Abstract

An ultra-small integrated photonic temperature sensor has been proposed and demonstrated which incorporates a silicon ring resonator linked to a vertical grating coupler. It was manufactured using a 0.18 μm standard CMOS process, rendering a homogeneous integration into other electrical/optical devices. The temperature variation was measured by monitoring the shift in the resonant wavelength of the silicon resonator, which was induced by the thermo-optic effect and the thermal expansion effect. The dependence of its sensing capability upon the waveguide width of the resonator was intensively probed both theoretically and experimentally. The best achieved sensitivity was about 83 pm/°C for a waveguide width of 500 nm, while the sensitivity was boosted by ~10 pm/°C by adjusting the waveguide width from 300 nm to 500 nm. Finally, the response speed of the sensor was as fast as ~6 μs.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. L. Pavesi, and D. J. Lockwood, Silicon photonics (Springer, 2004).
  2. Q. Xu, B. Schmidt, S. Pradhan, and M. Lipson, “Micrometre-scale silicon electro-optic modulator,” Nature 435(7040), 325–327 (2005).
    [CrossRef] [PubMed]
  3. W. M. J. Green, M. J. Rooks, L. Sekaric, and Y. A. Vlasov, “Ultra-compact, low RF power, 10 Gb/s silicon Mach-Zehnder modulator,” Opt. Express 15(25), 17106–17113 (2007).
    [CrossRef] [PubMed]
  4. W. Bogaerts, R. Baets, P. Dumon, V. Wiaux, S. Beckx, D. Taillaert, B. Luyssaert, J. V. Campenhout, P. Bienstman, and D. V. Thourhout, “Nanophotonic waveguides in silicon-on-insulator fabricated with CMOS technology,” J. Lightwave Technol. 23(1), 401–412 (2005).
    [CrossRef]
  5. A. Bakker and J. H. Huijsing, “Micropower CMOS temperature sensor with digital output,” IEEE J. Solid-State Circuits 31(7), 933–937 (1996).
    [CrossRef]
  6. L. Jin, W. Zhang, H. Zhang, B. Liu, J. Zhao, Q. Tu, G. Kai, and X. Dong, “An embedded FBG sensor for simultaneous measurement of stress and temperature,” IEEE Photon. Technol. Lett. 18(1), 154–156 (2006).
    [CrossRef]
  7. A. Irace and G. Breglio, “All-silicon optical temperature sensor based on Multi-Mode Interference,” Opt. Express 11(22), 2807–2812 (2003).
    [CrossRef] [PubMed]
  8. G. D. Kim, H. S. Lee, S. S. Lee, B. T. Lim, H. K. Bae, and W. G. Lee, “Ultra small silicon resonator based temperature sensor,” in OSA's 93rd Annual Meeting, (Optical Society of America, 2009), paper FMJ6.
  9. X. Zhang and X. Li, “Design, fabrication and characterization of optical microring sensors on metal substrates,” J. Micromech. Microeng. 18(1), 015025 (2008).
    [CrossRef]
  10. H. S. Lee, G. D. Kim, and S. S. Lee, “Temperature compensated glucose sensor exploiting ring resonators,” IEEE Photon. Technol. Lett. 21(16), 1136–1138 (2009).
  11. P. Rabiei, “Electro-optic and thermo-optic polymer micro-ring resonators and their applications,” Ph.D. Thesis, University of Southern California, (2003).
  12. P. Dumon, “Ultra-compact integrated optical filters in silicon-on-insulator by means of wafer-scale technology,” Ph.D. Thesis, University of Ghent (2007).
  13. Fimmwave, Photon Design, http://www.photond.com .
  14. Y. Okada and Y. Tokumaru, “Precise determination of lattice parameter and thermal expansion coefficient of silicon between 300 and 1500 K,” J. Appl. Phys. 56(2), 314–320 (1984).
    [CrossRef]
  15. J. Teng, P. Dumon, W. Bogaerts, H. Zhang, X. Jian, X. Han, M. Zhao, G. Morthier, and R. Baets, “Athermal Silicon-on-insulator ring resonators by overlaying a polymer cladding on narrowed waveguides,” Opt. Express 17(17), 14627–14633 (2009).
    [CrossRef] [PubMed]
  16. Y. Amemiya, Y. Tanushi, T. Tokunaga, and S. Yokoyama, “Photoelastic effect in silicon ring resonators,” Jpn. J. Appl. Phys. 47(4), 2910–2914 (2008).
    [CrossRef]
  17. M. A. Davis and A. D. Kersey, “Matched-filter interrogation technique for fibre Bragg grating arrays,” Electron. Lett. 31(10), 822–823 (1995).
    [CrossRef]
  18. Y. Sano and T. Yoshino, “Fast optical wavelength interrogator employing arrayed waveguide grating for distributed fiber Bragg grating sensors,” J. Lightwave Technol. 21(1), 132–139 (2003).
    [CrossRef]

2009 (2)

2008 (2)

Y. Amemiya, Y. Tanushi, T. Tokunaga, and S. Yokoyama, “Photoelastic effect in silicon ring resonators,” Jpn. J. Appl. Phys. 47(4), 2910–2914 (2008).
[CrossRef]

X. Zhang and X. Li, “Design, fabrication and characterization of optical microring sensors on metal substrates,” J. Micromech. Microeng. 18(1), 015025 (2008).
[CrossRef]

2007 (1)

2006 (1)

L. Jin, W. Zhang, H. Zhang, B. Liu, J. Zhao, Q. Tu, G. Kai, and X. Dong, “An embedded FBG sensor for simultaneous measurement of stress and temperature,” IEEE Photon. Technol. Lett. 18(1), 154–156 (2006).
[CrossRef]

2005 (2)

2003 (2)

1996 (1)

A. Bakker and J. H. Huijsing, “Micropower CMOS temperature sensor with digital output,” IEEE J. Solid-State Circuits 31(7), 933–937 (1996).
[CrossRef]

1995 (1)

M. A. Davis and A. D. Kersey, “Matched-filter interrogation technique for fibre Bragg grating arrays,” Electron. Lett. 31(10), 822–823 (1995).
[CrossRef]

1984 (1)

Y. Okada and Y. Tokumaru, “Precise determination of lattice parameter and thermal expansion coefficient of silicon between 300 and 1500 K,” J. Appl. Phys. 56(2), 314–320 (1984).
[CrossRef]

Amemiya, Y.

Y. Amemiya, Y. Tanushi, T. Tokunaga, and S. Yokoyama, “Photoelastic effect in silicon ring resonators,” Jpn. J. Appl. Phys. 47(4), 2910–2914 (2008).
[CrossRef]

Baets, R.

Bakker, A.

A. Bakker and J. H. Huijsing, “Micropower CMOS temperature sensor with digital output,” IEEE J. Solid-State Circuits 31(7), 933–937 (1996).
[CrossRef]

Beckx, S.

Bienstman, P.

Bogaerts, W.

Breglio, G.

Campenhout, J. V.

Davis, M. A.

M. A. Davis and A. D. Kersey, “Matched-filter interrogation technique for fibre Bragg grating arrays,” Electron. Lett. 31(10), 822–823 (1995).
[CrossRef]

Dong, X.

L. Jin, W. Zhang, H. Zhang, B. Liu, J. Zhao, Q. Tu, G. Kai, and X. Dong, “An embedded FBG sensor for simultaneous measurement of stress and temperature,” IEEE Photon. Technol. Lett. 18(1), 154–156 (2006).
[CrossRef]

Dumon, P.

Green, W. M. J.

Han, X.

Huijsing, J. H.

A. Bakker and J. H. Huijsing, “Micropower CMOS temperature sensor with digital output,” IEEE J. Solid-State Circuits 31(7), 933–937 (1996).
[CrossRef]

Irace, A.

Jian, X.

Jin, L.

L. Jin, W. Zhang, H. Zhang, B. Liu, J. Zhao, Q. Tu, G. Kai, and X. Dong, “An embedded FBG sensor for simultaneous measurement of stress and temperature,” IEEE Photon. Technol. Lett. 18(1), 154–156 (2006).
[CrossRef]

Kai, G.

L. Jin, W. Zhang, H. Zhang, B. Liu, J. Zhao, Q. Tu, G. Kai, and X. Dong, “An embedded FBG sensor for simultaneous measurement of stress and temperature,” IEEE Photon. Technol. Lett. 18(1), 154–156 (2006).
[CrossRef]

Kersey, A. D.

M. A. Davis and A. D. Kersey, “Matched-filter interrogation technique for fibre Bragg grating arrays,” Electron. Lett. 31(10), 822–823 (1995).
[CrossRef]

Kim, G. D.

H. S. Lee, G. D. Kim, and S. S. Lee, “Temperature compensated glucose sensor exploiting ring resonators,” IEEE Photon. Technol. Lett. 21(16), 1136–1138 (2009).

Lee, H. S.

H. S. Lee, G. D. Kim, and S. S. Lee, “Temperature compensated glucose sensor exploiting ring resonators,” IEEE Photon. Technol. Lett. 21(16), 1136–1138 (2009).

Lee, S. S.

H. S. Lee, G. D. Kim, and S. S. Lee, “Temperature compensated glucose sensor exploiting ring resonators,” IEEE Photon. Technol. Lett. 21(16), 1136–1138 (2009).

Li, X.

X. Zhang and X. Li, “Design, fabrication and characterization of optical microring sensors on metal substrates,” J. Micromech. Microeng. 18(1), 015025 (2008).
[CrossRef]

Lipson, M.

Q. Xu, B. Schmidt, S. Pradhan, and M. Lipson, “Micrometre-scale silicon electro-optic modulator,” Nature 435(7040), 325–327 (2005).
[CrossRef] [PubMed]

Liu, B.

L. Jin, W. Zhang, H. Zhang, B. Liu, J. Zhao, Q. Tu, G. Kai, and X. Dong, “An embedded FBG sensor for simultaneous measurement of stress and temperature,” IEEE Photon. Technol. Lett. 18(1), 154–156 (2006).
[CrossRef]

Luyssaert, B.

Morthier, G.

Okada, Y.

Y. Okada and Y. Tokumaru, “Precise determination of lattice parameter and thermal expansion coefficient of silicon between 300 and 1500 K,” J. Appl. Phys. 56(2), 314–320 (1984).
[CrossRef]

Pradhan, S.

Q. Xu, B. Schmidt, S. Pradhan, and M. Lipson, “Micrometre-scale silicon electro-optic modulator,” Nature 435(7040), 325–327 (2005).
[CrossRef] [PubMed]

Rooks, M. J.

Sano, Y.

Schmidt, B.

Q. Xu, B. Schmidt, S. Pradhan, and M. Lipson, “Micrometre-scale silicon electro-optic modulator,” Nature 435(7040), 325–327 (2005).
[CrossRef] [PubMed]

Sekaric, L.

Taillaert, D.

Tanushi, Y.

Y. Amemiya, Y. Tanushi, T. Tokunaga, and S. Yokoyama, “Photoelastic effect in silicon ring resonators,” Jpn. J. Appl. Phys. 47(4), 2910–2914 (2008).
[CrossRef]

Teng, J.

Thourhout, D. V.

Tokumaru, Y.

Y. Okada and Y. Tokumaru, “Precise determination of lattice parameter and thermal expansion coefficient of silicon between 300 and 1500 K,” J. Appl. Phys. 56(2), 314–320 (1984).
[CrossRef]

Tokunaga, T.

Y. Amemiya, Y. Tanushi, T. Tokunaga, and S. Yokoyama, “Photoelastic effect in silicon ring resonators,” Jpn. J. Appl. Phys. 47(4), 2910–2914 (2008).
[CrossRef]

Tu, Q.

L. Jin, W. Zhang, H. Zhang, B. Liu, J. Zhao, Q. Tu, G. Kai, and X. Dong, “An embedded FBG sensor for simultaneous measurement of stress and temperature,” IEEE Photon. Technol. Lett. 18(1), 154–156 (2006).
[CrossRef]

Vlasov, Y. A.

Wiaux, V.

Xu, Q.

Q. Xu, B. Schmidt, S. Pradhan, and M. Lipson, “Micrometre-scale silicon electro-optic modulator,” Nature 435(7040), 325–327 (2005).
[CrossRef] [PubMed]

Yokoyama, S.

Y. Amemiya, Y. Tanushi, T. Tokunaga, and S. Yokoyama, “Photoelastic effect in silicon ring resonators,” Jpn. J. Appl. Phys. 47(4), 2910–2914 (2008).
[CrossRef]

Yoshino, T.

Zhang, H.

J. Teng, P. Dumon, W. Bogaerts, H. Zhang, X. Jian, X. Han, M. Zhao, G. Morthier, and R. Baets, “Athermal Silicon-on-insulator ring resonators by overlaying a polymer cladding on narrowed waveguides,” Opt. Express 17(17), 14627–14633 (2009).
[CrossRef] [PubMed]

L. Jin, W. Zhang, H. Zhang, B. Liu, J. Zhao, Q. Tu, G. Kai, and X. Dong, “An embedded FBG sensor for simultaneous measurement of stress and temperature,” IEEE Photon. Technol. Lett. 18(1), 154–156 (2006).
[CrossRef]

Zhang, W.

L. Jin, W. Zhang, H. Zhang, B. Liu, J. Zhao, Q. Tu, G. Kai, and X. Dong, “An embedded FBG sensor for simultaneous measurement of stress and temperature,” IEEE Photon. Technol. Lett. 18(1), 154–156 (2006).
[CrossRef]

Zhang, X.

X. Zhang and X. Li, “Design, fabrication and characterization of optical microring sensors on metal substrates,” J. Micromech. Microeng. 18(1), 015025 (2008).
[CrossRef]

Zhao, J.

L. Jin, W. Zhang, H. Zhang, B. Liu, J. Zhao, Q. Tu, G. Kai, and X. Dong, “An embedded FBG sensor for simultaneous measurement of stress and temperature,” IEEE Photon. Technol. Lett. 18(1), 154–156 (2006).
[CrossRef]

Zhao, M.

Electron. Lett. (1)

M. A. Davis and A. D. Kersey, “Matched-filter interrogation technique for fibre Bragg grating arrays,” Electron. Lett. 31(10), 822–823 (1995).
[CrossRef]

IEEE J. Solid-state Circuits (1)

A. Bakker and J. H. Huijsing, “Micropower CMOS temperature sensor with digital output,” IEEE J. Solid-State Circuits 31(7), 933–937 (1996).
[CrossRef]

IEEE Photon. Technol. Lett. (2)

L. Jin, W. Zhang, H. Zhang, B. Liu, J. Zhao, Q. Tu, G. Kai, and X. Dong, “An embedded FBG sensor for simultaneous measurement of stress and temperature,” IEEE Photon. Technol. Lett. 18(1), 154–156 (2006).
[CrossRef]

H. S. Lee, G. D. Kim, and S. S. Lee, “Temperature compensated glucose sensor exploiting ring resonators,” IEEE Photon. Technol. Lett. 21(16), 1136–1138 (2009).

J. Appl. Phys. (1)

Y. Okada and Y. Tokumaru, “Precise determination of lattice parameter and thermal expansion coefficient of silicon between 300 and 1500 K,” J. Appl. Phys. 56(2), 314–320 (1984).
[CrossRef]

J. Lightwave Technol. (2)

J. Micromech. Microeng. (1)

X. Zhang and X. Li, “Design, fabrication and characterization of optical microring sensors on metal substrates,” J. Micromech. Microeng. 18(1), 015025 (2008).
[CrossRef]

Jpn. J. Appl. Phys. (1)

Y. Amemiya, Y. Tanushi, T. Tokunaga, and S. Yokoyama, “Photoelastic effect in silicon ring resonators,” Jpn. J. Appl. Phys. 47(4), 2910–2914 (2008).
[CrossRef]

Nature (1)

Q. Xu, B. Schmidt, S. Pradhan, and M. Lipson, “Micrometre-scale silicon electro-optic modulator,” Nature 435(7040), 325–327 (2005).
[CrossRef] [PubMed]

Opt. Express (3)

Other (5)

G. D. Kim, H. S. Lee, S. S. Lee, B. T. Lim, H. K. Bae, and W. G. Lee, “Ultra small silicon resonator based temperature sensor,” in OSA's 93rd Annual Meeting, (Optical Society of America, 2009), paper FMJ6.

L. Pavesi, and D. J. Lockwood, Silicon photonics (Springer, 2004).

P. Rabiei, “Electro-optic and thermo-optic polymer micro-ring resonators and their applications,” Ph.D. Thesis, University of Southern California, (2003).

P. Dumon, “Ultra-compact integrated optical filters in silicon-on-insulator by means of wafer-scale technology,” Ph.D. Thesis, University of Ghent (2007).

Fimmwave, Photon Design, http://www.photond.com .

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Configuration of the proposed temperature sensor based on a silicon resonator.

Fig. 5
Fig. 5

Sensitivity of the temperature sensor with the width of the silicon waveguide.

Fig. 2
Fig. 2

Optical spectral response of the fabricated silicon resonator.

Fig. 3
Fig. 3

Optical response of the silicon sensor with the temperature.

Fig. 4
Fig. 4

Resonant wavelength shift with the temperature for different waveguide widths.

Fig. 6
Fig. 6

Temporal response of the fabricated temperature sensor.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

Δ λ = Δ λ L + Δ λ T = α W n e f f n g λ Δ T + σ T n g λ Δ T , where σ T n e f f / T

Metrics