Abstract

We demonstrate a compact optoelectronic oscillator based on phase modulation and ultra-high Q disk resonators. A 10.7 GHz microwave is generated, with a phase noise of −90 dBrad2/Hz at 10 kHz from the carrier, and −110 dBrad2/Hz at 100 kHz.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. X. S. Yao and L. Maleki, "Optoelectronic microwave oscillator," J. Opt. Soc. Am. B 13,1725-1735 (1996).
    [CrossRef]
  2. http://www.oewaves.com/
  3. A. B. Matsko, L. Maleki, A. A. Savchenkov, and V. S. Illchenko, "Whispering gallery mode based optoelectronic microwave oscillator," J. Mod. Opt. 50, 2523-2542 (2003).
  4. V. G. Plotnichenko, V. O. Sokolov, and E. M. Dianov, "Hydroxyl Groups in High-Purity Silica Glass," Inorg. Mater. 36, 404-410 (2000).
    [CrossRef]
  5. L. F. Stokes, M. Chodorow, and H. J. Shaw, "All-single-mode fibre resonators," Opt. Lett. 7, 288-290 (1982).
    [CrossRef] [PubMed]
  6. K. Volyanskiy, J. Cussey, H. Tavernier, P. Salzenstein, G. Sauvage, L. Larger, and E. Rubiola, "Applications of the optical fiber to the generation and measurement of low-phase-noise microwave signals," J. Opt. Soc. Am. B 25, 2140-2150 (2008).
    [CrossRef]
  7. Y. K. Chembo, L. Larger, H. Tavernier, R. Bendoula, E. Rubiola and P. Colet, "Dynamic instabilities of microwaves generated with optoelectronic oscillators," Opt. Lett. 32, 2571-2573 (2007).
    [CrossRef]
  8. Y. K. Chembo, K. Volyanskiy, L. Larger, E. Rubiola and P. Colet, "Determination of phase noise spectra in optoelectronic microwave oscillators: a Langevin approach," IEEE J. Quantum Electron. 45, 178-186 (2009).
    [CrossRef]

2009

Y. K. Chembo, K. Volyanskiy, L. Larger, E. Rubiola and P. Colet, "Determination of phase noise spectra in optoelectronic microwave oscillators: a Langevin approach," IEEE J. Quantum Electron. 45, 178-186 (2009).
[CrossRef]

2008

2007

2003

A. B. Matsko, L. Maleki, A. A. Savchenkov, and V. S. Illchenko, "Whispering gallery mode based optoelectronic microwave oscillator," J. Mod. Opt. 50, 2523-2542 (2003).

2000

V. G. Plotnichenko, V. O. Sokolov, and E. M. Dianov, "Hydroxyl Groups in High-Purity Silica Glass," Inorg. Mater. 36, 404-410 (2000).
[CrossRef]

1996

1982

Bendoula, R.

Chembo, Y. K.

Y. K. Chembo, K. Volyanskiy, L. Larger, E. Rubiola and P. Colet, "Determination of phase noise spectra in optoelectronic microwave oscillators: a Langevin approach," IEEE J. Quantum Electron. 45, 178-186 (2009).
[CrossRef]

Y. K. Chembo, L. Larger, H. Tavernier, R. Bendoula, E. Rubiola and P. Colet, "Dynamic instabilities of microwaves generated with optoelectronic oscillators," Opt. Lett. 32, 2571-2573 (2007).
[CrossRef]

Chodorow, M.

Colet, P.

Y. K. Chembo, K. Volyanskiy, L. Larger, E. Rubiola and P. Colet, "Determination of phase noise spectra in optoelectronic microwave oscillators: a Langevin approach," IEEE J. Quantum Electron. 45, 178-186 (2009).
[CrossRef]

Y. K. Chembo, L. Larger, H. Tavernier, R. Bendoula, E. Rubiola and P. Colet, "Dynamic instabilities of microwaves generated with optoelectronic oscillators," Opt. Lett. 32, 2571-2573 (2007).
[CrossRef]

Cussey, J.

Dianov, E. M.

V. G. Plotnichenko, V. O. Sokolov, and E. M. Dianov, "Hydroxyl Groups in High-Purity Silica Glass," Inorg. Mater. 36, 404-410 (2000).
[CrossRef]

Illchenko, V. S.

A. B. Matsko, L. Maleki, A. A. Savchenkov, and V. S. Illchenko, "Whispering gallery mode based optoelectronic microwave oscillator," J. Mod. Opt. 50, 2523-2542 (2003).

Larger, L.

Maleki, L.

A. B. Matsko, L. Maleki, A. A. Savchenkov, and V. S. Illchenko, "Whispering gallery mode based optoelectronic microwave oscillator," J. Mod. Opt. 50, 2523-2542 (2003).

X. S. Yao and L. Maleki, "Optoelectronic microwave oscillator," J. Opt. Soc. Am. B 13,1725-1735 (1996).
[CrossRef]

Matsko, A. B.

A. B. Matsko, L. Maleki, A. A. Savchenkov, and V. S. Illchenko, "Whispering gallery mode based optoelectronic microwave oscillator," J. Mod. Opt. 50, 2523-2542 (2003).

Plotnichenko, V. G.

V. G. Plotnichenko, V. O. Sokolov, and E. M. Dianov, "Hydroxyl Groups in High-Purity Silica Glass," Inorg. Mater. 36, 404-410 (2000).
[CrossRef]

Rubiola, E.

Salzenstein, P.

Sauvage, G.

Savchenkov, A. A.

A. B. Matsko, L. Maleki, A. A. Savchenkov, and V. S. Illchenko, "Whispering gallery mode based optoelectronic microwave oscillator," J. Mod. Opt. 50, 2523-2542 (2003).

Shaw, H. J.

Sokolov, V. O.

V. G. Plotnichenko, V. O. Sokolov, and E. M. Dianov, "Hydroxyl Groups in High-Purity Silica Glass," Inorg. Mater. 36, 404-410 (2000).
[CrossRef]

Stokes, L. F.

Tavernier, H.

Volyanskiy, K.

Y. K. Chembo, K. Volyanskiy, L. Larger, E. Rubiola and P. Colet, "Determination of phase noise spectra in optoelectronic microwave oscillators: a Langevin approach," IEEE J. Quantum Electron. 45, 178-186 (2009).
[CrossRef]

K. Volyanskiy, J. Cussey, H. Tavernier, P. Salzenstein, G. Sauvage, L. Larger, and E. Rubiola, "Applications of the optical fiber to the generation and measurement of low-phase-noise microwave signals," J. Opt. Soc. Am. B 25, 2140-2150 (2008).
[CrossRef]

Yao, X. S.

IEEE J. Quantum Electron.

Y. K. Chembo, K. Volyanskiy, L. Larger, E. Rubiola and P. Colet, "Determination of phase noise spectra in optoelectronic microwave oscillators: a Langevin approach," IEEE J. Quantum Electron. 45, 178-186 (2009).
[CrossRef]

Inorg. Mater.

V. G. Plotnichenko, V. O. Sokolov, and E. M. Dianov, "Hydroxyl Groups in High-Purity Silica Glass," Inorg. Mater. 36, 404-410 (2000).
[CrossRef]

J. Mod. Opt.

A. B. Matsko, L. Maleki, A. A. Savchenkov, and V. S. Illchenko, "Whispering gallery mode based optoelectronic microwave oscillator," J. Mod. Opt. 50, 2523-2542 (2003).

J. Opt. Soc. Am. B

Opt. Lett.

Other

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Experimental setup of the compact OEO. CW: continuous-wave; OI: optical isolator; PC: polarization controller; PM: phase modulator; RF: radio-frequency; SiO2: silica.

Fig. 2
Fig. 2

(a) Picture of the coupled resonator, using a nano-positioning system. (b) Picture of the whole oscillator. The large (red) rectangle represents the A3 format (297 × 420 mm2), while the small (white) rectangle represents the coupled resonator as displayed in (a).

Fig. 3
Fig. 3

Numerical simulation of the optical and RF responses of the disk-resonator, for κ = 0.12 and γ = 0.9. The red dotted curve is the standard static optical response in intensity of the disk, for a non-modulated laser beam of different central optical frequencies (horizontal axis) varied over more than an FSR [squared modulus of Eq. (2) ]. The blue continuous line is obtained from a numerical simulation of Eq. (5), extracting the strongest Fourier peak detected in the RF fluctuations of the ring output intensity, when an optical phase modulation is applied at RF frequencies around the FSR. The right vertical scale indicates the maximum Fourier peak in dB, at a given optical central frequency, for RF modulation frequencies spanning 0.6 to 1.8 times the FSR; notice that the RF anti-resonance occurs at the doubled RF frequency, the second harmonic, whereas all the other points of this curve are maxima obtained at the usual fundamental of the RF modulation frequency.

Fig. 4
Fig. 4

A typical phase noise spectrum of the WGM OEO with phase modulation. The microwave has a frequency of 10.7 GHz and an output power of 1.6 dBm. The phase noise performance is −90 dBrad2/Hz at 10 kHz from the carrier, and −110 dBrad2/Hz at 100 kHz.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

[ E 3 E 4 ] = [ i κ 1 κ 1 κ i κ ] [ E 1 E 2 ] ,
𝒯 ( ν ) = E 4 E 1 = 1 1 κ 1 κ q ( ν ) 1 q ( ν ) , with q ( ν ) = γ ( 1 κ ) exp ( i 2 π ν Δ ν FSR ) .
i n ( t ) = E 1 ( t ) e i 2 π ν 0 t = P exp [ i π V 0 V π cos ω RF t ] e i 2 π ν 0 t ,
e i x cos θ = p = + i p J p ( x ) e i p θ ,
o u t ( t ) = E 4 ( t ) e i 2 π ν 0 t = P p = + i p J p [ π V 0 V π ] 𝒯 ( ν p ) e i 2 π ν p t , ,

Metrics