Abstract

Precise peripheral ocular measurements have become important in vision research. These measurements are influenced by the shape and position of the peripherally observed entrance pupil. A long-held assumption is that its apparent shape is elliptical and is optically centered in its position. Our three-dimensional model shows that as viewing angle increases, the entrance pupil moves forward, tilts and curves towards the observer’s direction. Moreover, the tangential pupil size narrows and exhibits asymmetric distortions. Consequently, its shape is non-elliptical and its geometric mid-point departs from the optical center. These findings may have implications on the accuracy of peripheral ocular measurements.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. E. L. Smith, L. F. Hung, and J. Huang, “Relative peripheral hyperopic defocus alters central refractive development in infant monkeys,” Vision Res. 49(19), 2386–2392 (2009).
    [CrossRef] [PubMed]
  2. E. L. Smith, C. S. Kee, R. Ramamirtham, Y. Qiao-Grider, and L. F. Hung, “Peripheral vision can influence eye growth and refractive development in infant monkeys,” Invest. Ophthalmol. Vis. Sci. 46(11), 3965–3972 (2005).
    [CrossRef] [PubMed]
  3. L. Lundström, A. Mira-Agudelo, and P. Artal, “Peripheral optical errors and their change with accommodation differ between emmetropic and myopic eyes,” J. Vis. 9(6), 17, 1–11 (2009).
    [CrossRef] [PubMed]
  4. D. A. Atchison, N. Pritchard, and K. L. Schmid, “Peripheral refraction along the horizontal and vertical visual fields in myopia,” Vision Res. 46(8-9), 1450–1458 (2006).
    [CrossRef]
  5. A. Seidemann, F. Schaeffel, A. Guirao, N. Lopez-Gil, and P. Artal, “Peripheral refractive errors in myopic, emmetropic, and hyperopic young subjects,” J. Opt. Soc. Am. A 19(12), 2363–2373 (2002).
    [CrossRef]
  6. A. Whatham, F. Zimmermann, A. Martinez, S. Delgado, P. L. de la Jara, P. Sankaridurg, and A. Ho, “Influence of accommodation on off-axis refractive errors in myopic eyes,” J. Vis. 9(3), 14, 1–13 (2009).
    [CrossRef] [PubMed]
  7. D. O. Mutti, J. R. Hayes, G. L. Mitchell, L. A. Jones, M. L. Moeschberger, S. A. Cotter, R. N. Kleinstein, R. E. Manny, J. D. Twelker, K. Zadnik, and CLEERE Study Group, “Refractive error, axial length, and relative peripheral refractive error before and after the onset of myopia,” Invest. Ophthalmol. Vis. Sci. 48(6), 2510–2519 (2007).
    [CrossRef] [PubMed]
  8. Y. Z. Wang, L. N. Thibos, N. Lopez, T. Salmon, and A. Bradley, “Subjective refraction of the peripheral field using contrast detection acuity,” J. Am. Optom. Assoc. 67(10), 584–589 (1996).
    [PubMed]
  9. L. N. Thibos, D. L. Still, and A. Bradley, “Characterization of spatial aliasing and contrast sensitivity in peripheral vision,” Vision Res. 36(2), 249–258 (1996).
    [CrossRef] [PubMed]
  10. C. Fedtke, K. Ehrmann, and B. A. Holden, “A review of peripheral refraction techniques,” Optom. Vis. Sci. 86(5), 429–446 (2009).
    [CrossRef] [PubMed]
  11. L. N. Thibos, R. A. Applegate, J. T. Schwiegerling, R. Webb, and VSIA Standards Taskforce Members. Vision science and its applications, “Standards for reporting the optical aberrations of eyes,” J. Refract. Surg. 18(5), S652–S660 (2002).
    [PubMed]
  12. R. A. Applegate, and D. E. Koenig, M. J. D., S. E. J., and N. L. C., “Pupil center location uncertainty is a major source of instrument noise in WFE measurements,” in ARVO, (E-Abstract 6160, 2009)
  13. C. Fedtke, K. Ehrmann, A. Ho, and B. Holden, “The impact of pupil alignment on peripheral refraction measurements using the Shin-Nippon NVision K5001,” presented at the American Academy of Optometry, Orlando, 11–14 Nov. 2009, Abstract: 90598.
  14. B. S. Jay, “The effective pupillary area at varying perimetric angles,” Vision Res. 1(5-6), 418–424 (1962).
    [CrossRef]
  15. K. H. Spring and W. S. Stiles, “Apparent shape and size of the pupil viewed obliquely,” Br. J. Ophthalmol. 32(6), 347–354 (1948).
    [CrossRef] [PubMed]
  16. R. Navarro, J. Santamaría, and J. Bescós, “Accommodation-dependent model of the human eye with aspherics,” J. Opt. Soc. Am. A 2(8), 1273–1281 (1985).
    [CrossRef] [PubMed]
  17. X. Cheng, N. L. Himebaugh, P. S. Kollbaum, L. N. Thibos, and A. Bradley, “Validation of a clinical Shack-Hartmann aberrometer,” Optom. Vis. Sci. 80(8), 587–595 (2003).
    [CrossRef] [PubMed]
  18. S. F. Ray, Applied Photographic Optics, Third Edition ed. (Focal Press, Great Britain, 2002), Chap. 34.
  19. L. S. Kwok, D. C. Daszynski, V. A. Kuznetsov, T. Pham, A. Ho, and M. T. Coroneo, “Peripheral light focusing as a potential mechanism for phakic dysphotopsia and lens phototoxicity,” Ophthalmic Physiol. Opt. 24(2), 119–129 (2004).
    [CrossRef] [PubMed]
  20. M. T. Coroneo, N. W. Müller-Stolzenburg, and A. Ho, “Peripheral light focusing by the anterior eye and the ophthalmohelioses,” Ophthalmic Surg. 22(12), 705–711 (1991).
    [PubMed]
  21. H. J. Wyatt, “The form of the human pupil,” Vision Res. 35(14), 2021–2036 (1995).
    [CrossRef] [PubMed]
  22. M. A. Wilson, M. C. Campbell, and P. Simonet, “The Julius F. Neumueller Award in Optics, 1989: change of pupil centration with change of illumination and pupil size,” Optom. Vis. Sci. 69(2), 129–136 (1992).
    [CrossRef] [PubMed]
  23. H. Radhakrishnan and W. N. Charman, “Refractive changes associated with oblique viewing and reading in myopes and emmetropes,” J. Vis. 7(8), 5 (2007).
    [CrossRef] [PubMed]
  24. M. Dubbelman, G. L. Van der Heijde, and H. A. Weeber, “Change in shape of the aging human crystalline lens with accommodation,” Vision Res. 45(1), 117–132 (2005).
    [CrossRef]
  25. B. A. Moffat, D. A. Atchison, and J. M. Pope, “Age-related changes in refractive index distribution and power of the human lens as measured by magnetic resonance micro-imaging in vitro,” Vision Res. 42(13), 1683–1693 (2002).
    [CrossRef] [PubMed]

2009 (4)

A. Whatham, F. Zimmermann, A. Martinez, S. Delgado, P. L. de la Jara, P. Sankaridurg, and A. Ho, “Influence of accommodation on off-axis refractive errors in myopic eyes,” J. Vis. 9(3), 14, 1–13 (2009).
[CrossRef] [PubMed]

C. Fedtke, K. Ehrmann, and B. A. Holden, “A review of peripheral refraction techniques,” Optom. Vis. Sci. 86(5), 429–446 (2009).
[CrossRef] [PubMed]

E. L. Smith, L. F. Hung, and J. Huang, “Relative peripheral hyperopic defocus alters central refractive development in infant monkeys,” Vision Res. 49(19), 2386–2392 (2009).
[CrossRef] [PubMed]

L. Lundström, A. Mira-Agudelo, and P. Artal, “Peripheral optical errors and their change with accommodation differ between emmetropic and myopic eyes,” J. Vis. 9(6), 17, 1–11 (2009).
[CrossRef] [PubMed]

2007 (2)

H. Radhakrishnan and W. N. Charman, “Refractive changes associated with oblique viewing and reading in myopes and emmetropes,” J. Vis. 7(8), 5 (2007).
[CrossRef] [PubMed]

D. O. Mutti, J. R. Hayes, G. L. Mitchell, L. A. Jones, M. L. Moeschberger, S. A. Cotter, R. N. Kleinstein, R. E. Manny, J. D. Twelker, K. Zadnik, and CLEERE Study Group, “Refractive error, axial length, and relative peripheral refractive error before and after the onset of myopia,” Invest. Ophthalmol. Vis. Sci. 48(6), 2510–2519 (2007).
[CrossRef] [PubMed]

2006 (1)

D. A. Atchison, N. Pritchard, and K. L. Schmid, “Peripheral refraction along the horizontal and vertical visual fields in myopia,” Vision Res. 46(8-9), 1450–1458 (2006).
[CrossRef]

2005 (2)

M. Dubbelman, G. L. Van der Heijde, and H. A. Weeber, “Change in shape of the aging human crystalline lens with accommodation,” Vision Res. 45(1), 117–132 (2005).
[CrossRef]

E. L. Smith, C. S. Kee, R. Ramamirtham, Y. Qiao-Grider, and L. F. Hung, “Peripheral vision can influence eye growth and refractive development in infant monkeys,” Invest. Ophthalmol. Vis. Sci. 46(11), 3965–3972 (2005).
[CrossRef] [PubMed]

2004 (1)

L. S. Kwok, D. C. Daszynski, V. A. Kuznetsov, T. Pham, A. Ho, and M. T. Coroneo, “Peripheral light focusing as a potential mechanism for phakic dysphotopsia and lens phototoxicity,” Ophthalmic Physiol. Opt. 24(2), 119–129 (2004).
[CrossRef] [PubMed]

2003 (1)

X. Cheng, N. L. Himebaugh, P. S. Kollbaum, L. N. Thibos, and A. Bradley, “Validation of a clinical Shack-Hartmann aberrometer,” Optom. Vis. Sci. 80(8), 587–595 (2003).
[CrossRef] [PubMed]

2002 (3)

A. Seidemann, F. Schaeffel, A. Guirao, N. Lopez-Gil, and P. Artal, “Peripheral refractive errors in myopic, emmetropic, and hyperopic young subjects,” J. Opt. Soc. Am. A 19(12), 2363–2373 (2002).
[CrossRef]

B. A. Moffat, D. A. Atchison, and J. M. Pope, “Age-related changes in refractive index distribution and power of the human lens as measured by magnetic resonance micro-imaging in vitro,” Vision Res. 42(13), 1683–1693 (2002).
[CrossRef] [PubMed]

L. N. Thibos, R. A. Applegate, J. T. Schwiegerling, R. Webb, and VSIA Standards Taskforce Members. Vision science and its applications, “Standards for reporting the optical aberrations of eyes,” J. Refract. Surg. 18(5), S652–S660 (2002).
[PubMed]

1996 (2)

Y. Z. Wang, L. N. Thibos, N. Lopez, T. Salmon, and A. Bradley, “Subjective refraction of the peripheral field using contrast detection acuity,” J. Am. Optom. Assoc. 67(10), 584–589 (1996).
[PubMed]

L. N. Thibos, D. L. Still, and A. Bradley, “Characterization of spatial aliasing and contrast sensitivity in peripheral vision,” Vision Res. 36(2), 249–258 (1996).
[CrossRef] [PubMed]

1995 (1)

H. J. Wyatt, “The form of the human pupil,” Vision Res. 35(14), 2021–2036 (1995).
[CrossRef] [PubMed]

1992 (1)

M. A. Wilson, M. C. Campbell, and P. Simonet, “The Julius F. Neumueller Award in Optics, 1989: change of pupil centration with change of illumination and pupil size,” Optom. Vis. Sci. 69(2), 129–136 (1992).
[CrossRef] [PubMed]

1991 (1)

M. T. Coroneo, N. W. Müller-Stolzenburg, and A. Ho, “Peripheral light focusing by the anterior eye and the ophthalmohelioses,” Ophthalmic Surg. 22(12), 705–711 (1991).
[PubMed]

1985 (1)

1962 (1)

B. S. Jay, “The effective pupillary area at varying perimetric angles,” Vision Res. 1(5-6), 418–424 (1962).
[CrossRef]

1948 (1)

K. H. Spring and W. S. Stiles, “Apparent shape and size of the pupil viewed obliquely,” Br. J. Ophthalmol. 32(6), 347–354 (1948).
[CrossRef] [PubMed]

Applegate, R. A.

L. N. Thibos, R. A. Applegate, J. T. Schwiegerling, R. Webb, and VSIA Standards Taskforce Members. Vision science and its applications, “Standards for reporting the optical aberrations of eyes,” J. Refract. Surg. 18(5), S652–S660 (2002).
[PubMed]

Artal, P.

L. Lundström, A. Mira-Agudelo, and P. Artal, “Peripheral optical errors and their change with accommodation differ between emmetropic and myopic eyes,” J. Vis. 9(6), 17, 1–11 (2009).
[CrossRef] [PubMed]

A. Seidemann, F. Schaeffel, A. Guirao, N. Lopez-Gil, and P. Artal, “Peripheral refractive errors in myopic, emmetropic, and hyperopic young subjects,” J. Opt. Soc. Am. A 19(12), 2363–2373 (2002).
[CrossRef]

Atchison, D. A.

D. A. Atchison, N. Pritchard, and K. L. Schmid, “Peripheral refraction along the horizontal and vertical visual fields in myopia,” Vision Res. 46(8-9), 1450–1458 (2006).
[CrossRef]

B. A. Moffat, D. A. Atchison, and J. M. Pope, “Age-related changes in refractive index distribution and power of the human lens as measured by magnetic resonance micro-imaging in vitro,” Vision Res. 42(13), 1683–1693 (2002).
[CrossRef] [PubMed]

Bescós, J.

Bradley, A.

X. Cheng, N. L. Himebaugh, P. S. Kollbaum, L. N. Thibos, and A. Bradley, “Validation of a clinical Shack-Hartmann aberrometer,” Optom. Vis. Sci. 80(8), 587–595 (2003).
[CrossRef] [PubMed]

Y. Z. Wang, L. N. Thibos, N. Lopez, T. Salmon, and A. Bradley, “Subjective refraction of the peripheral field using contrast detection acuity,” J. Am. Optom. Assoc. 67(10), 584–589 (1996).
[PubMed]

L. N. Thibos, D. L. Still, and A. Bradley, “Characterization of spatial aliasing and contrast sensitivity in peripheral vision,” Vision Res. 36(2), 249–258 (1996).
[CrossRef] [PubMed]

Campbell, M. C.

M. A. Wilson, M. C. Campbell, and P. Simonet, “The Julius F. Neumueller Award in Optics, 1989: change of pupil centration with change of illumination and pupil size,” Optom. Vis. Sci. 69(2), 129–136 (1992).
[CrossRef] [PubMed]

Charman, W. N.

H. Radhakrishnan and W. N. Charman, “Refractive changes associated with oblique viewing and reading in myopes and emmetropes,” J. Vis. 7(8), 5 (2007).
[CrossRef] [PubMed]

Cheng, X.

X. Cheng, N. L. Himebaugh, P. S. Kollbaum, L. N. Thibos, and A. Bradley, “Validation of a clinical Shack-Hartmann aberrometer,” Optom. Vis. Sci. 80(8), 587–595 (2003).
[CrossRef] [PubMed]

Coroneo, M. T.

L. S. Kwok, D. C. Daszynski, V. A. Kuznetsov, T. Pham, A. Ho, and M. T. Coroneo, “Peripheral light focusing as a potential mechanism for phakic dysphotopsia and lens phototoxicity,” Ophthalmic Physiol. Opt. 24(2), 119–129 (2004).
[CrossRef] [PubMed]

M. T. Coroneo, N. W. Müller-Stolzenburg, and A. Ho, “Peripheral light focusing by the anterior eye and the ophthalmohelioses,” Ophthalmic Surg. 22(12), 705–711 (1991).
[PubMed]

Cotter, S. A.

D. O. Mutti, J. R. Hayes, G. L. Mitchell, L. A. Jones, M. L. Moeschberger, S. A. Cotter, R. N. Kleinstein, R. E. Manny, J. D. Twelker, K. Zadnik, and CLEERE Study Group, “Refractive error, axial length, and relative peripheral refractive error before and after the onset of myopia,” Invest. Ophthalmol. Vis. Sci. 48(6), 2510–2519 (2007).
[CrossRef] [PubMed]

Daszynski, D. C.

L. S. Kwok, D. C. Daszynski, V. A. Kuznetsov, T. Pham, A. Ho, and M. T. Coroneo, “Peripheral light focusing as a potential mechanism for phakic dysphotopsia and lens phototoxicity,” Ophthalmic Physiol. Opt. 24(2), 119–129 (2004).
[CrossRef] [PubMed]

de la Jara, P. L.

A. Whatham, F. Zimmermann, A. Martinez, S. Delgado, P. L. de la Jara, P. Sankaridurg, and A. Ho, “Influence of accommodation on off-axis refractive errors in myopic eyes,” J. Vis. 9(3), 14, 1–13 (2009).
[CrossRef] [PubMed]

Delgado, S.

A. Whatham, F. Zimmermann, A. Martinez, S. Delgado, P. L. de la Jara, P. Sankaridurg, and A. Ho, “Influence of accommodation on off-axis refractive errors in myopic eyes,” J. Vis. 9(3), 14, 1–13 (2009).
[CrossRef] [PubMed]

Dubbelman, M.

M. Dubbelman, G. L. Van der Heijde, and H. A. Weeber, “Change in shape of the aging human crystalline lens with accommodation,” Vision Res. 45(1), 117–132 (2005).
[CrossRef]

Ehrmann, K.

C. Fedtke, K. Ehrmann, and B. A. Holden, “A review of peripheral refraction techniques,” Optom. Vis. Sci. 86(5), 429–446 (2009).
[CrossRef] [PubMed]

Fedtke, C.

C. Fedtke, K. Ehrmann, and B. A. Holden, “A review of peripheral refraction techniques,” Optom. Vis. Sci. 86(5), 429–446 (2009).
[CrossRef] [PubMed]

Guirao, A.

Hayes, J. R.

D. O. Mutti, J. R. Hayes, G. L. Mitchell, L. A. Jones, M. L. Moeschberger, S. A. Cotter, R. N. Kleinstein, R. E. Manny, J. D. Twelker, K. Zadnik, and CLEERE Study Group, “Refractive error, axial length, and relative peripheral refractive error before and after the onset of myopia,” Invest. Ophthalmol. Vis. Sci. 48(6), 2510–2519 (2007).
[CrossRef] [PubMed]

Himebaugh, N. L.

X. Cheng, N. L. Himebaugh, P. S. Kollbaum, L. N. Thibos, and A. Bradley, “Validation of a clinical Shack-Hartmann aberrometer,” Optom. Vis. Sci. 80(8), 587–595 (2003).
[CrossRef] [PubMed]

Ho, A.

A. Whatham, F. Zimmermann, A. Martinez, S. Delgado, P. L. de la Jara, P. Sankaridurg, and A. Ho, “Influence of accommodation on off-axis refractive errors in myopic eyes,” J. Vis. 9(3), 14, 1–13 (2009).
[CrossRef] [PubMed]

L. S. Kwok, D. C. Daszynski, V. A. Kuznetsov, T. Pham, A. Ho, and M. T. Coroneo, “Peripheral light focusing as a potential mechanism for phakic dysphotopsia and lens phototoxicity,” Ophthalmic Physiol. Opt. 24(2), 119–129 (2004).
[CrossRef] [PubMed]

M. T. Coroneo, N. W. Müller-Stolzenburg, and A. Ho, “Peripheral light focusing by the anterior eye and the ophthalmohelioses,” Ophthalmic Surg. 22(12), 705–711 (1991).
[PubMed]

Holden, B. A.

C. Fedtke, K. Ehrmann, and B. A. Holden, “A review of peripheral refraction techniques,” Optom. Vis. Sci. 86(5), 429–446 (2009).
[CrossRef] [PubMed]

Huang, J.

E. L. Smith, L. F. Hung, and J. Huang, “Relative peripheral hyperopic defocus alters central refractive development in infant monkeys,” Vision Res. 49(19), 2386–2392 (2009).
[CrossRef] [PubMed]

Hung, L. F.

E. L. Smith, L. F. Hung, and J. Huang, “Relative peripheral hyperopic defocus alters central refractive development in infant monkeys,” Vision Res. 49(19), 2386–2392 (2009).
[CrossRef] [PubMed]

E. L. Smith, C. S. Kee, R. Ramamirtham, Y. Qiao-Grider, and L. F. Hung, “Peripheral vision can influence eye growth and refractive development in infant monkeys,” Invest. Ophthalmol. Vis. Sci. 46(11), 3965–3972 (2005).
[CrossRef] [PubMed]

Jay, B. S.

B. S. Jay, “The effective pupillary area at varying perimetric angles,” Vision Res. 1(5-6), 418–424 (1962).
[CrossRef]

Jones, L. A.

D. O. Mutti, J. R. Hayes, G. L. Mitchell, L. A. Jones, M. L. Moeschberger, S. A. Cotter, R. N. Kleinstein, R. E. Manny, J. D. Twelker, K. Zadnik, and CLEERE Study Group, “Refractive error, axial length, and relative peripheral refractive error before and after the onset of myopia,” Invest. Ophthalmol. Vis. Sci. 48(6), 2510–2519 (2007).
[CrossRef] [PubMed]

Kee, C. S.

E. L. Smith, C. S. Kee, R. Ramamirtham, Y. Qiao-Grider, and L. F. Hung, “Peripheral vision can influence eye growth and refractive development in infant monkeys,” Invest. Ophthalmol. Vis. Sci. 46(11), 3965–3972 (2005).
[CrossRef] [PubMed]

Kleinstein, R. N.

D. O. Mutti, J. R. Hayes, G. L. Mitchell, L. A. Jones, M. L. Moeschberger, S. A. Cotter, R. N. Kleinstein, R. E. Manny, J. D. Twelker, K. Zadnik, and CLEERE Study Group, “Refractive error, axial length, and relative peripheral refractive error before and after the onset of myopia,” Invest. Ophthalmol. Vis. Sci. 48(6), 2510–2519 (2007).
[CrossRef] [PubMed]

Kollbaum, P. S.

X. Cheng, N. L. Himebaugh, P. S. Kollbaum, L. N. Thibos, and A. Bradley, “Validation of a clinical Shack-Hartmann aberrometer,” Optom. Vis. Sci. 80(8), 587–595 (2003).
[CrossRef] [PubMed]

Kuznetsov, V. A.

L. S. Kwok, D. C. Daszynski, V. A. Kuznetsov, T. Pham, A. Ho, and M. T. Coroneo, “Peripheral light focusing as a potential mechanism for phakic dysphotopsia and lens phototoxicity,” Ophthalmic Physiol. Opt. 24(2), 119–129 (2004).
[CrossRef] [PubMed]

Kwok, L. S.

L. S. Kwok, D. C. Daszynski, V. A. Kuznetsov, T. Pham, A. Ho, and M. T. Coroneo, “Peripheral light focusing as a potential mechanism for phakic dysphotopsia and lens phototoxicity,” Ophthalmic Physiol. Opt. 24(2), 119–129 (2004).
[CrossRef] [PubMed]

Lopez, N.

Y. Z. Wang, L. N. Thibos, N. Lopez, T. Salmon, and A. Bradley, “Subjective refraction of the peripheral field using contrast detection acuity,” J. Am. Optom. Assoc. 67(10), 584–589 (1996).
[PubMed]

Lopez-Gil, N.

Lundström, L.

L. Lundström, A. Mira-Agudelo, and P. Artal, “Peripheral optical errors and their change with accommodation differ between emmetropic and myopic eyes,” J. Vis. 9(6), 17, 1–11 (2009).
[CrossRef] [PubMed]

Manny, R. E.

D. O. Mutti, J. R. Hayes, G. L. Mitchell, L. A. Jones, M. L. Moeschberger, S. A. Cotter, R. N. Kleinstein, R. E. Manny, J. D. Twelker, K. Zadnik, and CLEERE Study Group, “Refractive error, axial length, and relative peripheral refractive error before and after the onset of myopia,” Invest. Ophthalmol. Vis. Sci. 48(6), 2510–2519 (2007).
[CrossRef] [PubMed]

Martinez, A.

A. Whatham, F. Zimmermann, A. Martinez, S. Delgado, P. L. de la Jara, P. Sankaridurg, and A. Ho, “Influence of accommodation on off-axis refractive errors in myopic eyes,” J. Vis. 9(3), 14, 1–13 (2009).
[CrossRef] [PubMed]

Mira-Agudelo, A.

L. Lundström, A. Mira-Agudelo, and P. Artal, “Peripheral optical errors and their change with accommodation differ between emmetropic and myopic eyes,” J. Vis. 9(6), 17, 1–11 (2009).
[CrossRef] [PubMed]

Mitchell, G. L.

D. O. Mutti, J. R. Hayes, G. L. Mitchell, L. A. Jones, M. L. Moeschberger, S. A. Cotter, R. N. Kleinstein, R. E. Manny, J. D. Twelker, K. Zadnik, and CLEERE Study Group, “Refractive error, axial length, and relative peripheral refractive error before and after the onset of myopia,” Invest. Ophthalmol. Vis. Sci. 48(6), 2510–2519 (2007).
[CrossRef] [PubMed]

Moeschberger, M. L.

D. O. Mutti, J. R. Hayes, G. L. Mitchell, L. A. Jones, M. L. Moeschberger, S. A. Cotter, R. N. Kleinstein, R. E. Manny, J. D. Twelker, K. Zadnik, and CLEERE Study Group, “Refractive error, axial length, and relative peripheral refractive error before and after the onset of myopia,” Invest. Ophthalmol. Vis. Sci. 48(6), 2510–2519 (2007).
[CrossRef] [PubMed]

Moffat, B. A.

B. A. Moffat, D. A. Atchison, and J. M. Pope, “Age-related changes in refractive index distribution and power of the human lens as measured by magnetic resonance micro-imaging in vitro,” Vision Res. 42(13), 1683–1693 (2002).
[CrossRef] [PubMed]

Müller-Stolzenburg, N. W.

M. T. Coroneo, N. W. Müller-Stolzenburg, and A. Ho, “Peripheral light focusing by the anterior eye and the ophthalmohelioses,” Ophthalmic Surg. 22(12), 705–711 (1991).
[PubMed]

Mutti, D. O.

D. O. Mutti, J. R. Hayes, G. L. Mitchell, L. A. Jones, M. L. Moeschberger, S. A. Cotter, R. N. Kleinstein, R. E. Manny, J. D. Twelker, K. Zadnik, and CLEERE Study Group, “Refractive error, axial length, and relative peripheral refractive error before and after the onset of myopia,” Invest. Ophthalmol. Vis. Sci. 48(6), 2510–2519 (2007).
[CrossRef] [PubMed]

Navarro, R.

Pham, T.

L. S. Kwok, D. C. Daszynski, V. A. Kuznetsov, T. Pham, A. Ho, and M. T. Coroneo, “Peripheral light focusing as a potential mechanism for phakic dysphotopsia and lens phototoxicity,” Ophthalmic Physiol. Opt. 24(2), 119–129 (2004).
[CrossRef] [PubMed]

Pope, J. M.

B. A. Moffat, D. A. Atchison, and J. M. Pope, “Age-related changes in refractive index distribution and power of the human lens as measured by magnetic resonance micro-imaging in vitro,” Vision Res. 42(13), 1683–1693 (2002).
[CrossRef] [PubMed]

Pritchard, N.

D. A. Atchison, N. Pritchard, and K. L. Schmid, “Peripheral refraction along the horizontal and vertical visual fields in myopia,” Vision Res. 46(8-9), 1450–1458 (2006).
[CrossRef]

Qiao-Grider, Y.

E. L. Smith, C. S. Kee, R. Ramamirtham, Y. Qiao-Grider, and L. F. Hung, “Peripheral vision can influence eye growth and refractive development in infant monkeys,” Invest. Ophthalmol. Vis. Sci. 46(11), 3965–3972 (2005).
[CrossRef] [PubMed]

Radhakrishnan, H.

H. Radhakrishnan and W. N. Charman, “Refractive changes associated with oblique viewing and reading in myopes and emmetropes,” J. Vis. 7(8), 5 (2007).
[CrossRef] [PubMed]

Ramamirtham, R.

E. L. Smith, C. S. Kee, R. Ramamirtham, Y. Qiao-Grider, and L. F. Hung, “Peripheral vision can influence eye growth and refractive development in infant monkeys,” Invest. Ophthalmol. Vis. Sci. 46(11), 3965–3972 (2005).
[CrossRef] [PubMed]

Salmon, T.

Y. Z. Wang, L. N. Thibos, N. Lopez, T. Salmon, and A. Bradley, “Subjective refraction of the peripheral field using contrast detection acuity,” J. Am. Optom. Assoc. 67(10), 584–589 (1996).
[PubMed]

Sankaridurg, P.

A. Whatham, F. Zimmermann, A. Martinez, S. Delgado, P. L. de la Jara, P. Sankaridurg, and A. Ho, “Influence of accommodation on off-axis refractive errors in myopic eyes,” J. Vis. 9(3), 14, 1–13 (2009).
[CrossRef] [PubMed]

Santamaría, J.

Schaeffel, F.

Schmid, K. L.

D. A. Atchison, N. Pritchard, and K. L. Schmid, “Peripheral refraction along the horizontal and vertical visual fields in myopia,” Vision Res. 46(8-9), 1450–1458 (2006).
[CrossRef]

Schwiegerling, J. T.

L. N. Thibos, R. A. Applegate, J. T. Schwiegerling, R. Webb, and VSIA Standards Taskforce Members. Vision science and its applications, “Standards for reporting the optical aberrations of eyes,” J. Refract. Surg. 18(5), S652–S660 (2002).
[PubMed]

Seidemann, A.

Simonet, P.

M. A. Wilson, M. C. Campbell, and P. Simonet, “The Julius F. Neumueller Award in Optics, 1989: change of pupil centration with change of illumination and pupil size,” Optom. Vis. Sci. 69(2), 129–136 (1992).
[CrossRef] [PubMed]

Smith, E. L.

E. L. Smith, L. F. Hung, and J. Huang, “Relative peripheral hyperopic defocus alters central refractive development in infant monkeys,” Vision Res. 49(19), 2386–2392 (2009).
[CrossRef] [PubMed]

E. L. Smith, C. S. Kee, R. Ramamirtham, Y. Qiao-Grider, and L. F. Hung, “Peripheral vision can influence eye growth and refractive development in infant monkeys,” Invest. Ophthalmol. Vis. Sci. 46(11), 3965–3972 (2005).
[CrossRef] [PubMed]

Spring, K. H.

K. H. Spring and W. S. Stiles, “Apparent shape and size of the pupil viewed obliquely,” Br. J. Ophthalmol. 32(6), 347–354 (1948).
[CrossRef] [PubMed]

Stiles, W. S.

K. H. Spring and W. S. Stiles, “Apparent shape and size of the pupil viewed obliquely,” Br. J. Ophthalmol. 32(6), 347–354 (1948).
[CrossRef] [PubMed]

Still, D. L.

L. N. Thibos, D. L. Still, and A. Bradley, “Characterization of spatial aliasing and contrast sensitivity in peripheral vision,” Vision Res. 36(2), 249–258 (1996).
[CrossRef] [PubMed]

Thibos, L. N.

X. Cheng, N. L. Himebaugh, P. S. Kollbaum, L. N. Thibos, and A. Bradley, “Validation of a clinical Shack-Hartmann aberrometer,” Optom. Vis. Sci. 80(8), 587–595 (2003).
[CrossRef] [PubMed]

L. N. Thibos, R. A. Applegate, J. T. Schwiegerling, R. Webb, and VSIA Standards Taskforce Members. Vision science and its applications, “Standards for reporting the optical aberrations of eyes,” J. Refract. Surg. 18(5), S652–S660 (2002).
[PubMed]

Y. Z. Wang, L. N. Thibos, N. Lopez, T. Salmon, and A. Bradley, “Subjective refraction of the peripheral field using contrast detection acuity,” J. Am. Optom. Assoc. 67(10), 584–589 (1996).
[PubMed]

L. N. Thibos, D. L. Still, and A. Bradley, “Characterization of spatial aliasing and contrast sensitivity in peripheral vision,” Vision Res. 36(2), 249–258 (1996).
[CrossRef] [PubMed]

Twelker, J. D.

D. O. Mutti, J. R. Hayes, G. L. Mitchell, L. A. Jones, M. L. Moeschberger, S. A. Cotter, R. N. Kleinstein, R. E. Manny, J. D. Twelker, K. Zadnik, and CLEERE Study Group, “Refractive error, axial length, and relative peripheral refractive error before and after the onset of myopia,” Invest. Ophthalmol. Vis. Sci. 48(6), 2510–2519 (2007).
[CrossRef] [PubMed]

Van der Heijde, G. L.

M. Dubbelman, G. L. Van der Heijde, and H. A. Weeber, “Change in shape of the aging human crystalline lens with accommodation,” Vision Res. 45(1), 117–132 (2005).
[CrossRef]

Wang, Y. Z.

Y. Z. Wang, L. N. Thibos, N. Lopez, T. Salmon, and A. Bradley, “Subjective refraction of the peripheral field using contrast detection acuity,” J. Am. Optom. Assoc. 67(10), 584–589 (1996).
[PubMed]

Webb, R.

L. N. Thibos, R. A. Applegate, J. T. Schwiegerling, R. Webb, and VSIA Standards Taskforce Members. Vision science and its applications, “Standards for reporting the optical aberrations of eyes,” J. Refract. Surg. 18(5), S652–S660 (2002).
[PubMed]

Weeber, H. A.

M. Dubbelman, G. L. Van der Heijde, and H. A. Weeber, “Change in shape of the aging human crystalline lens with accommodation,” Vision Res. 45(1), 117–132 (2005).
[CrossRef]

Whatham, A.

A. Whatham, F. Zimmermann, A. Martinez, S. Delgado, P. L. de la Jara, P. Sankaridurg, and A. Ho, “Influence of accommodation on off-axis refractive errors in myopic eyes,” J. Vis. 9(3), 14, 1–13 (2009).
[CrossRef] [PubMed]

Wilson, M. A.

M. A. Wilson, M. C. Campbell, and P. Simonet, “The Julius F. Neumueller Award in Optics, 1989: change of pupil centration with change of illumination and pupil size,” Optom. Vis. Sci. 69(2), 129–136 (1992).
[CrossRef] [PubMed]

Wyatt, H. J.

H. J. Wyatt, “The form of the human pupil,” Vision Res. 35(14), 2021–2036 (1995).
[CrossRef] [PubMed]

Zadnik, K.

D. O. Mutti, J. R. Hayes, G. L. Mitchell, L. A. Jones, M. L. Moeschberger, S. A. Cotter, R. N. Kleinstein, R. E. Manny, J. D. Twelker, K. Zadnik, and CLEERE Study Group, “Refractive error, axial length, and relative peripheral refractive error before and after the onset of myopia,” Invest. Ophthalmol. Vis. Sci. 48(6), 2510–2519 (2007).
[CrossRef] [PubMed]

Zimmermann, F.

A. Whatham, F. Zimmermann, A. Martinez, S. Delgado, P. L. de la Jara, P. Sankaridurg, and A. Ho, “Influence of accommodation on off-axis refractive errors in myopic eyes,” J. Vis. 9(3), 14, 1–13 (2009).
[CrossRef] [PubMed]

Br. J. Ophthalmol. (1)

K. H. Spring and W. S. Stiles, “Apparent shape and size of the pupil viewed obliquely,” Br. J. Ophthalmol. 32(6), 347–354 (1948).
[CrossRef] [PubMed]

Invest. Ophthalmol. Vis. Sci. (2)

D. O. Mutti, J. R. Hayes, G. L. Mitchell, L. A. Jones, M. L. Moeschberger, S. A. Cotter, R. N. Kleinstein, R. E. Manny, J. D. Twelker, K. Zadnik, and CLEERE Study Group, “Refractive error, axial length, and relative peripheral refractive error before and after the onset of myopia,” Invest. Ophthalmol. Vis. Sci. 48(6), 2510–2519 (2007).
[CrossRef] [PubMed]

E. L. Smith, C. S. Kee, R. Ramamirtham, Y. Qiao-Grider, and L. F. Hung, “Peripheral vision can influence eye growth and refractive development in infant monkeys,” Invest. Ophthalmol. Vis. Sci. 46(11), 3965–3972 (2005).
[CrossRef] [PubMed]

J. Am. Optom. Assoc. (1)

Y. Z. Wang, L. N. Thibos, N. Lopez, T. Salmon, and A. Bradley, “Subjective refraction of the peripheral field using contrast detection acuity,” J. Am. Optom. Assoc. 67(10), 584–589 (1996).
[PubMed]

J. Opt. Soc. Am. A (2)

J. Refract. Surg. (1)

L. N. Thibos, R. A. Applegate, J. T. Schwiegerling, R. Webb, and VSIA Standards Taskforce Members. Vision science and its applications, “Standards for reporting the optical aberrations of eyes,” J. Refract. Surg. 18(5), S652–S660 (2002).
[PubMed]

J. Vis. (3)

A. Whatham, F. Zimmermann, A. Martinez, S. Delgado, P. L. de la Jara, P. Sankaridurg, and A. Ho, “Influence of accommodation on off-axis refractive errors in myopic eyes,” J. Vis. 9(3), 14, 1–13 (2009).
[CrossRef] [PubMed]

H. Radhakrishnan and W. N. Charman, “Refractive changes associated with oblique viewing and reading in myopes and emmetropes,” J. Vis. 7(8), 5 (2007).
[CrossRef] [PubMed]

L. Lundström, A. Mira-Agudelo, and P. Artal, “Peripheral optical errors and their change with accommodation differ between emmetropic and myopic eyes,” J. Vis. 9(6), 17, 1–11 (2009).
[CrossRef] [PubMed]

Ophthalmic Physiol. Opt. (1)

L. S. Kwok, D. C. Daszynski, V. A. Kuznetsov, T. Pham, A. Ho, and M. T. Coroneo, “Peripheral light focusing as a potential mechanism for phakic dysphotopsia and lens phototoxicity,” Ophthalmic Physiol. Opt. 24(2), 119–129 (2004).
[CrossRef] [PubMed]

Ophthalmic Surg. (1)

M. T. Coroneo, N. W. Müller-Stolzenburg, and A. Ho, “Peripheral light focusing by the anterior eye and the ophthalmohelioses,” Ophthalmic Surg. 22(12), 705–711 (1991).
[PubMed]

Optom. Vis. Sci. (3)

M. A. Wilson, M. C. Campbell, and P. Simonet, “The Julius F. Neumueller Award in Optics, 1989: change of pupil centration with change of illumination and pupil size,” Optom. Vis. Sci. 69(2), 129–136 (1992).
[CrossRef] [PubMed]

C. Fedtke, K. Ehrmann, and B. A. Holden, “A review of peripheral refraction techniques,” Optom. Vis. Sci. 86(5), 429–446 (2009).
[CrossRef] [PubMed]

X. Cheng, N. L. Himebaugh, P. S. Kollbaum, L. N. Thibos, and A. Bradley, “Validation of a clinical Shack-Hartmann aberrometer,” Optom. Vis. Sci. 80(8), 587–595 (2003).
[CrossRef] [PubMed]

Vision Res. (7)

L. N. Thibos, D. L. Still, and A. Bradley, “Characterization of spatial aliasing and contrast sensitivity in peripheral vision,” Vision Res. 36(2), 249–258 (1996).
[CrossRef] [PubMed]

B. S. Jay, “The effective pupillary area at varying perimetric angles,” Vision Res. 1(5-6), 418–424 (1962).
[CrossRef]

H. J. Wyatt, “The form of the human pupil,” Vision Res. 35(14), 2021–2036 (1995).
[CrossRef] [PubMed]

M. Dubbelman, G. L. Van der Heijde, and H. A. Weeber, “Change in shape of the aging human crystalline lens with accommodation,” Vision Res. 45(1), 117–132 (2005).
[CrossRef]

B. A. Moffat, D. A. Atchison, and J. M. Pope, “Age-related changes in refractive index distribution and power of the human lens as measured by magnetic resonance micro-imaging in vitro,” Vision Res. 42(13), 1683–1693 (2002).
[CrossRef] [PubMed]

E. L. Smith, L. F. Hung, and J. Huang, “Relative peripheral hyperopic defocus alters central refractive development in infant monkeys,” Vision Res. 49(19), 2386–2392 (2009).
[CrossRef] [PubMed]

D. A. Atchison, N. Pritchard, and K. L. Schmid, “Peripheral refraction along the horizontal and vertical visual fields in myopia,” Vision Res. 46(8-9), 1450–1458 (2006).
[CrossRef]

Other (3)

S. F. Ray, Applied Photographic Optics, Third Edition ed. (Focal Press, Great Britain, 2002), Chap. 34.

R. A. Applegate, and D. E. Koenig, M. J. D., S. E. J., and N. L. C., “Pupil center location uncertainty is a major source of instrument noise in WFE measurements,” in ARVO, (E-Abstract 6160, 2009)

C. Fedtke, K. Ehrmann, A. Ho, and B. Holden, “The impact of pupil alignment on peripheral refraction measurements using the Shin-Nippon NVision K5001,” presented at the American Academy of Optometry, Orlando, 11–14 Nov. 2009, Abstract: 90598.

Supplementary Material (2)

» Media 1: AVI (1586 KB)     
» Media 2: AVI (1646 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

Optical layout for modeling the entrance pupil at a 40° viewing angle using ray-tracing of several pupil margin points. Each individual pupil point (object point) projects 24 rays which are traced to the observer. The corresponding virtual image point is identified by applying a minimum RMS radius criterion to the emergent rays. By joining the locus of image points, as exemplified here (for clarity, only 8 points for the lower pupil margin and the central pupil point are shown), the three-dimensional entrance pupil (dotted line) is determined.

Fig. 2
Fig. 2

The three-dimensional entrance pupil for six and nine (Media 1) actual pupil sizes (1 mm to 6 mm) at various viewing angles relative to the actual pupil position. The observer is located in the positive tangential and axial distance quadrant from the actual pupil. Each annulus represents the entrance pupil margin corresponding to one actual pupil diameter. The ‘sidewall’ of the graph shows the two-dimensional side-projection of the entrance pupils revealing their increasing tilt and curvature with viewing angle. Note axial distance scale has been exaggerated for clarity.

Fig. 3
Fig. 3

The three-dimensional entrance pupil for six and nine (Media 2) actual pupil sizes at various viewing angles as seen by the observer. The observer’s viewing direction is indicated by the blue dotted line. The apparent rotation of the actual pupil axis relative to viewing direction is towards the positive axial and negative tangential distance quadrant. Each annulus represents the entrance pupil margin corresponding to one actual pupil diameter. The ‘back-wall’ of the graph shows the two-dimensional back-projection of the entrance pupils, which represent the entrance pupil shapes as seen by the observer. The ‘floor’ of the graph gives the side-projection showing the tilt of the entrance pupils relative to the direction of the observer.

Fig. 4
Fig. 4

The tangential profile (side-projection) of the peripheral entrance pupil from the point-of-view of the observer for nine viewing angles.

Fig. 5
Fig. 5

Apparent tilt of the tangential entrance pupil meridian as a function of viewing angle and pupil size. The broken line of negative 1:1 slope represents the expected apparent tilt. Apparent tilt has negative values as it is opposite in direction to viewing angle.

Fig. 6
Fig. 6

Two-dimensional (frontal) projection of (a) the actual pupil and (b) the entrance pupil at 60° observation angle showing the shape as seen by the observer. Each annulus represents one pupil diameter from 1 mm to 6 mm in 1 mm step. The blue dotted line indicates the geometrical mid-point of the peripheral entrance pupil for the 6 mm actual pupil diameter. Actual pupil center is located at the origin (0, 0).

Fig. 7
Fig. 7

Entrance pupil decentration as a function of viewing angle and actual pupil diameter.

Fig. 8
Fig. 8

Entrance pupil diameter (a) and (c) and magnification (b) and (d) along the tangential (a) and (b) and sagittal (c) and (d) meridians as a function of viewing angle and actual pupil size. The broken line in (b) represents the cosine function with viewing angle.

Fig. 9
Fig. 9

Comparison of the ratio of tangential (horizontal) to sagittal (vertical) entrance pupil diameter as a function of viewing angle determined by in vivo measurements and the current entrance pupil model for 6 mm and 3 mm actual pupil diameters.

Fig. 10
Fig. 10

Tangential and sagittal spot sizes (in mm) for the horizontal proximal and distal pupil margins as well as the vertical superior pupil margin as a function of viewing angle.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

M tan = ( 1.133 - 6.3 × 10 - 4 p 2 ) . cos [ ( 0.8798 + 4.8 × 10 - 3 p ) θ + 3.7 × 10 4 θ 2 ]
M tan = 1.121. cos ( 0.8359 θ )
M s a g = 4.4 × 10 6 ( θ 2.299 ) + 1.125

Metrics