Abstract

A linear to radial and/or azimuthal polarization converter (LRAC) has been inserted into the beam delivery of a micromachining station equipped with a picosecond laser system. Percussion drilling and helical drilling in steel have been performed using radially as well as azimuthally polarized infrared radiation at 1030 nm. The presented machining results are discussed on the basis of numerical simulations of the polarization-dependent beam propagation inside the fabricated capillaries.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. Breitling, C. Föhl, F. Dausinger, T. Kononenko, and V. Konov, in Femtosecond Technology for Technical and Medical Applications, F. Dausinger, F. Lichtner and H. Lubatschowski, eds. (Springer, Berlin, 2004).
  2. H. Tönshoff, C. Momma, A. Ostendorf, S. Nolte, and G. Kamlage, “Microdrilling of metals with ultrashort laser pulses,” J. Laser Appl. 12(1), 23–27 (2000).
    [CrossRef]
  3. A. Ancona, F. Röser, K. Rademaker, J. Limpert, S. Nolte, and A. Tünnermann, “High speed laser drilling of metals using a high repetition rate, high average power ultrafast fiber CPA system,” Opt. Express 16(12), 8958–8968 (2008).
    [CrossRef] [PubMed]
  4. C. Föhl and F. Dausinger, “High precision deep drilling with ultrashort pulses,” Proc. SPIE 5063, 346–351 (2003).
    [CrossRef]
  5. J. Chang, B. Warner, E. Dragon, and M. Martinez, “Precision micromachining with pulsed green lasers,” J. Laser Appl. 10(6), 285–291 (1998).
    [CrossRef]
  6. Q. Zhan, “Trapping metallic Rayleigh particles with radial polarization,” Opt. Express 12(15), 3377–3382 (2004).
    [CrossRef] [PubMed]
  7. V. P. Kalosha and I. Golub, “Toward the subdiffraction focusing limit of optical superresolution,” Opt. Lett. 32(24), 3540–3542 (2007).
    [CrossRef] [PubMed]
  8. I. Moshe, S. Jackel, and A. Meir, “Production of radially or azimuthally polarized beams in solid-state lasers and the elimination of thermally induced birefringence effects,” Opt. Lett. 28(10), 807–809 (2003).
    [CrossRef] [PubMed]
  9. V. G. Niziev and A. V. Nesterov, “Influence of beam polarization on laser cutting efficiency,” J. Phys. D Appl. Phys. 32(13), 1455–1461 (1999).
    [CrossRef]
  10. M. Meier, V. Romano, and T. Feurer, “Material processing with pulsed radially and azimuthally polarized laser radiation,” Appl. Phys., A Mater. Sci. Process. 86(3), 329–334 (2007).
    [CrossRef]
  11. T. Moser, M. Abdou Ahmed, M. Schäfer, A. Voss, M. Vogel, and T. Graf, “Exploiting radial polarization in material processing,” presented at the Stuttgart Laser Technology Forum, Stuttgart, Germany, 4–6 March 2008.
  12. S. C. Tidwell, G. H. Kim, and W. D. Kimura, “Efficient radially polarized laser beam generation with a double interferometer,” Appl. Opt. 32(27), 5222–5229 (1993).
    [CrossRef] [PubMed]
  13. K. C. Toussaint, S. Park, J. E. Jureller, and N. F. Scherer, “Generation of optical vector beams with a diffractive optical element interferometer,” Opt. Lett. 30(21), 2846–2848 (2005).
    [CrossRef] [PubMed]
  14. S. Quabis, R. Dorn, and G. Leuchs, “Generation of a radially polarized doughnut mode of high quality,” Appl. Phys. B 81(5), 597–600 (2005).
    [CrossRef]
  15. W. J. Lai, B. C. Lim, P. B. Phua, K. S. Tiaw, H. H. Teo, and M. H. Hong, “Generation of radially polarized beam with a segmented spiral varying retarder,” Opt. Express 16(20), 15694–15699 (2008).
    [CrossRef] [PubMed]
  16. M. Abdou-Ahmed, M. Vogel, V. Onuseit, A. Voss, R. Weber, and T. Graf, “Radially polarized thin-disk laser with 1-kW power,” invited talk, presented at the International Laser Physics Workshop, Barcelona, Spain, 13–17 July 2009.
  17. M. A. Ahmed, J. Schulz, A. Voss, O. Parriaux, J. C. Pommier, and T. Graf, “Radially polarized 3 kW beam from a CO2 laser with an intracavity resonant grating mirror,” Opt. Lett. 32(13), 1824–1826 (2007).
    [CrossRef] [PubMed]
  18. T. Moser, J. Balmer, D. Delbeke, P. Muys, S. Verstuyft, and R. Baets, “Intracavity generation of radially polarized CO2 laser beams based on a simple binary dielectric diffraction grating,” Appl. Opt. 45(33), 8517–8522 (2006).
    [CrossRef] [PubMed]
  19. C. Stolzenburg, and A. Giesen, “Picosecond Regenerative Yb:YAG Thin Disk Amplifier at 200 kHz Repetition Rate and 62 W Output Power,” in Advanced Solid-State Photonics, Technical Digest (CD) (Optical Society of America, 2007), paper MA6.
  20. M. Abdou Ahmed, A. Voß, M. Vogel, A. Austerschulte, J. Schulz, V. Metsch, T. Moser, and T. Graf, “Radially polarized high-power lasers,” Proc. SPIE 7131, 71311I (2008).
    [CrossRef]
  21. M. Kraus, S. Collmer, S. Sommer, and F. Dausinger, “Microdrilling in steel with frequency-doubled ultrashort pulsed laser radiation,” J. Laser Micro/Nanoengineering 3(3), 129–134 (2008).
    [CrossRef]
  22. A. Michalowski, D. Walter, F. Dausinger, and T. Graf, “Melt dynamics and hole formation during drilling with ultrashort pulses,” J. Laser Micro/Nanoengineering 3(3), 211–215 (2008).
    [CrossRef]

2008

A. Ancona, F. Röser, K. Rademaker, J. Limpert, S. Nolte, and A. Tünnermann, “High speed laser drilling of metals using a high repetition rate, high average power ultrafast fiber CPA system,” Opt. Express 16(12), 8958–8968 (2008).
[CrossRef] [PubMed]

W. J. Lai, B. C. Lim, P. B. Phua, K. S. Tiaw, H. H. Teo, and M. H. Hong, “Generation of radially polarized beam with a segmented spiral varying retarder,” Opt. Express 16(20), 15694–15699 (2008).
[CrossRef] [PubMed]

M. Abdou Ahmed, A. Voß, M. Vogel, A. Austerschulte, J. Schulz, V. Metsch, T. Moser, and T. Graf, “Radially polarized high-power lasers,” Proc. SPIE 7131, 71311I (2008).
[CrossRef]

M. Kraus, S. Collmer, S. Sommer, and F. Dausinger, “Microdrilling in steel with frequency-doubled ultrashort pulsed laser radiation,” J. Laser Micro/Nanoengineering 3(3), 129–134 (2008).
[CrossRef]

A. Michalowski, D. Walter, F. Dausinger, and T. Graf, “Melt dynamics and hole formation during drilling with ultrashort pulses,” J. Laser Micro/Nanoengineering 3(3), 211–215 (2008).
[CrossRef]

2007

2006

2005

K. C. Toussaint, S. Park, J. E. Jureller, and N. F. Scherer, “Generation of optical vector beams with a diffractive optical element interferometer,” Opt. Lett. 30(21), 2846–2848 (2005).
[CrossRef] [PubMed]

S. Quabis, R. Dorn, and G. Leuchs, “Generation of a radially polarized doughnut mode of high quality,” Appl. Phys. B 81(5), 597–600 (2005).
[CrossRef]

2004

2003

2000

H. Tönshoff, C. Momma, A. Ostendorf, S. Nolte, and G. Kamlage, “Microdrilling of metals with ultrashort laser pulses,” J. Laser Appl. 12(1), 23–27 (2000).
[CrossRef]

1999

V. G. Niziev and A. V. Nesterov, “Influence of beam polarization on laser cutting efficiency,” J. Phys. D Appl. Phys. 32(13), 1455–1461 (1999).
[CrossRef]

1998

J. Chang, B. Warner, E. Dragon, and M. Martinez, “Precision micromachining with pulsed green lasers,” J. Laser Appl. 10(6), 285–291 (1998).
[CrossRef]

1993

Abdou Ahmed, M.

M. Abdou Ahmed, A. Voß, M. Vogel, A. Austerschulte, J. Schulz, V. Metsch, T. Moser, and T. Graf, “Radially polarized high-power lasers,” Proc. SPIE 7131, 71311I (2008).
[CrossRef]

Ahmed, M. A.

Ancona, A.

Austerschulte, A.

M. Abdou Ahmed, A. Voß, M. Vogel, A. Austerschulte, J. Schulz, V. Metsch, T. Moser, and T. Graf, “Radially polarized high-power lasers,” Proc. SPIE 7131, 71311I (2008).
[CrossRef]

Baets, R.

Balmer, J.

Chang, J.

J. Chang, B. Warner, E. Dragon, and M. Martinez, “Precision micromachining with pulsed green lasers,” J. Laser Appl. 10(6), 285–291 (1998).
[CrossRef]

Collmer, S.

M. Kraus, S. Collmer, S. Sommer, and F. Dausinger, “Microdrilling in steel with frequency-doubled ultrashort pulsed laser radiation,” J. Laser Micro/Nanoengineering 3(3), 129–134 (2008).
[CrossRef]

Dausinger, F.

M. Kraus, S. Collmer, S. Sommer, and F. Dausinger, “Microdrilling in steel with frequency-doubled ultrashort pulsed laser radiation,” J. Laser Micro/Nanoengineering 3(3), 129–134 (2008).
[CrossRef]

A. Michalowski, D. Walter, F. Dausinger, and T. Graf, “Melt dynamics and hole formation during drilling with ultrashort pulses,” J. Laser Micro/Nanoengineering 3(3), 211–215 (2008).
[CrossRef]

C. Föhl and F. Dausinger, “High precision deep drilling with ultrashort pulses,” Proc. SPIE 5063, 346–351 (2003).
[CrossRef]

Delbeke, D.

Dorn, R.

S. Quabis, R. Dorn, and G. Leuchs, “Generation of a radially polarized doughnut mode of high quality,” Appl. Phys. B 81(5), 597–600 (2005).
[CrossRef]

Dragon, E.

J. Chang, B. Warner, E. Dragon, and M. Martinez, “Precision micromachining with pulsed green lasers,” J. Laser Appl. 10(6), 285–291 (1998).
[CrossRef]

Feurer, T.

M. Meier, V. Romano, and T. Feurer, “Material processing with pulsed radially and azimuthally polarized laser radiation,” Appl. Phys., A Mater. Sci. Process. 86(3), 329–334 (2007).
[CrossRef]

Föhl, C.

C. Föhl and F. Dausinger, “High precision deep drilling with ultrashort pulses,” Proc. SPIE 5063, 346–351 (2003).
[CrossRef]

Golub, I.

Graf, T.

M. Abdou Ahmed, A. Voß, M. Vogel, A. Austerschulte, J. Schulz, V. Metsch, T. Moser, and T. Graf, “Radially polarized high-power lasers,” Proc. SPIE 7131, 71311I (2008).
[CrossRef]

A. Michalowski, D. Walter, F. Dausinger, and T. Graf, “Melt dynamics and hole formation during drilling with ultrashort pulses,” J. Laser Micro/Nanoengineering 3(3), 211–215 (2008).
[CrossRef]

M. A. Ahmed, J. Schulz, A. Voss, O. Parriaux, J. C. Pommier, and T. Graf, “Radially polarized 3 kW beam from a CO2 laser with an intracavity resonant grating mirror,” Opt. Lett. 32(13), 1824–1826 (2007).
[CrossRef] [PubMed]

Hong, M. H.

Jackel, S.

Jureller, J. E.

Kalosha, V. P.

Kamlage, G.

H. Tönshoff, C. Momma, A. Ostendorf, S. Nolte, and G. Kamlage, “Microdrilling of metals with ultrashort laser pulses,” J. Laser Appl. 12(1), 23–27 (2000).
[CrossRef]

Kim, G. H.

Kimura, W. D.

Kraus, M.

M. Kraus, S. Collmer, S. Sommer, and F. Dausinger, “Microdrilling in steel with frequency-doubled ultrashort pulsed laser radiation,” J. Laser Micro/Nanoengineering 3(3), 129–134 (2008).
[CrossRef]

Lai, W. J.

Leuchs, G.

S. Quabis, R. Dorn, and G. Leuchs, “Generation of a radially polarized doughnut mode of high quality,” Appl. Phys. B 81(5), 597–600 (2005).
[CrossRef]

Lim, B. C.

Limpert, J.

Martinez, M.

J. Chang, B. Warner, E. Dragon, and M. Martinez, “Precision micromachining with pulsed green lasers,” J. Laser Appl. 10(6), 285–291 (1998).
[CrossRef]

Meier, M.

M. Meier, V. Romano, and T. Feurer, “Material processing with pulsed radially and azimuthally polarized laser radiation,” Appl. Phys., A Mater. Sci. Process. 86(3), 329–334 (2007).
[CrossRef]

Meir, A.

Metsch, V.

M. Abdou Ahmed, A. Voß, M. Vogel, A. Austerschulte, J. Schulz, V. Metsch, T. Moser, and T. Graf, “Radially polarized high-power lasers,” Proc. SPIE 7131, 71311I (2008).
[CrossRef]

Michalowski, A.

A. Michalowski, D. Walter, F. Dausinger, and T. Graf, “Melt dynamics and hole formation during drilling with ultrashort pulses,” J. Laser Micro/Nanoengineering 3(3), 211–215 (2008).
[CrossRef]

Momma, C.

H. Tönshoff, C. Momma, A. Ostendorf, S. Nolte, and G. Kamlage, “Microdrilling of metals with ultrashort laser pulses,” J. Laser Appl. 12(1), 23–27 (2000).
[CrossRef]

Moser, T.

M. Abdou Ahmed, A. Voß, M. Vogel, A. Austerschulte, J. Schulz, V. Metsch, T. Moser, and T. Graf, “Radially polarized high-power lasers,” Proc. SPIE 7131, 71311I (2008).
[CrossRef]

T. Moser, J. Balmer, D. Delbeke, P. Muys, S. Verstuyft, and R. Baets, “Intracavity generation of radially polarized CO2 laser beams based on a simple binary dielectric diffraction grating,” Appl. Opt. 45(33), 8517–8522 (2006).
[CrossRef] [PubMed]

Moshe, I.

Muys, P.

Nesterov, A. V.

V. G. Niziev and A. V. Nesterov, “Influence of beam polarization on laser cutting efficiency,” J. Phys. D Appl. Phys. 32(13), 1455–1461 (1999).
[CrossRef]

Niziev, V. G.

V. G. Niziev and A. V. Nesterov, “Influence of beam polarization on laser cutting efficiency,” J. Phys. D Appl. Phys. 32(13), 1455–1461 (1999).
[CrossRef]

Nolte, S.

Ostendorf, A.

H. Tönshoff, C. Momma, A. Ostendorf, S. Nolte, and G. Kamlage, “Microdrilling of metals with ultrashort laser pulses,” J. Laser Appl. 12(1), 23–27 (2000).
[CrossRef]

Park, S.

Parriaux, O.

Phua, P. B.

Pommier, J. C.

Quabis, S.

S. Quabis, R. Dorn, and G. Leuchs, “Generation of a radially polarized doughnut mode of high quality,” Appl. Phys. B 81(5), 597–600 (2005).
[CrossRef]

Rademaker, K.

Romano, V.

M. Meier, V. Romano, and T. Feurer, “Material processing with pulsed radially and azimuthally polarized laser radiation,” Appl. Phys., A Mater. Sci. Process. 86(3), 329–334 (2007).
[CrossRef]

Röser, F.

Scherer, N. F.

Schulz, J.

M. Abdou Ahmed, A. Voß, M. Vogel, A. Austerschulte, J. Schulz, V. Metsch, T. Moser, and T. Graf, “Radially polarized high-power lasers,” Proc. SPIE 7131, 71311I (2008).
[CrossRef]

M. A. Ahmed, J. Schulz, A. Voss, O. Parriaux, J. C. Pommier, and T. Graf, “Radially polarized 3 kW beam from a CO2 laser with an intracavity resonant grating mirror,” Opt. Lett. 32(13), 1824–1826 (2007).
[CrossRef] [PubMed]

Sommer, S.

M. Kraus, S. Collmer, S. Sommer, and F. Dausinger, “Microdrilling in steel with frequency-doubled ultrashort pulsed laser radiation,” J. Laser Micro/Nanoengineering 3(3), 129–134 (2008).
[CrossRef]

Teo, H. H.

Tiaw, K. S.

Tidwell, S. C.

Tönshoff, H.

H. Tönshoff, C. Momma, A. Ostendorf, S. Nolte, and G. Kamlage, “Microdrilling of metals with ultrashort laser pulses,” J. Laser Appl. 12(1), 23–27 (2000).
[CrossRef]

Toussaint, K. C.

Tünnermann, A.

Verstuyft, S.

Vogel, M.

M. Abdou Ahmed, A. Voß, M. Vogel, A. Austerschulte, J. Schulz, V. Metsch, T. Moser, and T. Graf, “Radially polarized high-power lasers,” Proc. SPIE 7131, 71311I (2008).
[CrossRef]

Voß, A.

M. Abdou Ahmed, A. Voß, M. Vogel, A. Austerschulte, J. Schulz, V. Metsch, T. Moser, and T. Graf, “Radially polarized high-power lasers,” Proc. SPIE 7131, 71311I (2008).
[CrossRef]

Voss, A.

Walter, D.

A. Michalowski, D. Walter, F. Dausinger, and T. Graf, “Melt dynamics and hole formation during drilling with ultrashort pulses,” J. Laser Micro/Nanoengineering 3(3), 211–215 (2008).
[CrossRef]

Warner, B.

J. Chang, B. Warner, E. Dragon, and M. Martinez, “Precision micromachining with pulsed green lasers,” J. Laser Appl. 10(6), 285–291 (1998).
[CrossRef]

Zhan, Q.

Appl. Opt.

Appl. Phys. B

S. Quabis, R. Dorn, and G. Leuchs, “Generation of a radially polarized doughnut mode of high quality,” Appl. Phys. B 81(5), 597–600 (2005).
[CrossRef]

Appl. Phys., A Mater. Sci. Process.

M. Meier, V. Romano, and T. Feurer, “Material processing with pulsed radially and azimuthally polarized laser radiation,” Appl. Phys., A Mater. Sci. Process. 86(3), 329–334 (2007).
[CrossRef]

J. Laser Appl.

J. Chang, B. Warner, E. Dragon, and M. Martinez, “Precision micromachining with pulsed green lasers,” J. Laser Appl. 10(6), 285–291 (1998).
[CrossRef]

H. Tönshoff, C. Momma, A. Ostendorf, S. Nolte, and G. Kamlage, “Microdrilling of metals with ultrashort laser pulses,” J. Laser Appl. 12(1), 23–27 (2000).
[CrossRef]

J. Laser Micro/Nanoengineering

M. Kraus, S. Collmer, S. Sommer, and F. Dausinger, “Microdrilling in steel with frequency-doubled ultrashort pulsed laser radiation,” J. Laser Micro/Nanoengineering 3(3), 129–134 (2008).
[CrossRef]

A. Michalowski, D. Walter, F. Dausinger, and T. Graf, “Melt dynamics and hole formation during drilling with ultrashort pulses,” J. Laser Micro/Nanoengineering 3(3), 211–215 (2008).
[CrossRef]

J. Phys. D Appl. Phys.

V. G. Niziev and A. V. Nesterov, “Influence of beam polarization on laser cutting efficiency,” J. Phys. D Appl. Phys. 32(13), 1455–1461 (1999).
[CrossRef]

Opt. Express

Opt. Lett.

Proc. SPIE

M. Abdou Ahmed, A. Voß, M. Vogel, A. Austerschulte, J. Schulz, V. Metsch, T. Moser, and T. Graf, “Radially polarized high-power lasers,” Proc. SPIE 7131, 71311I (2008).
[CrossRef]

C. Föhl and F. Dausinger, “High precision deep drilling with ultrashort pulses,” Proc. SPIE 5063, 346–351 (2003).
[CrossRef]

Other

D. Breitling, C. Föhl, F. Dausinger, T. Kononenko, and V. Konov, in Femtosecond Technology for Technical and Medical Applications, F. Dausinger, F. Lichtner and H. Lubatschowski, eds. (Springer, Berlin, 2004).

T. Moser, M. Abdou Ahmed, M. Schäfer, A. Voss, M. Vogel, and T. Graf, “Exploiting radial polarization in material processing,” presented at the Stuttgart Laser Technology Forum, Stuttgart, Germany, 4–6 March 2008.

M. Abdou-Ahmed, M. Vogel, V. Onuseit, A. Voss, R. Weber, and T. Graf, “Radially polarized thin-disk laser with 1-kW power,” invited talk, presented at the International Laser Physics Workshop, Barcelona, Spain, 13–17 July 2009.

C. Stolzenburg, and A. Giesen, “Picosecond Regenerative Yb:YAG Thin Disk Amplifier at 200 kHz Repetition Rate and 62 W Output Power,” in Advanced Solid-State Photonics, Technical Digest (CD) (Optical Society of America, 2007), paper MA6.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Linear to radial/azimuthal polarization conversion (LRAC) principle based on a segmented half-wave plates.

Fig. 2
Fig. 2

Recorded intensity distributions of the radially and azimuthally polarized beams without and with analyzer at different orientations.

Fig. 3
Fig. 3

Capillary depth and instantaneous drilling rate versus number of pulses for percussion drilling in CrNi steel with radially (■) and azimuthally (□) polarized radiation. λ = 1030 nm, f p = 103 kHz, Q p = 50 µJ, z f = −100 µm.

Fig. 4
Fig. 4

Transverse sections of microholes in 1 mm CrNi steel, drilled with radially (left) and azimuthally (right) polarized radiation. The depicted diameters are each mean values averaged from the major and minor axes of the cross-section. λ = 1030 nm, f p = 103 kHz, Q p = 50 µJ, z f = −100 µm, t D = 120 s, helical drilling.

Fig. 5
Fig. 5

Inlets and outlets of microholes in 1 mm CrNi steel, drilled with radially (left) and azimuthally (right) polarized radiation. d av denotes the mean diameter averaged from the major diameter d max and the minor diameter d min. λ = 1030 nm, f p = 103 kHz, Q p = 50 µJ, z f = −100 µm, t D = 120 s, helical drilling.

Fig. 6
Fig. 6

Comparison of the absorbed intensity at the hole walls for azimuthal and radial polarization. The diagram shows the absorbed intensity relative to the peak intensity of the incident ring mode at focal level. For the calculations the focal plane was located at −100 µm.

Fig. 7
Fig. 7

Geometry of blind holes in 1 mm CrNi steel, formed with 105 laser pulses using a percussion drilling process with radially (left) and azimuthally (right) polarized radiation. A deeper and narrower capillary is obtained for azimuthal polarization. λ = 1030 nm, f p = 103 kHz, Q p = 50 µJ, z f = −100 µm.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

r i ( z ) = k i w ( z ) = k i w 0 1 + ( z z f ) 2 z 0 2 ,
I ( x i 2 + y i 2 ) = I ( r i ) = 16 r i 2 π w ( z ) 4 e 4 r i 2 w ( z ) 2 .
R ( z ) = j = 0 6 a j z j .

Metrics