. Jackson and N. G. Alexopoulos, “Gain enhancement methods for printed circuit antennas,” IEEE Trans. Antenn. Propag. 33(9), 976–987 (1985).
[CrossRef]

Auer, H.

T. Dekorsy, H. Auer, H. J. Bakker, H. G. Roskos, and H. Kurz, “THz electromagnetic emission by coherent infrared-active phonons,” Phys. Rev. B Condens. Matter 53(7), 4005–4014 (1996).
[CrossRef] [PubMed]

Auston, D. H.

X.-C. Zhang and D. H. Auston, “Optoelectronic measurement of semiconductor surfaces and interfaces with femtosecond optics,” J. Appl. Phys. 71(1), 326–338 (1992).
[CrossRef]

X.-C. Zhang, B. B. Hu, J. T. Darrow, and D. H. Auston, “Generation of femtosecond electromagnetic pulses from semiconductor surfaces,” Appl. Phys. Lett. 56(11), 1011–1013 (1990).
[CrossRef]

B. B. Hu, J. T. Darrow, X. C. Zhang, D. H. Auston, and P. R. Smith, “Optically steerable photoconducting antennas,” Appl. Phys. Lett. 56(10), 886–888 (1990).
[CrossRef]

Bakker, H. J.

T. Dekorsy, H. Auer, H. J. Bakker, H. G. Roskos, and H. Kurz, “THz electromagnetic emission by coherent infrared-active phonons,” Phys. Rev. B Condens. Matter 53(7), 4005–4014 (1996).
[CrossRef] [PubMed]

Bartels, A.

Bastian, G.

Beck, M.

Beigang, R.

Chuang, C.-H.

H. Ahn, Y.-P. Ku, C.-H. Chuang, C.-L. Pan, H.-W. Lin, Y.-L. Hong, and S. Gwo, “Intense terahertz emission from a-plane InN surface,” Appl. Phys. Lett. 92(10), 102103 (2008).
[CrossRef]

Corchia, A.

M. B. Johnston, D. M. Whittaker, A. Corchia, A. G. Davies, and E. H. Linfield, “Simulation of terahertz generation at semiconductor surfaces,” Phys. Rev. B 65(16), 165301 (2002).
[CrossRef]

Darrow, J. T.

B. B. Hu, J. T. Darrow, X. C. Zhang, D. H. Auston, and P. R. Smith, “Optically steerable photoconducting antennas,” Appl. Phys. Lett. 56(10), 886–888 (1990).
[CrossRef]

X.-C. Zhang, B. B. Hu, J. T. Darrow, and D. H. Auston, “Generation of femtosecond electromagnetic pulses from semiconductor surfaces,” Appl. Phys. Lett. 56(11), 1011–1013 (1990).
[CrossRef]

Davies, A. G.

M. B. Johnston, A. Dowd, R. Driver, E. H. Linfield, A. G. Davies, and D. M. Whittaker, “Emission of collimated THz pulses from photo-excited semiconductors,” Semicond. Sci. Technol. 19(4), S449–S451 (2004).
[CrossRef]

M. B. Johnston, D. M. Whittaker, A. Corchia, A. G. Davies, and E. H. Linfield, “Simulation of terahertz generation at semiconductor surfaces,” Phys. Rev. B 65(16), 165301 (2002).
[CrossRef]

M. B. Johnston, D. M. Whittaker, A. Dowd, A. G. Davies, E. H. Linfield, X. Li, and D. A. Ritchie, “Generation of high-power terahertz pulses in a prism,” Opt. Lett. 27(21), 1935–1937 (2002).
[CrossRef]

Dekorsy, T.

Dowd, A.

M. B. Johnston, A. Dowd, R. Driver, E. H. Linfield, A. G. Davies, and D. M. Whittaker, “Emission of collimated THz pulses from photo-excited semiconductors,” Semicond. Sci. Technol. 19(4), S449–S451 (2004).
[CrossRef]

M. B. Johnston, D. M. Whittaker, A. Dowd, A. G. Davies, E. H. Linfield, X. Li, and D. A. Ritchie, “Generation of high-power terahertz pulses in a prism,” Opt. Lett. 27(21), 1935–1937 (2002).
[CrossRef]

Driver, R.

M. B. Johnston, A. Dowd, R. Driver, E. H. Linfield, A. G. Davies, and D. M. Whittaker, “Emission of collimated THz pulses from photo-excited semiconductors,” Semicond. Sci. Technol. 19(4), S449–S451 (2004).
[CrossRef]

Faist, J.

Fischer, M.

Gebs, R.

Guo, L.

Y. Hu, P. Huang, L. Guo, X. Wang, and C. Zhang, “Terahertz spectroscopic investigations of explosives,” Phys. Lett. A 359(6), 728–732 (2006).
[CrossRef]

Gwo, S.

H. Ahn, Y.-P. Ku, C.-H. Chuang, C.-L. Pan, H.-W. Lin, Y.-L. Hong, and S. Gwo, “Intense terahertz emission from a-plane InN surface,” Appl. Phys. Lett. 92(10), 102103 (2008).
[CrossRef]

Hangyo, M.

M. Nakajima, K. Uchida, M. Tani, and M. Hangyo, “Strong enhancement of terahertz radiation from semiconductor surfaces using MgO hemispherical lens coupler,” Appl. Phys. Lett. 85(2), 191–193 (2004).
[CrossRef]

Heinz, T. F.

Hewitt, T. D.

X.-C. Zhang, Y. Jin, T. D. Hewitt, T. Sangsiri, L. E. Kingsley, and M. Weiner, “Magnetic switching of THz beams,” Appl. Phys. Lett. 62(17), 2003–2005 (1993).
[CrossRef]

Hilser, F.

Hong, Y.-L.

H. Ahn, Y.-P. Ku, C.-H. Chuang, C.-L. Pan, H.-W. Lin, Y.-L. Hong, and S. Gwo, “Intense terahertz emission from a-plane InN surface,” Appl. Phys. Lett. 92(10), 102103 (2008).
[CrossRef]

Hu, B. B.

B. B. Hu, J. T. Darrow, X. C. Zhang, D. H. Auston, and P. R. Smith, “Optically steerable photoconducting antennas,” Appl. Phys. Lett. 56(10), 886–888 (1990).
[CrossRef]

X.-C. Zhang, B. B. Hu, J. T. Darrow, and D. H. Auston, “Generation of femtosecond electromagnetic pulses from semiconductor surfaces,” Appl. Phys. Lett. 56(11), 1011–1013 (1990).
[CrossRef]

Hu, Y.

Y. Hu, P. Huang, L. Guo, X. Wang, and C. Zhang, “Terahertz spectroscopic investigations of explosives,” Phys. Lett. A 359(6), 728–732 (2006).
[CrossRef]

Huang, P.

Y. Hu, P. Huang, L. Guo, X. Wang, and C. Zhang, “Terahertz spectroscopic investigations of explosives,” Phys. Lett. A 359(6), 728–732 (2006).
[CrossRef]

Huska, K.

Izumida, S.

N. Sarukura, H. Ohtake, S. Izumida, and Z. Liu, “High average-power THz radiation from femtosecond laser-irradiated InAs in a magnetic field and its elliptical polarization characteristics,” J. Appl. Phys. 84(1), 654–656 (1998).
[CrossRef]

Jackson, D. R.

D. R. Jackson and N. G. Alexopoulos, “Gain enhancement methods for printed circuit antennas,” IEEE Trans. Antenn. Propag. 33(9), 976–987 (1985).
[CrossRef]

Jin, Y.

X.-C. Zhang, Y. Jin, T. D. Hewitt, T. Sangsiri, L. E. Kingsley, and M. Weiner, “Magnetic switching of THz beams,” Appl. Phys. Lett. 62(17), 2003–2005 (1993).
[CrossRef]

Johnston, M. B.

G. Klatt, F. Hilser, W. Qiao, M. Beck, R. Gebs, A. Bartels, K. Huska, U. Lemmer, G. Bastian, M. B. Johnston, M. Fischer, J. Faist, and T. Dekorsy, “Terahertz emission from lateral photo-Dember currents,” Opt. Express 18(5), 4939–4947 (2010), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-18-5-4939 .
[CrossRef] [PubMed]

M. B. Johnston, A. Dowd, R. Driver, E. H. Linfield, A. G. Davies, and D. M. Whittaker, “Emission of collimated THz pulses from photo-excited semiconductors,” Semicond. Sci. Technol. 19(4), S449–S451 (2004).
[CrossRef]

M. B. Johnston, D. M. Whittaker, A. Dowd, A. G. Davies, E. H. Linfield, X. Li, and D. A. Ritchie, “Generation of high-power terahertz pulses in a prism,” Opt. Lett. 27(21), 1935–1937 (2002).
[CrossRef]

M. B. Johnston, D. M. Whittaker, A. Corchia, A. G. Davies, and E. H. Linfield, “Simulation of terahertz generation at semiconductor surfaces,” Phys. Rev. B 65(16), 165301 (2002).
[CrossRef]

Kingsley, L. E.

X.-C. Zhang, Y. Jin, T. D. Hewitt, T. Sangsiri, L. E. Kingsley, and M. Weiner, “Magnetic switching of THz beams,” Appl. Phys. Lett. 62(17), 2003–2005 (1993).
[CrossRef]

Klatt, G.

Ku, Y.-P.

H. Ahn, Y.-P. Ku, C.-H. Chuang, C.-L. Pan, H.-W. Lin, Y.-L. Hong, and S. Gwo, “Intense terahertz emission from a-plane InN surface,” Appl. Phys. Lett. 92(10), 102103 (2008).
[CrossRef]

Kurz, H.

T. Dekorsy, H. Auer, H. J. Bakker, H. G. Roskos, and H. Kurz, “THz electromagnetic emission by coherent infrared-active phonons,” Phys. Rev. B Condens. Matter 53(7), 4005–4014 (1996).
[CrossRef] [PubMed]

Lemmer, U.

Li, X.

Lin, H.-W.

H. Ahn, Y.-P. Ku, C.-H. Chuang, C.-L. Pan, H.-W. Lin, Y.-L. Hong, and S. Gwo, “Intense terahertz emission from a-plane InN surface,” Appl. Phys. Lett. 92(10), 102103 (2008).
[CrossRef]

Linfield, E. H.

M. B. Johnston, A. Dowd, R. Driver, E. H. Linfield, A. G. Davies, and D. M. Whittaker, “Emission of collimated THz pulses from photo-excited semiconductors,” Semicond. Sci. Technol. 19(4), S449–S451 (2004).
[CrossRef]

M. B. Johnston, D. M. Whittaker, A. Corchia, A. G. Davies, and E. H. Linfield, “Simulation of terahertz generation at semiconductor surfaces,” Phys. Rev. B 65(16), 165301 (2002).
[CrossRef]

M. B. Johnston, D. M. Whittaker, A. Dowd, A. G. Davies, E. H. Linfield, X. Li, and D. A. Ritchie, “Generation of high-power terahertz pulses in a prism,” Opt. Lett. 27(21), 1935–1937 (2002).
[CrossRef]

Liu, Z.

N. Sarukura, H. Ohtake, S. Izumida, and Z. Liu, “High average-power THz radiation from femtosecond laser-irradiated InAs in a magnetic field and its elliptical polarization characteristics,” J. Appl. Phys. 84(1), 654–656 (1998).
[CrossRef]

Nakajima, M.

M. Nakajima, K. Uchida, M. Tani, and M. Hangyo, “Strong enhancement of terahertz radiation from semiconductor surfaces using MgO hemispherical lens coupler,” Appl. Phys. Lett. 85(2), 191–193 (2004).
[CrossRef]

Ohtake, H.

N. Sarukura, H. Ohtake, S. Izumida, and Z. Liu, “High average-power THz radiation from femtosecond laser-irradiated InAs in a magnetic field and its elliptical polarization characteristics,” J. Appl. Phys. 84(1), 654–656 (1998).
[CrossRef]

Pan, C.-L.

H. Ahn, Y.-P. Ku, C.-H. Chuang, C.-L. Pan, H.-W. Lin, Y.-L. Hong, and S. Gwo, “Intense terahertz emission from a-plane InN surface,” Appl. Phys. Lett. 92(10), 102103 (2008).
[CrossRef]

Qiao, W.

Ritchie, D. A.

Roskos, H. G.

T. Dekorsy, H. Auer, H. J. Bakker, H. G. Roskos, and H. Kurz, “THz electromagnetic emission by coherent infrared-active phonons,” Phys. Rev. B Condens. Matter 53(7), 4005–4014 (1996).
[CrossRef] [PubMed]

Sangsiri, T.

X.-C. Zhang, Y. Jin, T. D. Hewitt, T. Sangsiri, L. E. Kingsley, and M. Weiner, “Magnetic switching of THz beams,” Appl. Phys. Lett. 62(17), 2003–2005 (1993).
[CrossRef]

Sarukura, N.

N. Sarukura, H. Ohtake, S. Izumida, and Z. Liu, “High average-power THz radiation from femtosecond laser-irradiated InAs in a magnetic field and its elliptical polarization characteristics,” J. Appl. Phys. 84(1), 654–656 (1998).
[CrossRef]

Shan, J.

Shen, Y.-C.

Y.-C. Shen and P. F. Taday, “Development and application of terahertz pulsed imaging for nondestructive inspection of pharmaceutical tablet,” IEEE J. Sel. Top. Quantum Electron. 14(2), 407–415 (2008).
[CrossRef]

Smith, P. R.

B. B. Hu, J. T. Darrow, X. C. Zhang, D. H. Auston, and P. R. Smith, “Optically steerable photoconducting antennas,” Appl. Phys. Lett. 56(10), 886–888 (1990).
[CrossRef]

Taday, P. F.

Y.-C. Shen and P. F. Taday, “Development and application of terahertz pulsed imaging for nondestructive inspection of pharmaceutical tablet,” IEEE J. Sel. Top. Quantum Electron. 14(2), 407–415 (2008).
[CrossRef]

Tani, M.

M. Nakajima, K. Uchida, M. Tani, and M. Hangyo, “Strong enhancement of terahertz radiation from semiconductor surfaces using MgO hemispherical lens coupler,” Appl. Phys. Lett. 85(2), 191–193 (2004).
[CrossRef]

Uchida, K.

M. Nakajima, K. Uchida, M. Tani, and M. Hangyo, “Strong enhancement of terahertz radiation from semiconductor surfaces using MgO hemispherical lens coupler,” Appl. Phys. Lett. 85(2), 191–193 (2004).
[CrossRef]

Wallenstein, R.

Wang, X.

Y. Hu, P. Huang, L. Guo, X. Wang, and C. Zhang, “Terahertz spectroscopic investigations of explosives,” Phys. Lett. A 359(6), 728–732 (2006).
[CrossRef]

Weiner, M.

X.-C. Zhang, Y. Jin, T. D. Hewitt, T. Sangsiri, L. E. Kingsley, and M. Weiner, “Magnetic switching of THz beams,” Appl. Phys. Lett. 62(17), 2003–2005 (1993).
[CrossRef]

Weiss, C.

Whittaker, D. M.

M. B. Johnston, A. Dowd, R. Driver, E. H. Linfield, A. G. Davies, and D. M. Whittaker, “Emission of collimated THz pulses from photo-excited semiconductors,” Semicond. Sci. Technol. 19(4), S449–S451 (2004).
[CrossRef]

M. B. Johnston, D. M. Whittaker, A. Dowd, A. G. Davies, E. H. Linfield, X. Li, and D. A. Ritchie, “Generation of high-power terahertz pulses in a prism,” Opt. Lett. 27(21), 1935–1937 (2002).
[CrossRef]

M. B. Johnston, D. M. Whittaker, A. Corchia, A. G. Davies, and E. H. Linfield, “Simulation of terahertz generation at semiconductor surfaces,” Phys. Rev. B 65(16), 165301 (2002).
[CrossRef]

Zhang, C.

Y. Hu, P. Huang, L. Guo, X. Wang, and C. Zhang, “Terahertz spectroscopic investigations of explosives,” Phys. Lett. A 359(6), 728–732 (2006).
[CrossRef]

Zhang, X. C.

B. B. Hu, J. T. Darrow, X. C. Zhang, D. H. Auston, and P. R. Smith, “Optically steerable photoconducting antennas,” Appl. Phys. Lett. 56(10), 886–888 (1990).
[CrossRef]

Zhang, X.-C.

X.-C. Zhang, Y. Jin, T. D. Hewitt, T. Sangsiri, L. E. Kingsley, and M. Weiner, “Magnetic switching of THz beams,” Appl. Phys. Lett. 62(17), 2003–2005 (1993).
[CrossRef]

X.-C. Zhang and D. H. Auston, “Optoelectronic measurement of semiconductor surfaces and interfaces with femtosecond optics,” J. Appl. Phys. 71(1), 326–338 (1992).
[CrossRef]

X.-C. Zhang, B. B. Hu, J. T. Darrow, and D. H. Auston, “Generation of femtosecond electromagnetic pulses from semiconductor surfaces,” Appl. Phys. Lett. 56(11), 1011–1013 (1990).
[CrossRef]

Appl. Phys. Lett.

X.-C. Zhang, B. B. Hu, J. T. Darrow, and D. H. Auston, “Generation of femtosecond electromagnetic pulses from semiconductor surfaces,” Appl. Phys. Lett. 56(11), 1011–1013 (1990).
[CrossRef]

H. Ahn, Y.-P. Ku, C.-H. Chuang, C.-L. Pan, H.-W. Lin, Y.-L. Hong, and S. Gwo, “Intense terahertz emission from a-plane InN surface,” Appl. Phys. Lett. 92(10), 102103 (2008).
[CrossRef]

M. Nakajima, K. Uchida, M. Tani, and M. Hangyo, “Strong enhancement of terahertz radiation from semiconductor surfaces using MgO hemispherical lens coupler,” Appl. Phys. Lett. 85(2), 191–193 (2004).
[CrossRef]

B. B. Hu, J. T. Darrow, X. C. Zhang, D. H. Auston, and P. R. Smith, “Optically steerable photoconducting antennas,” Appl. Phys. Lett. 56(10), 886–888 (1990).
[CrossRef]

X.-C. Zhang, Y. Jin, T. D. Hewitt, T. Sangsiri, L. E. Kingsley, and M. Weiner, “Magnetic switching of THz beams,” Appl. Phys. Lett. 62(17), 2003–2005 (1993).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron.

Y.-C. Shen and P. F. Taday, “Development and application of terahertz pulsed imaging for nondestructive inspection of pharmaceutical tablet,” IEEE J. Sel. Top. Quantum Electron. 14(2), 407–415 (2008).
[CrossRef]

IEEE Trans. Antenn. Propag.

D. R. Jackson and N. G. Alexopoulos, “Gain enhancement methods for printed circuit antennas,” IEEE Trans. Antenn. Propag. 33(9), 976–987 (1985).
[CrossRef]

J. Appl. Phys.

N. Sarukura, H. Ohtake, S. Izumida, and Z. Liu, “High average-power THz radiation from femtosecond laser-irradiated InAs in a magnetic field and its elliptical polarization characteristics,” J. Appl. Phys. 84(1), 654–656 (1998).
[CrossRef]

X.-C. Zhang and D. H. Auston, “Optoelectronic measurement of semiconductor surfaces and interfaces with femtosecond optics,” J. Appl. Phys. 71(1), 326–338 (1992).
[CrossRef]

Opt. Express

Opt. Lett.

Phys. Lett. A

Y. Hu, P. Huang, L. Guo, X. Wang, and C. Zhang, “Terahertz spectroscopic investigations of explosives,” Phys. Lett. A 359(6), 728–732 (2006).
[CrossRef]

Phys. Rev. B

M. B. Johnston, D. M. Whittaker, A. Corchia, A. G. Davies, and E. H. Linfield, “Simulation of terahertz generation at semiconductor surfaces,” Phys. Rev. B 65(16), 165301 (2002).
[CrossRef]

Phys. Rev. B Condens. Matter

T. Dekorsy, H. Auer, H. J. Bakker, H. G. Roskos, and H. Kurz, “THz electromagnetic emission by coherent infrared-active phonons,” Phys. Rev. B Condens. Matter 53(7), 4005–4014 (1996).
[CrossRef] [PubMed]

Semicond. Sci. Technol.

M. B. Johnston, A. Dowd, R. Driver, E. H. Linfield, A. G. Davies, and D. M. Whittaker, “Emission of collimated THz pulses from photo-excited semiconductors,” Semicond. Sci. Technol. 19(4), S449–S451 (2004).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Geometry of the structure and generation scheme. Inset: Design of the hyperhemispherical lens and ray-tracing diagram. The ray at maximum emission angle θ ≈80° is incident on the edge of the cylindrical extension and emerges at ≈57°.

Fig. 2
Fig. 2

Angular power distributions P(θ) for a MgO-InAs-metal structure with d = 500 nm (1), GaAs-InAs-air structure with d = 500 nm (2), and MgO-InAs-air structure with d = 500 μm (3). Curve 4 corresponds to approximate Eq. (2). The frequency is ω/(2π) = 1 THz. All curves are normalized to the maximum of P(θ) for the MgO-InAs-metal structure.

Fig. 3
Fig. 3

(a) ReR 13, ImR 13, and R 21 as functions of θ. (b,c) Direction of the electric field (E) in the terahertz waves emitted from the dipole and reflected from the metal substrate (b) and from the InAs-air boundary (c). The interference is constructive in (b) and destructive in (c).

Metrics