Abstract

We develop a theoretical model that can be used to predict stimulated Brillouin scattering (SBS) threshold in optical fibers that arises through the effect of Brillouin pump recycling technique. Obtained simulation results from our model are in close agreement with our experimental results. The developed model utilizes single mode optical fiber of different lengths as the Brillouin gain media. For 5-km long single mode fiber, the calculated threshold power for SBS is about 16 mW for conventional technique. This value is reduced to about 8 mW when the residual Brillouin pump is recycled at the end of the fiber. The decrement of SBS threshold is due to longer interaction lengths between Brillouin pump and Stokes wave.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. W. Boyd, Nonlinear Optics, 2nd ed. (New York: Academic Press, 2003).
  2. G. P. Agrawal, Nonlinear Fiber Optics, 4th ed. (New York: Academic Press, 2004).
  3. E. L. Buckland and R. W. Boyd, “Measurement of the frequency response of the electrostrictive nonlinearity in optical fibers,” Opt. Lett. 22(10), 676–678 (1997).
    [CrossRef] [PubMed]
  4. M. M. Howerton, W. K. Burns, and G. K. Gopalakrishnan, “SBS suppression using a depolarized source for high power fiber applications,” J. Lightwave Technol. 14(3), 417–422 (1996).
    [CrossRef]
  5. C. Hänisch, A. Heuer, and R. Menzel, “Threshold reduction of stimulated Brillouin scattering (SBS) using fiber loop schemes,” Appl. Phys. B: Lasers Opt. 73(8), 851–854 (2001).
    [CrossRef]
  6. T. Sakamoto, T. Matsui, K. Shiraki, and T. Kurashima, “SBS suppressed fiber with hole-assisted structure,” J. Lightwave Technol. 27(20), 4401–4406 (2009).
    [CrossRef]
  7. P. Weßels, P. Adel, M. Auerbach, D. Wandt, and C. Fallnich, “Novel suppression scheme for Brillouin scattering,” Opt. Express 12(19), 4443–4448 (2004).
    [CrossRef] [PubMed]
  8. S. Norcia, S. Tonda-Goldstein, D. Dolfi, J.-P. Huignard, and R. Frey, “Efficient single-mode Brillouin fiber laser for low-noise optical carrier reduction of microwave signals,” Opt. Lett. 28(20), 1888–1890 (2003).
    [CrossRef] [PubMed]
  9. V. P. Kalosha, L. Chen, and X. Bao, “Slow and fast light via SBS in optical fibers for short pulses and broadband pump,” Opt. Express 14(26), 12693–12703 (2006).
    [CrossRef] [PubMed]
  10. F. Ravet, X. Bao, Y. Li, Q. Yu, A. Yale, V. P. Kalosha, and L. Chen, “Signal processing technique for distributed Brillouin sensing at centimeter spatial resolution,” J. Lightwave Technol. 25(11), 3610–3618 (2007).
    [CrossRef]
  11. A. Minardo, R. Bernini, and L. Zeni, “Stimulated Brillouin scattering modeling for high-resolution, time-domain distributed sensing,” Opt. Express 15(16), 10397–10407 (2007).
    [CrossRef] [PubMed]
  12. M. H. Al-Mansoori and M. A. Mahdi, “Multiwavelength L-band Brillouin–Erbium comb fiber laser utilizing nonlinear amplifying loop mirror,” J. Lightwave Technol. 27(22), 5038–5044 (2009).
    [CrossRef]
  13. Y. G. Shee, M. A. Mahdi, M. H. Al-Mansoori, S. Yaakob, R. Mohamed, A. K. Zamzuri, A. Man, A. Ismail, and S. Hitam, “All-optical generation of a 21 GHz microwave carrier by incorporating a double-Brillouin frequency shifter,” Opt. Lett. 35(9), 1461–1463 (2010).
    [CrossRef] [PubMed]
  14. A. Kobyakov, S. Kumar, D. Q. Chowdhury, A. B. Ruffin, M. Sauer, S. R. Bickham, and R. Mishra, “Design concept for optical fibers with enhanced SBS threshold,” Opt. Express 13(14), 5338–5346 (2005).
    [CrossRef] [PubMed]
  15. K. Inoue, “Brillouin threshold in an optical fiber with bidirectional pump lights,” Opt. Commun. 120(1-2), 34–38 (1995).
    [CrossRef]
  16. M. Ajiya, M. A. Mahdi, M. H. Al-Mansoori, Y. G. Shee, S. Hitam, and M. Mokhtar, “Reduction of stimulated Brillouin scattering threshold through pump recycling technique,” Laser Phys. Lett. 6(7), 535–538 (2009).
    [CrossRef]
  17. Y. G. Shee, M. A. Mahdi, M. H. Al-Mansoori, A. Ismail, N. Hambali, A. K. Zamzuri, R. Mohamad, and S. Yaakob, “Threshold reduction of stimulated Brillouin scattering in photonic crystal fiber,” Laser Phys. 19(12), 2194–2196 (2009).
    [CrossRef]
  18. A. H. McCurdy, “Modeling of stimulated Brillouin scattering in optical fibers with arbitrary radial index profile,” J. Lightwave Technol. 23(11), 3509–3516 (2005).
    [CrossRef]
  19. J. Shi, X. Chen, M. Ouyang, J. Liu, and D. Liu, “Theoretical investigation on the threshold value of stimulated Brillouin scattering in terms of laser intensity,” Appl. Phys. B: Lasers Opt. 95(4), 657–660 (2009).
    [CrossRef]
  20. C. A. S. De Oliveira, C. K. Jen, and C. A. S. de Oliveira, “Effects of Bragg diffraction on stimulated backward Brillouin scattering,” Electron. Lett. 27(9), 780–781 (1991).
    [CrossRef]

2010

2009

M. Ajiya, M. A. Mahdi, M. H. Al-Mansoori, Y. G. Shee, S. Hitam, and M. Mokhtar, “Reduction of stimulated Brillouin scattering threshold through pump recycling technique,” Laser Phys. Lett. 6(7), 535–538 (2009).
[CrossRef]

Y. G. Shee, M. A. Mahdi, M. H. Al-Mansoori, A. Ismail, N. Hambali, A. K. Zamzuri, R. Mohamad, and S. Yaakob, “Threshold reduction of stimulated Brillouin scattering in photonic crystal fiber,” Laser Phys. 19(12), 2194–2196 (2009).
[CrossRef]

J. Shi, X. Chen, M. Ouyang, J. Liu, and D. Liu, “Theoretical investigation on the threshold value of stimulated Brillouin scattering in terms of laser intensity,” Appl. Phys. B: Lasers Opt. 95(4), 657–660 (2009).
[CrossRef]

M. H. Al-Mansoori and M. A. Mahdi, “Multiwavelength L-band Brillouin–Erbium comb fiber laser utilizing nonlinear amplifying loop mirror,” J. Lightwave Technol. 27(22), 5038–5044 (2009).
[CrossRef]

T. Sakamoto, T. Matsui, K. Shiraki, and T. Kurashima, “SBS suppressed fiber with hole-assisted structure,” J. Lightwave Technol. 27(20), 4401–4406 (2009).
[CrossRef]

2007

2006

2005

2004

2003

2001

C. Hänisch, A. Heuer, and R. Menzel, “Threshold reduction of stimulated Brillouin scattering (SBS) using fiber loop schemes,” Appl. Phys. B: Lasers Opt. 73(8), 851–854 (2001).
[CrossRef]

1997

1996

M. M. Howerton, W. K. Burns, and G. K. Gopalakrishnan, “SBS suppression using a depolarized source for high power fiber applications,” J. Lightwave Technol. 14(3), 417–422 (1996).
[CrossRef]

1995

K. Inoue, “Brillouin threshold in an optical fiber with bidirectional pump lights,” Opt. Commun. 120(1-2), 34–38 (1995).
[CrossRef]

1991

C. A. S. De Oliveira, C. K. Jen, and C. A. S. de Oliveira, “Effects of Bragg diffraction on stimulated backward Brillouin scattering,” Electron. Lett. 27(9), 780–781 (1991).
[CrossRef]

Adel, P.

Ajiya, M.

M. Ajiya, M. A. Mahdi, M. H. Al-Mansoori, Y. G. Shee, S. Hitam, and M. Mokhtar, “Reduction of stimulated Brillouin scattering threshold through pump recycling technique,” Laser Phys. Lett. 6(7), 535–538 (2009).
[CrossRef]

Al-Mansoori, M. H.

Y. G. Shee, M. A. Mahdi, M. H. Al-Mansoori, S. Yaakob, R. Mohamed, A. K. Zamzuri, A. Man, A. Ismail, and S. Hitam, “All-optical generation of a 21 GHz microwave carrier by incorporating a double-Brillouin frequency shifter,” Opt. Lett. 35(9), 1461–1463 (2010).
[CrossRef] [PubMed]

M. Ajiya, M. A. Mahdi, M. H. Al-Mansoori, Y. G. Shee, S. Hitam, and M. Mokhtar, “Reduction of stimulated Brillouin scattering threshold through pump recycling technique,” Laser Phys. Lett. 6(7), 535–538 (2009).
[CrossRef]

Y. G. Shee, M. A. Mahdi, M. H. Al-Mansoori, A. Ismail, N. Hambali, A. K. Zamzuri, R. Mohamad, and S. Yaakob, “Threshold reduction of stimulated Brillouin scattering in photonic crystal fiber,” Laser Phys. 19(12), 2194–2196 (2009).
[CrossRef]

M. H. Al-Mansoori and M. A. Mahdi, “Multiwavelength L-band Brillouin–Erbium comb fiber laser utilizing nonlinear amplifying loop mirror,” J. Lightwave Technol. 27(22), 5038–5044 (2009).
[CrossRef]

Auerbach, M.

Bao, X.

Bernini, R.

Bickham, S. R.

Boyd, R. W.

Buckland, E. L.

Burns, W. K.

M. M. Howerton, W. K. Burns, and G. K. Gopalakrishnan, “SBS suppression using a depolarized source for high power fiber applications,” J. Lightwave Technol. 14(3), 417–422 (1996).
[CrossRef]

Chen, L.

Chen, X.

J. Shi, X. Chen, M. Ouyang, J. Liu, and D. Liu, “Theoretical investigation on the threshold value of stimulated Brillouin scattering in terms of laser intensity,” Appl. Phys. B: Lasers Opt. 95(4), 657–660 (2009).
[CrossRef]

Chowdhury, D. Q.

De Oliveira, C. A. S.

C. A. S. De Oliveira, C. K. Jen, and C. A. S. de Oliveira, “Effects of Bragg diffraction on stimulated backward Brillouin scattering,” Electron. Lett. 27(9), 780–781 (1991).
[CrossRef]

C. A. S. De Oliveira, C. K. Jen, and C. A. S. de Oliveira, “Effects of Bragg diffraction on stimulated backward Brillouin scattering,” Electron. Lett. 27(9), 780–781 (1991).
[CrossRef]

Dolfi, D.

Fallnich, C.

Frey, R.

Gopalakrishnan, G. K.

M. M. Howerton, W. K. Burns, and G. K. Gopalakrishnan, “SBS suppression using a depolarized source for high power fiber applications,” J. Lightwave Technol. 14(3), 417–422 (1996).
[CrossRef]

Hambali, N.

Y. G. Shee, M. A. Mahdi, M. H. Al-Mansoori, A. Ismail, N. Hambali, A. K. Zamzuri, R. Mohamad, and S. Yaakob, “Threshold reduction of stimulated Brillouin scattering in photonic crystal fiber,” Laser Phys. 19(12), 2194–2196 (2009).
[CrossRef]

Hänisch, C.

C. Hänisch, A. Heuer, and R. Menzel, “Threshold reduction of stimulated Brillouin scattering (SBS) using fiber loop schemes,” Appl. Phys. B: Lasers Opt. 73(8), 851–854 (2001).
[CrossRef]

Heuer, A.

C. Hänisch, A. Heuer, and R. Menzel, “Threshold reduction of stimulated Brillouin scattering (SBS) using fiber loop schemes,” Appl. Phys. B: Lasers Opt. 73(8), 851–854 (2001).
[CrossRef]

Hitam, S.

Y. G. Shee, M. A. Mahdi, M. H. Al-Mansoori, S. Yaakob, R. Mohamed, A. K. Zamzuri, A. Man, A. Ismail, and S. Hitam, “All-optical generation of a 21 GHz microwave carrier by incorporating a double-Brillouin frequency shifter,” Opt. Lett. 35(9), 1461–1463 (2010).
[CrossRef] [PubMed]

M. Ajiya, M. A. Mahdi, M. H. Al-Mansoori, Y. G. Shee, S. Hitam, and M. Mokhtar, “Reduction of stimulated Brillouin scattering threshold through pump recycling technique,” Laser Phys. Lett. 6(7), 535–538 (2009).
[CrossRef]

Howerton, M. M.

M. M. Howerton, W. K. Burns, and G. K. Gopalakrishnan, “SBS suppression using a depolarized source for high power fiber applications,” J. Lightwave Technol. 14(3), 417–422 (1996).
[CrossRef]

Huignard, J.-P.

Inoue, K.

K. Inoue, “Brillouin threshold in an optical fiber with bidirectional pump lights,” Opt. Commun. 120(1-2), 34–38 (1995).
[CrossRef]

Ismail, A.

Y. G. Shee, M. A. Mahdi, M. H. Al-Mansoori, S. Yaakob, R. Mohamed, A. K. Zamzuri, A. Man, A. Ismail, and S. Hitam, “All-optical generation of a 21 GHz microwave carrier by incorporating a double-Brillouin frequency shifter,” Opt. Lett. 35(9), 1461–1463 (2010).
[CrossRef] [PubMed]

Y. G. Shee, M. A. Mahdi, M. H. Al-Mansoori, A. Ismail, N. Hambali, A. K. Zamzuri, R. Mohamad, and S. Yaakob, “Threshold reduction of stimulated Brillouin scattering in photonic crystal fiber,” Laser Phys. 19(12), 2194–2196 (2009).
[CrossRef]

Jen, C. K.

C. A. S. De Oliveira, C. K. Jen, and C. A. S. de Oliveira, “Effects of Bragg diffraction on stimulated backward Brillouin scattering,” Electron. Lett. 27(9), 780–781 (1991).
[CrossRef]

Kalosha, V. P.

Kobyakov, A.

Kumar, S.

Kurashima, T.

Li, Y.

Liu, D.

J. Shi, X. Chen, M. Ouyang, J. Liu, and D. Liu, “Theoretical investigation on the threshold value of stimulated Brillouin scattering in terms of laser intensity,” Appl. Phys. B: Lasers Opt. 95(4), 657–660 (2009).
[CrossRef]

Liu, J.

J. Shi, X. Chen, M. Ouyang, J. Liu, and D. Liu, “Theoretical investigation on the threshold value of stimulated Brillouin scattering in terms of laser intensity,” Appl. Phys. B: Lasers Opt. 95(4), 657–660 (2009).
[CrossRef]

Mahdi, M. A.

Y. G. Shee, M. A. Mahdi, M. H. Al-Mansoori, S. Yaakob, R. Mohamed, A. K. Zamzuri, A. Man, A. Ismail, and S. Hitam, “All-optical generation of a 21 GHz microwave carrier by incorporating a double-Brillouin frequency shifter,” Opt. Lett. 35(9), 1461–1463 (2010).
[CrossRef] [PubMed]

M. Ajiya, M. A. Mahdi, M. H. Al-Mansoori, Y. G. Shee, S. Hitam, and M. Mokhtar, “Reduction of stimulated Brillouin scattering threshold through pump recycling technique,” Laser Phys. Lett. 6(7), 535–538 (2009).
[CrossRef]

Y. G. Shee, M. A. Mahdi, M. H. Al-Mansoori, A. Ismail, N. Hambali, A. K. Zamzuri, R. Mohamad, and S. Yaakob, “Threshold reduction of stimulated Brillouin scattering in photonic crystal fiber,” Laser Phys. 19(12), 2194–2196 (2009).
[CrossRef]

M. H. Al-Mansoori and M. A. Mahdi, “Multiwavelength L-band Brillouin–Erbium comb fiber laser utilizing nonlinear amplifying loop mirror,” J. Lightwave Technol. 27(22), 5038–5044 (2009).
[CrossRef]

Man, A.

Matsui, T.

McCurdy, A. H.

Menzel, R.

C. Hänisch, A. Heuer, and R. Menzel, “Threshold reduction of stimulated Brillouin scattering (SBS) using fiber loop schemes,” Appl. Phys. B: Lasers Opt. 73(8), 851–854 (2001).
[CrossRef]

Minardo, A.

Mishra, R.

Mohamad, R.

Y. G. Shee, M. A. Mahdi, M. H. Al-Mansoori, A. Ismail, N. Hambali, A. K. Zamzuri, R. Mohamad, and S. Yaakob, “Threshold reduction of stimulated Brillouin scattering in photonic crystal fiber,” Laser Phys. 19(12), 2194–2196 (2009).
[CrossRef]

Mohamed, R.

Mokhtar, M.

M. Ajiya, M. A. Mahdi, M. H. Al-Mansoori, Y. G. Shee, S. Hitam, and M. Mokhtar, “Reduction of stimulated Brillouin scattering threshold through pump recycling technique,” Laser Phys. Lett. 6(7), 535–538 (2009).
[CrossRef]

Norcia, S.

Ouyang, M.

J. Shi, X. Chen, M. Ouyang, J. Liu, and D. Liu, “Theoretical investigation on the threshold value of stimulated Brillouin scattering in terms of laser intensity,” Appl. Phys. B: Lasers Opt. 95(4), 657–660 (2009).
[CrossRef]

Ravet, F.

Ruffin, A. B.

Sakamoto, T.

Sauer, M.

Shee, Y. G.

Y. G. Shee, M. A. Mahdi, M. H. Al-Mansoori, S. Yaakob, R. Mohamed, A. K. Zamzuri, A. Man, A. Ismail, and S. Hitam, “All-optical generation of a 21 GHz microwave carrier by incorporating a double-Brillouin frequency shifter,” Opt. Lett. 35(9), 1461–1463 (2010).
[CrossRef] [PubMed]

Y. G. Shee, M. A. Mahdi, M. H. Al-Mansoori, A. Ismail, N. Hambali, A. K. Zamzuri, R. Mohamad, and S. Yaakob, “Threshold reduction of stimulated Brillouin scattering in photonic crystal fiber,” Laser Phys. 19(12), 2194–2196 (2009).
[CrossRef]

M. Ajiya, M. A. Mahdi, M. H. Al-Mansoori, Y. G. Shee, S. Hitam, and M. Mokhtar, “Reduction of stimulated Brillouin scattering threshold through pump recycling technique,” Laser Phys. Lett. 6(7), 535–538 (2009).
[CrossRef]

Shi, J.

J. Shi, X. Chen, M. Ouyang, J. Liu, and D. Liu, “Theoretical investigation on the threshold value of stimulated Brillouin scattering in terms of laser intensity,” Appl. Phys. B: Lasers Opt. 95(4), 657–660 (2009).
[CrossRef]

Shiraki, K.

Tonda-Goldstein, S.

Wandt, D.

Weßels, P.

Yaakob, S.

Y. G. Shee, M. A. Mahdi, M. H. Al-Mansoori, S. Yaakob, R. Mohamed, A. K. Zamzuri, A. Man, A. Ismail, and S. Hitam, “All-optical generation of a 21 GHz microwave carrier by incorporating a double-Brillouin frequency shifter,” Opt. Lett. 35(9), 1461–1463 (2010).
[CrossRef] [PubMed]

Y. G. Shee, M. A. Mahdi, M. H. Al-Mansoori, A. Ismail, N. Hambali, A. K. Zamzuri, R. Mohamad, and S. Yaakob, “Threshold reduction of stimulated Brillouin scattering in photonic crystal fiber,” Laser Phys. 19(12), 2194–2196 (2009).
[CrossRef]

Yale, A.

Yu, Q.

Zamzuri, A. K.

Y. G. Shee, M. A. Mahdi, M. H. Al-Mansoori, S. Yaakob, R. Mohamed, A. K. Zamzuri, A. Man, A. Ismail, and S. Hitam, “All-optical generation of a 21 GHz microwave carrier by incorporating a double-Brillouin frequency shifter,” Opt. Lett. 35(9), 1461–1463 (2010).
[CrossRef] [PubMed]

Y. G. Shee, M. A. Mahdi, M. H. Al-Mansoori, A. Ismail, N. Hambali, A. K. Zamzuri, R. Mohamad, and S. Yaakob, “Threshold reduction of stimulated Brillouin scattering in photonic crystal fiber,” Laser Phys. 19(12), 2194–2196 (2009).
[CrossRef]

Zeni, L.

Appl. Phys. B: Lasers Opt.

C. Hänisch, A. Heuer, and R. Menzel, “Threshold reduction of stimulated Brillouin scattering (SBS) using fiber loop schemes,” Appl. Phys. B: Lasers Opt. 73(8), 851–854 (2001).
[CrossRef]

J. Shi, X. Chen, M. Ouyang, J. Liu, and D. Liu, “Theoretical investigation on the threshold value of stimulated Brillouin scattering in terms of laser intensity,” Appl. Phys. B: Lasers Opt. 95(4), 657–660 (2009).
[CrossRef]

Electron. Lett.

C. A. S. De Oliveira, C. K. Jen, and C. A. S. de Oliveira, “Effects of Bragg diffraction on stimulated backward Brillouin scattering,” Electron. Lett. 27(9), 780–781 (1991).
[CrossRef]

J. Lightwave Technol.

Laser Phys.

Y. G. Shee, M. A. Mahdi, M. H. Al-Mansoori, A. Ismail, N. Hambali, A. K. Zamzuri, R. Mohamad, and S. Yaakob, “Threshold reduction of stimulated Brillouin scattering in photonic crystal fiber,” Laser Phys. 19(12), 2194–2196 (2009).
[CrossRef]

Laser Phys. Lett.

M. Ajiya, M. A. Mahdi, M. H. Al-Mansoori, Y. G. Shee, S. Hitam, and M. Mokhtar, “Reduction of stimulated Brillouin scattering threshold through pump recycling technique,” Laser Phys. Lett. 6(7), 535–538 (2009).
[CrossRef]

Opt. Commun.

K. Inoue, “Brillouin threshold in an optical fiber with bidirectional pump lights,” Opt. Commun. 120(1-2), 34–38 (1995).
[CrossRef]

Opt. Express

Opt. Lett.

Other

R. W. Boyd, Nonlinear Optics, 2nd ed. (New York: Academic Press, 2003).

G. P. Agrawal, Nonlinear Fiber Optics, 4th ed. (New York: Academic Press, 2004).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Schematic diagram of Brillouin pump power recycling technique [16].

Fig. 2
Fig. 2

Stokes wave power with variation in BP power for 5 km long SMF, (a) conventional technique, and (b) recycling pump technique.

Fig. 3
Fig. 3

Output Stokes wave power distribution at different SMF lengths for 30 mW BP power, (a) conventional technique, and (b) recycling pump technique.

Fig. 4
Fig. 4

Brillouin threshold power at different SMF lengths, (a) conventional technique, and (b) recycling pump technique.

Tables (1)

Tables Icon

Table 1 Parameters used for the simulation work

Equations (20)

Equations on this page are rendered with MathJax. Learn more.

z P p ( z ) = g B P p ( z ) P s ( z ) A e f f α P p ( z ) ,
z P p f ( z ) = α α c f P p f ( z ) ,
z P p b ( z ) = α P p b ( z ) .
P p f ( z ) = P p f ( 0 ) e α α c f z ,
P p b ( z ) = P p b ( L ) e α ( z L ) ,
P p b ( z ) = R P p f ( 0 ) e α α c f L e α ( z L ) ,
z P s b ( z ) = g B A e f f P p f ( z ) P s b ( z ) + α P s b ( z ) .
P s b ( z ) = P s b ( L ) exp [ g B α α c f A e f f P p f ( 0 ) ( e α α c f L e - α α cf z ) α ( L z ) ] .
z P s f ( z ) = g B A e f f P p b ( z ) P s f ( z ) α P s f ( z ) .
P s f ( z ) = P s f ( 0 ) exp [ g B R α A e f f P p f ( 0 ) ( e α (( α c f + 1 ) L z ) e - α L ( α cf + 1 ) ) α z ] .
P s f b ( z ) = R P s f ( L ) e α ( z L ) .
P s f b ( z ) = R P s f ( 0 ) exp [ g B R α A e f f P p f ( 0 ) ( e α α c f L e - α L ( α c f + 1 ) ) α ( 2 L z ) ] .
P s ( z ) = α c b ( P s b ( z ) + P s f b ( z ) ) ,
P s ( L ) = ( h v ) G S B S d v .
P s ( l ) = P p f ( l )
P p f ( 0 ) = P t h
P t h = C A e f f g B L e f f 1 ,
C = P s b ( L ) + R ( 1 α L ) P s f ( 0 ) α A eff α c b g B + α R 2 L e f f P s f ( 0 ) ,
L e f f 1 = e α α c f L α
L e f f = 1 e α L α .

Metrics