Abstract

This paper shows that customised broadband absorption of electromagnetic waves having arbitrary polarisation is possible by use of lossy cut–wire (CW) metamaterials. These useful features are confirmed by numerical simulations in which different lengths of CW pairs are combined as one periodic metamaterial unit and placed near to a perfect electric conductor (PEC). So far metamaterial absorbers have exhibited some interesting features, which are not available from conventional absorbers, e.g. straightforward adjustment of electromagnetic properties and size reduction. The paper shows how with proper design a broad range of absorber characteristics may be obtained.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. R. Smith, W. J. Padilla, D. C. Vier, S. C. N. Nasser, and S. Schultz, “Composite medium with simultaneously negative permeability and permittivity,” Phys. Rev. Lett. 84(18), 4184–4187 (2000).
    [CrossRef] [PubMed]
  2. C. Caloz and T. Itoh, Electromagnetic metamaterials: transmission line theory and microwave applications (Wiley–IEEE Press, New Jersey, 2006).
  3. K. Busch, G. von Freymann, S. Linden, S. F. Mingaleev, L. Tkeshelashvili, and M. Wegener, “Periodic nanostructures for photonics,” Phys. Rep. 444, 101–202 (2007).
    [CrossRef]
  4. C. M. Soukoulis, J. Zhou, T. Koschny, M. Kafesaki, and E. N. Economou, “The science of negative index materials,” J. Phys. Condens. Matter 20(30), 304217 (2008).
    [CrossRef]
  5. N. Fang, H. Lee, C. Sun, and X. Zhang, “Sub–diffraction–limited optical imaging with a silver superlens,” Science 308, 534–537 (2005).
    [CrossRef] [PubMed]
  6. J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science 312, 1780–1782 (2006).
    [CrossRef] [PubMed]
  7. A. Alø and N. Engheta, “Achieving transparency with plasmonic and metamaterial coatings,” Phys. Rev. E 72, 016623 (2005).
    [CrossRef]
  8. Y. Lai. J. Ng, H. Y. Chen, D. Han, J. Xiao, Z. Zhang, and C. T. Chan, “Illusion optics: the optical transformation of an object into another object,” Phys. Rev. Lett. 102, 253902 (2009).
    [CrossRef] [PubMed]
  9. R. F. Service, “Next wave of metamaterials hopes to fuel the revolution,” Science 327, 138–139 (2010).
    [CrossRef] [PubMed]
  10. A. A. Govyadinov, V. A. Podolskiy, and A. Noginov, “Active metamaterials: sign of refractive index and gain–assisted dispersion management,” Appl. Phys. Lett. 91, 191103 (2007).
    [CrossRef]
  11. X. Luo, T. Yang, Y. Gu, H. Chen, and H. Ma, “Conceal an entrance by means of superscatterer,” Appl. Phys. Lett. 94, 223513 (2009).
    [CrossRef]
  12. D. J. Kern and D. H. Werner, “A genetic algorithm approach to the design of ultra–thin electromagnetic bandgap absorbers,” Microwave Opt. Technol. Lett. 38(1), 61–64 (2003).
    [CrossRef]
  13. H. Wakatsuchi, J. Paul, S. Greedy, and C. Christopoulos, “Contribution of conductive loss to cut–wire metamaterial absorbers,” presented at 2010 Asia–Pacific Radio Science Conference (AP–RASC’10), Toyama, Japan, 22–26 Sept. 2010.
  14. J. Zhou, E. N. Economon, T. Koschny, and C. M. Soukoulis, “Unifying approach to left handed material design,” Opt. Lett. 31(24), 3620–3622 (2006).
    [CrossRef] [PubMed]
  15. H. Guo, N. Liu, L. Fu, H. Schweizer, S. Kaiser, and H. Giessen, “Thickness dependence of the optical properties of split–ring resonator metamaterials,” Phys. Status Solidi B 244(4), 1256–1261 (2007).
    [CrossRef]
  16. G. Dolling, C. Enkrich, M. Wegener, C. M. Soukoulis, and S. Linden, “Low–loss negative–index metamaterial at telecommunication wavelengths,” Opt. Lett. 31(12), 1800–1802 (2006).
    [CrossRef] [PubMed]
  17. H. Tao, C. M. Bingham, A. C. Strikwerda, D. Pilon, D. Shrekenhamer, N. I. Landy, K. Fan, X. Zhang, W. J. Padilla, and R. D. Averitt, “Highly flexible wide angle of incidence terahertz metamaterial absorber: design, fabrication, and characterization,” Phys. Rev. B 78, 241103(2008).
    [CrossRef]
  18. K. Kordás, T. Mustonen, G. Tóth, H. Jantunen, M. Lajunen, C. Soldano, S. Talapatra, S. Kar, R. Vajtai, P. Ajayan, “Inkjet printing of electrically conductive patterns of carbon nanotubes,” Small 2, 1021–1025 (2006).
    [CrossRef] [PubMed]
  19. C. Christopoulos, The transmission–line modeling method: TLM (IEEE Press, New York, 1995).
    [CrossRef] [PubMed]
  20. S. N. Burokur, A. Sellier, B. Kanté, and A. de Lustrac, “Symmetry breaking in metallic cut wire pairs metamaterials for negative refractive index,” Appl. Phys. Lett. 94, 201111 (2009).
    [CrossRef]
  21. J. Zhou, T. Koschny, M. Kafesaki, and C. M. Soukoulis, “Size dependence and convergence of the retrieval parameters of metamaterials,” Photon. and Nanostruct.: Fundam. and Appl. 6(1), 96–101 (2008).
    [CrossRef]
  22. C. L. Holloway, A. Dienstfrey, E. F. Kuester, J. F. O’Hara, A. K. Azad, and A. J. Taylor, “A discussion on the interpretation and characterization of metafilms/metasurfaces: the two–dimensional equivalent of metamaterials,” Metamaterials 3(2), 100–112 (2009).
    [CrossRef]
  23. J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, “Low frequency plasmons in thin–wire structures,” J. Phys. Condens. Matter 10(22), 4785–4809 (1998).
    [CrossRef]
  24. Q. Y. Wen, H. W. Zhang, Y. S. Xie, Q. H. Yang, and Y. L. Liu, “Dual band terahertz metamaterial absorber: design, fabrication, and characterization,” Appl. Phys. Lett. 95, 241111 (2009).
    [CrossRef]
  25. H. Tao, C. M. Bingham, D. Philon, K. Fan, A. C. Strikwerda, D. Shrekenhamer, W. J. Padilla, X. Zhang, and R. D. Averitt, “A dual band terahertz metamaterial absorber,” J. Phys. D: Appl. Phys. 43(22), 225102 (2010).
    [CrossRef]

2010 (2)

R. F. Service, “Next wave of metamaterials hopes to fuel the revolution,” Science 327, 138–139 (2010).
[CrossRef] [PubMed]

H. Tao, C. M. Bingham, D. Philon, K. Fan, A. C. Strikwerda, D. Shrekenhamer, W. J. Padilla, X. Zhang, and R. D. Averitt, “A dual band terahertz metamaterial absorber,” J. Phys. D: Appl. Phys. 43(22), 225102 (2010).
[CrossRef]

2009 (5)

Q. Y. Wen, H. W. Zhang, Y. S. Xie, Q. H. Yang, and Y. L. Liu, “Dual band terahertz metamaterial absorber: design, fabrication, and characterization,” Appl. Phys. Lett. 95, 241111 (2009).
[CrossRef]

X. Luo, T. Yang, Y. Gu, H. Chen, and H. Ma, “Conceal an entrance by means of superscatterer,” Appl. Phys. Lett. 94, 223513 (2009).
[CrossRef]

Y. Lai. J. Ng, H. Y. Chen, D. Han, J. Xiao, Z. Zhang, and C. T. Chan, “Illusion optics: the optical transformation of an object into another object,” Phys. Rev. Lett. 102, 253902 (2009).
[CrossRef] [PubMed]

S. N. Burokur, A. Sellier, B. Kanté, and A. de Lustrac, “Symmetry breaking in metallic cut wire pairs metamaterials for negative refractive index,” Appl. Phys. Lett. 94, 201111 (2009).
[CrossRef]

C. L. Holloway, A. Dienstfrey, E. F. Kuester, J. F. O’Hara, A. K. Azad, and A. J. Taylor, “A discussion on the interpretation and characterization of metafilms/metasurfaces: the two–dimensional equivalent of metamaterials,” Metamaterials 3(2), 100–112 (2009).
[CrossRef]

2008 (2)

J. Zhou, T. Koschny, M. Kafesaki, and C. M. Soukoulis, “Size dependence and convergence of the retrieval parameters of metamaterials,” Photon. and Nanostruct.: Fundam. and Appl. 6(1), 96–101 (2008).
[CrossRef]

C. M. Soukoulis, J. Zhou, T. Koschny, M. Kafesaki, and E. N. Economou, “The science of negative index materials,” J. Phys. Condens. Matter 20(30), 304217 (2008).
[CrossRef]

2007 (3)

K. Busch, G. von Freymann, S. Linden, S. F. Mingaleev, L. Tkeshelashvili, and M. Wegener, “Periodic nanostructures for photonics,” Phys. Rep. 444, 101–202 (2007).
[CrossRef]

A. A. Govyadinov, V. A. Podolskiy, and A. Noginov, “Active metamaterials: sign of refractive index and gain–assisted dispersion management,” Appl. Phys. Lett. 91, 191103 (2007).
[CrossRef]

H. Guo, N. Liu, L. Fu, H. Schweizer, S. Kaiser, and H. Giessen, “Thickness dependence of the optical properties of split–ring resonator metamaterials,” Phys. Status Solidi B 244(4), 1256–1261 (2007).
[CrossRef]

2006 (4)

G. Dolling, C. Enkrich, M. Wegener, C. M. Soukoulis, and S. Linden, “Low–loss negative–index metamaterial at telecommunication wavelengths,” Opt. Lett. 31(12), 1800–1802 (2006).
[CrossRef] [PubMed]

J. Zhou, E. N. Economon, T. Koschny, and C. M. Soukoulis, “Unifying approach to left handed material design,” Opt. Lett. 31(24), 3620–3622 (2006).
[CrossRef] [PubMed]

J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science 312, 1780–1782 (2006).
[CrossRef] [PubMed]

K. Kordás, T. Mustonen, G. Tóth, H. Jantunen, M. Lajunen, C. Soldano, S. Talapatra, S. Kar, R. Vajtai, P. Ajayan, “Inkjet printing of electrically conductive patterns of carbon nanotubes,” Small 2, 1021–1025 (2006).
[CrossRef] [PubMed]

2005 (2)

A. Alø and N. Engheta, “Achieving transparency with plasmonic and metamaterial coatings,” Phys. Rev. E 72, 016623 (2005).
[CrossRef]

N. Fang, H. Lee, C. Sun, and X. Zhang, “Sub–diffraction–limited optical imaging with a silver superlens,” Science 308, 534–537 (2005).
[CrossRef] [PubMed]

2003 (1)

D. J. Kern and D. H. Werner, “A genetic algorithm approach to the design of ultra–thin electromagnetic bandgap absorbers,” Microwave Opt. Technol. Lett. 38(1), 61–64 (2003).
[CrossRef]

2000 (1)

D. R. Smith, W. J. Padilla, D. C. Vier, S. C. N. Nasser, and S. Schultz, “Composite medium with simultaneously negative permeability and permittivity,” Phys. Rev. Lett. 84(18), 4184–4187 (2000).
[CrossRef] [PubMed]

1998 (1)

J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, “Low frequency plasmons in thin–wire structures,” J. Phys. Condens. Matter 10(22), 4785–4809 (1998).
[CrossRef]

Averitt, R. D.

H. Tao, C. M. Bingham, D. Philon, K. Fan, A. C. Strikwerda, D. Shrekenhamer, W. J. Padilla, X. Zhang, and R. D. Averitt, “A dual band terahertz metamaterial absorber,” J. Phys. D: Appl. Phys. 43(22), 225102 (2010).
[CrossRef]

Azad, A. K.

C. L. Holloway, A. Dienstfrey, E. F. Kuester, J. F. O’Hara, A. K. Azad, and A. J. Taylor, “A discussion on the interpretation and characterization of metafilms/metasurfaces: the two–dimensional equivalent of metamaterials,” Metamaterials 3(2), 100–112 (2009).
[CrossRef]

Bingham, C. M.

H. Tao, C. M. Bingham, D. Philon, K. Fan, A. C. Strikwerda, D. Shrekenhamer, W. J. Padilla, X. Zhang, and R. D. Averitt, “A dual band terahertz metamaterial absorber,” J. Phys. D: Appl. Phys. 43(22), 225102 (2010).
[CrossRef]

Burokur, S. N.

S. N. Burokur, A. Sellier, B. Kanté, and A. de Lustrac, “Symmetry breaking in metallic cut wire pairs metamaterials for negative refractive index,” Appl. Phys. Lett. 94, 201111 (2009).
[CrossRef]

Busch, K.

K. Busch, G. von Freymann, S. Linden, S. F. Mingaleev, L. Tkeshelashvili, and M. Wegener, “Periodic nanostructures for photonics,” Phys. Rep. 444, 101–202 (2007).
[CrossRef]

Chen, H.

X. Luo, T. Yang, Y. Gu, H. Chen, and H. Ma, “Conceal an entrance by means of superscatterer,” Appl. Phys. Lett. 94, 223513 (2009).
[CrossRef]

Dienstfrey, A.

C. L. Holloway, A. Dienstfrey, E. F. Kuester, J. F. O’Hara, A. K. Azad, and A. J. Taylor, “A discussion on the interpretation and characterization of metafilms/metasurfaces: the two–dimensional equivalent of metamaterials,” Metamaterials 3(2), 100–112 (2009).
[CrossRef]

Dolling, G.

Economon, E. N.

Economou, E. N.

C. M. Soukoulis, J. Zhou, T. Koschny, M. Kafesaki, and E. N. Economou, “The science of negative index materials,” J. Phys. Condens. Matter 20(30), 304217 (2008).
[CrossRef]

Enkrich, C.

Fan, K.

H. Tao, C. M. Bingham, D. Philon, K. Fan, A. C. Strikwerda, D. Shrekenhamer, W. J. Padilla, X. Zhang, and R. D. Averitt, “A dual band terahertz metamaterial absorber,” J. Phys. D: Appl. Phys. 43(22), 225102 (2010).
[CrossRef]

Fang, N.

N. Fang, H. Lee, C. Sun, and X. Zhang, “Sub–diffraction–limited optical imaging with a silver superlens,” Science 308, 534–537 (2005).
[CrossRef] [PubMed]

Fu, L.

H. Guo, N. Liu, L. Fu, H. Schweizer, S. Kaiser, and H. Giessen, “Thickness dependence of the optical properties of split–ring resonator metamaterials,” Phys. Status Solidi B 244(4), 1256–1261 (2007).
[CrossRef]

Giessen, H.

H. Guo, N. Liu, L. Fu, H. Schweizer, S. Kaiser, and H. Giessen, “Thickness dependence of the optical properties of split–ring resonator metamaterials,” Phys. Status Solidi B 244(4), 1256–1261 (2007).
[CrossRef]

Govyadinov, A. A.

A. A. Govyadinov, V. A. Podolskiy, and A. Noginov, “Active metamaterials: sign of refractive index and gain–assisted dispersion management,” Appl. Phys. Lett. 91, 191103 (2007).
[CrossRef]

Gu, Y.

X. Luo, T. Yang, Y. Gu, H. Chen, and H. Ma, “Conceal an entrance by means of superscatterer,” Appl. Phys. Lett. 94, 223513 (2009).
[CrossRef]

Guo, H.

H. Guo, N. Liu, L. Fu, H. Schweizer, S. Kaiser, and H. Giessen, “Thickness dependence of the optical properties of split–ring resonator metamaterials,” Phys. Status Solidi B 244(4), 1256–1261 (2007).
[CrossRef]

Holden, A. J.

J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, “Low frequency plasmons in thin–wire structures,” J. Phys. Condens. Matter 10(22), 4785–4809 (1998).
[CrossRef]

Holloway, C. L.

C. L. Holloway, A. Dienstfrey, E. F. Kuester, J. F. O’Hara, A. K. Azad, and A. J. Taylor, “A discussion on the interpretation and characterization of metafilms/metasurfaces: the two–dimensional equivalent of metamaterials,” Metamaterials 3(2), 100–112 (2009).
[CrossRef]

Kafesaki, M.

C. M. Soukoulis, J. Zhou, T. Koschny, M. Kafesaki, and E. N. Economou, “The science of negative index materials,” J. Phys. Condens. Matter 20(30), 304217 (2008).
[CrossRef]

J. Zhou, T. Koschny, M. Kafesaki, and C. M. Soukoulis, “Size dependence and convergence of the retrieval parameters of metamaterials,” Photon. and Nanostruct.: Fundam. and Appl. 6(1), 96–101 (2008).
[CrossRef]

Kaiser, S.

H. Guo, N. Liu, L. Fu, H. Schweizer, S. Kaiser, and H. Giessen, “Thickness dependence of the optical properties of split–ring resonator metamaterials,” Phys. Status Solidi B 244(4), 1256–1261 (2007).
[CrossRef]

Kern, D. J.

D. J. Kern and D. H. Werner, “A genetic algorithm approach to the design of ultra–thin electromagnetic bandgap absorbers,” Microwave Opt. Technol. Lett. 38(1), 61–64 (2003).
[CrossRef]

Kordás, K.

K. Kordás, T. Mustonen, G. Tóth, H. Jantunen, M. Lajunen, C. Soldano, S. Talapatra, S. Kar, R. Vajtai, P. Ajayan, “Inkjet printing of electrically conductive patterns of carbon nanotubes,” Small 2, 1021–1025 (2006).
[CrossRef] [PubMed]

Koschny, T.

C. M. Soukoulis, J. Zhou, T. Koschny, M. Kafesaki, and E. N. Economou, “The science of negative index materials,” J. Phys. Condens. Matter 20(30), 304217 (2008).
[CrossRef]

J. Zhou, T. Koschny, M. Kafesaki, and C. M. Soukoulis, “Size dependence and convergence of the retrieval parameters of metamaterials,” Photon. and Nanostruct.: Fundam. and Appl. 6(1), 96–101 (2008).
[CrossRef]

J. Zhou, E. N. Economon, T. Koschny, and C. M. Soukoulis, “Unifying approach to left handed material design,” Opt. Lett. 31(24), 3620–3622 (2006).
[CrossRef] [PubMed]

Kuester, E. F.

C. L. Holloway, A. Dienstfrey, E. F. Kuester, J. F. O’Hara, A. K. Azad, and A. J. Taylor, “A discussion on the interpretation and characterization of metafilms/metasurfaces: the two–dimensional equivalent of metamaterials,” Metamaterials 3(2), 100–112 (2009).
[CrossRef]

Lai, Y.

Y. Lai. J. Ng, H. Y. Chen, D. Han, J. Xiao, Z. Zhang, and C. T. Chan, “Illusion optics: the optical transformation of an object into another object,” Phys. Rev. Lett. 102, 253902 (2009).
[CrossRef] [PubMed]

Lee, H.

N. Fang, H. Lee, C. Sun, and X. Zhang, “Sub–diffraction–limited optical imaging with a silver superlens,” Science 308, 534–537 (2005).
[CrossRef] [PubMed]

Linden, S.

K. Busch, G. von Freymann, S. Linden, S. F. Mingaleev, L. Tkeshelashvili, and M. Wegener, “Periodic nanostructures for photonics,” Phys. Rep. 444, 101–202 (2007).
[CrossRef]

G. Dolling, C. Enkrich, M. Wegener, C. M. Soukoulis, and S. Linden, “Low–loss negative–index metamaterial at telecommunication wavelengths,” Opt. Lett. 31(12), 1800–1802 (2006).
[CrossRef] [PubMed]

Liu, N.

H. Guo, N. Liu, L. Fu, H. Schweizer, S. Kaiser, and H. Giessen, “Thickness dependence of the optical properties of split–ring resonator metamaterials,” Phys. Status Solidi B 244(4), 1256–1261 (2007).
[CrossRef]

Liu, Y. L.

Q. Y. Wen, H. W. Zhang, Y. S. Xie, Q. H. Yang, and Y. L. Liu, “Dual band terahertz metamaterial absorber: design, fabrication, and characterization,” Appl. Phys. Lett. 95, 241111 (2009).
[CrossRef]

Luo, X.

X. Luo, T. Yang, Y. Gu, H. Chen, and H. Ma, “Conceal an entrance by means of superscatterer,” Appl. Phys. Lett. 94, 223513 (2009).
[CrossRef]

Ma, H.

X. Luo, T. Yang, Y. Gu, H. Chen, and H. Ma, “Conceal an entrance by means of superscatterer,” Appl. Phys. Lett. 94, 223513 (2009).
[CrossRef]

Mingaleev, S. F.

K. Busch, G. von Freymann, S. Linden, S. F. Mingaleev, L. Tkeshelashvili, and M. Wegener, “Periodic nanostructures for photonics,” Phys. Rep. 444, 101–202 (2007).
[CrossRef]

Mustonen, T.

K. Kordás, T. Mustonen, G. Tóth, H. Jantunen, M. Lajunen, C. Soldano, S. Talapatra, S. Kar, R. Vajtai, P. Ajayan, “Inkjet printing of electrically conductive patterns of carbon nanotubes,” Small 2, 1021–1025 (2006).
[CrossRef] [PubMed]

Nasser, S. C. N.

D. R. Smith, W. J. Padilla, D. C. Vier, S. C. N. Nasser, and S. Schultz, “Composite medium with simultaneously negative permeability and permittivity,” Phys. Rev. Lett. 84(18), 4184–4187 (2000).
[CrossRef] [PubMed]

Noginov, A.

A. A. Govyadinov, V. A. Podolskiy, and A. Noginov, “Active metamaterials: sign of refractive index and gain–assisted dispersion management,” Appl. Phys. Lett. 91, 191103 (2007).
[CrossRef]

O’Hara, J. F.

C. L. Holloway, A. Dienstfrey, E. F. Kuester, J. F. O’Hara, A. K. Azad, and A. J. Taylor, “A discussion on the interpretation and characterization of metafilms/metasurfaces: the two–dimensional equivalent of metamaterials,” Metamaterials 3(2), 100–112 (2009).
[CrossRef]

Padilla, W. J.

H. Tao, C. M. Bingham, D. Philon, K. Fan, A. C. Strikwerda, D. Shrekenhamer, W. J. Padilla, X. Zhang, and R. D. Averitt, “A dual band terahertz metamaterial absorber,” J. Phys. D: Appl. Phys. 43(22), 225102 (2010).
[CrossRef]

D. R. Smith, W. J. Padilla, D. C. Vier, S. C. N. Nasser, and S. Schultz, “Composite medium with simultaneously negative permeability and permittivity,” Phys. Rev. Lett. 84(18), 4184–4187 (2000).
[CrossRef] [PubMed]

Pendry, J. B.

J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science 312, 1780–1782 (2006).
[CrossRef] [PubMed]

J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, “Low frequency plasmons in thin–wire structures,” J. Phys. Condens. Matter 10(22), 4785–4809 (1998).
[CrossRef]

Philon, D.

H. Tao, C. M. Bingham, D. Philon, K. Fan, A. C. Strikwerda, D. Shrekenhamer, W. J. Padilla, X. Zhang, and R. D. Averitt, “A dual band terahertz metamaterial absorber,” J. Phys. D: Appl. Phys. 43(22), 225102 (2010).
[CrossRef]

Podolskiy, V. A.

A. A. Govyadinov, V. A. Podolskiy, and A. Noginov, “Active metamaterials: sign of refractive index and gain–assisted dispersion management,” Appl. Phys. Lett. 91, 191103 (2007).
[CrossRef]

Robbins, D. J.

J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, “Low frequency plasmons in thin–wire structures,” J. Phys. Condens. Matter 10(22), 4785–4809 (1998).
[CrossRef]

Schultz, S.

D. R. Smith, W. J. Padilla, D. C. Vier, S. C. N. Nasser, and S. Schultz, “Composite medium with simultaneously negative permeability and permittivity,” Phys. Rev. Lett. 84(18), 4184–4187 (2000).
[CrossRef] [PubMed]

Schurig, D.

J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science 312, 1780–1782 (2006).
[CrossRef] [PubMed]

Schweizer, H.

H. Guo, N. Liu, L. Fu, H. Schweizer, S. Kaiser, and H. Giessen, “Thickness dependence of the optical properties of split–ring resonator metamaterials,” Phys. Status Solidi B 244(4), 1256–1261 (2007).
[CrossRef]

Sellier, A.

S. N. Burokur, A. Sellier, B. Kanté, and A. de Lustrac, “Symmetry breaking in metallic cut wire pairs metamaterials for negative refractive index,” Appl. Phys. Lett. 94, 201111 (2009).
[CrossRef]

Service, R. F.

R. F. Service, “Next wave of metamaterials hopes to fuel the revolution,” Science 327, 138–139 (2010).
[CrossRef] [PubMed]

Shrekenhamer, D.

H. Tao, C. M. Bingham, D. Philon, K. Fan, A. C. Strikwerda, D. Shrekenhamer, W. J. Padilla, X. Zhang, and R. D. Averitt, “A dual band terahertz metamaterial absorber,” J. Phys. D: Appl. Phys. 43(22), 225102 (2010).
[CrossRef]

Smith, D. R.

J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science 312, 1780–1782 (2006).
[CrossRef] [PubMed]

D. R. Smith, W. J. Padilla, D. C. Vier, S. C. N. Nasser, and S. Schultz, “Composite medium with simultaneously negative permeability and permittivity,” Phys. Rev. Lett. 84(18), 4184–4187 (2000).
[CrossRef] [PubMed]

Soukoulis, C. M.

C. M. Soukoulis, J. Zhou, T. Koschny, M. Kafesaki, and E. N. Economou, “The science of negative index materials,” J. Phys. Condens. Matter 20(30), 304217 (2008).
[CrossRef]

J. Zhou, T. Koschny, M. Kafesaki, and C. M. Soukoulis, “Size dependence and convergence of the retrieval parameters of metamaterials,” Photon. and Nanostruct.: Fundam. and Appl. 6(1), 96–101 (2008).
[CrossRef]

G. Dolling, C. Enkrich, M. Wegener, C. M. Soukoulis, and S. Linden, “Low–loss negative–index metamaterial at telecommunication wavelengths,” Opt. Lett. 31(12), 1800–1802 (2006).
[CrossRef] [PubMed]

J. Zhou, E. N. Economon, T. Koschny, and C. M. Soukoulis, “Unifying approach to left handed material design,” Opt. Lett. 31(24), 3620–3622 (2006).
[CrossRef] [PubMed]

Stewart, W. J.

J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, “Low frequency plasmons in thin–wire structures,” J. Phys. Condens. Matter 10(22), 4785–4809 (1998).
[CrossRef]

Strikwerda, A. C.

H. Tao, C. M. Bingham, D. Philon, K. Fan, A. C. Strikwerda, D. Shrekenhamer, W. J. Padilla, X. Zhang, and R. D. Averitt, “A dual band terahertz metamaterial absorber,” J. Phys. D: Appl. Phys. 43(22), 225102 (2010).
[CrossRef]

Sun, C.

N. Fang, H. Lee, C. Sun, and X. Zhang, “Sub–diffraction–limited optical imaging with a silver superlens,” Science 308, 534–537 (2005).
[CrossRef] [PubMed]

Tao, H.

H. Tao, C. M. Bingham, D. Philon, K. Fan, A. C. Strikwerda, D. Shrekenhamer, W. J. Padilla, X. Zhang, and R. D. Averitt, “A dual band terahertz metamaterial absorber,” J. Phys. D: Appl. Phys. 43(22), 225102 (2010).
[CrossRef]

Taylor, A. J.

C. L. Holloway, A. Dienstfrey, E. F. Kuester, J. F. O’Hara, A. K. Azad, and A. J. Taylor, “A discussion on the interpretation and characterization of metafilms/metasurfaces: the two–dimensional equivalent of metamaterials,” Metamaterials 3(2), 100–112 (2009).
[CrossRef]

Tkeshelashvili, L.

K. Busch, G. von Freymann, S. Linden, S. F. Mingaleev, L. Tkeshelashvili, and M. Wegener, “Periodic nanostructures for photonics,” Phys. Rep. 444, 101–202 (2007).
[CrossRef]

Vier, D. C.

D. R. Smith, W. J. Padilla, D. C. Vier, S. C. N. Nasser, and S. Schultz, “Composite medium with simultaneously negative permeability and permittivity,” Phys. Rev. Lett. 84(18), 4184–4187 (2000).
[CrossRef] [PubMed]

von Freymann, G.

K. Busch, G. von Freymann, S. Linden, S. F. Mingaleev, L. Tkeshelashvili, and M. Wegener, “Periodic nanostructures for photonics,” Phys. Rep. 444, 101–202 (2007).
[CrossRef]

Wegener, M.

K. Busch, G. von Freymann, S. Linden, S. F. Mingaleev, L. Tkeshelashvili, and M. Wegener, “Periodic nanostructures for photonics,” Phys. Rep. 444, 101–202 (2007).
[CrossRef]

G. Dolling, C. Enkrich, M. Wegener, C. M. Soukoulis, and S. Linden, “Low–loss negative–index metamaterial at telecommunication wavelengths,” Opt. Lett. 31(12), 1800–1802 (2006).
[CrossRef] [PubMed]

Wen, Q. Y.

Q. Y. Wen, H. W. Zhang, Y. S. Xie, Q. H. Yang, and Y. L. Liu, “Dual band terahertz metamaterial absorber: design, fabrication, and characterization,” Appl. Phys. Lett. 95, 241111 (2009).
[CrossRef]

Werner, D. H.

D. J. Kern and D. H. Werner, “A genetic algorithm approach to the design of ultra–thin electromagnetic bandgap absorbers,” Microwave Opt. Technol. Lett. 38(1), 61–64 (2003).
[CrossRef]

Xie, Y. S.

Q. Y. Wen, H. W. Zhang, Y. S. Xie, Q. H. Yang, and Y. L. Liu, “Dual band terahertz metamaterial absorber: design, fabrication, and characterization,” Appl. Phys. Lett. 95, 241111 (2009).
[CrossRef]

Yang, Q. H.

Q. Y. Wen, H. W. Zhang, Y. S. Xie, Q. H. Yang, and Y. L. Liu, “Dual band terahertz metamaterial absorber: design, fabrication, and characterization,” Appl. Phys. Lett. 95, 241111 (2009).
[CrossRef]

Yang, T.

X. Luo, T. Yang, Y. Gu, H. Chen, and H. Ma, “Conceal an entrance by means of superscatterer,” Appl. Phys. Lett. 94, 223513 (2009).
[CrossRef]

Zhang, H. W.

Q. Y. Wen, H. W. Zhang, Y. S. Xie, Q. H. Yang, and Y. L. Liu, “Dual band terahertz metamaterial absorber: design, fabrication, and characterization,” Appl. Phys. Lett. 95, 241111 (2009).
[CrossRef]

Zhang, X.

H. Tao, C. M. Bingham, D. Philon, K. Fan, A. C. Strikwerda, D. Shrekenhamer, W. J. Padilla, X. Zhang, and R. D. Averitt, “A dual band terahertz metamaterial absorber,” J. Phys. D: Appl. Phys. 43(22), 225102 (2010).
[CrossRef]

N. Fang, H. Lee, C. Sun, and X. Zhang, “Sub–diffraction–limited optical imaging with a silver superlens,” Science 308, 534–537 (2005).
[CrossRef] [PubMed]

Zhou, J.

C. M. Soukoulis, J. Zhou, T. Koschny, M. Kafesaki, and E. N. Economou, “The science of negative index materials,” J. Phys. Condens. Matter 20(30), 304217 (2008).
[CrossRef]

J. Zhou, T. Koschny, M. Kafesaki, and C. M. Soukoulis, “Size dependence and convergence of the retrieval parameters of metamaterials,” Photon. and Nanostruct.: Fundam. and Appl. 6(1), 96–101 (2008).
[CrossRef]

J. Zhou, E. N. Economon, T. Koschny, and C. M. Soukoulis, “Unifying approach to left handed material design,” Opt. Lett. 31(24), 3620–3622 (2006).
[CrossRef] [PubMed]

Appl. Phys. Lett. (4)

A. A. Govyadinov, V. A. Podolskiy, and A. Noginov, “Active metamaterials: sign of refractive index and gain–assisted dispersion management,” Appl. Phys. Lett. 91, 191103 (2007).
[CrossRef]

X. Luo, T. Yang, Y. Gu, H. Chen, and H. Ma, “Conceal an entrance by means of superscatterer,” Appl. Phys. Lett. 94, 223513 (2009).
[CrossRef]

S. N. Burokur, A. Sellier, B. Kanté, and A. de Lustrac, “Symmetry breaking in metallic cut wire pairs metamaterials for negative refractive index,” Appl. Phys. Lett. 94, 201111 (2009).
[CrossRef]

Q. Y. Wen, H. W. Zhang, Y. S. Xie, Q. H. Yang, and Y. L. Liu, “Dual band terahertz metamaterial absorber: design, fabrication, and characterization,” Appl. Phys. Lett. 95, 241111 (2009).
[CrossRef]

J. Phys. Condens. Matter (2)

J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, “Low frequency plasmons in thin–wire structures,” J. Phys. Condens. Matter 10(22), 4785–4809 (1998).
[CrossRef]

C. M. Soukoulis, J. Zhou, T. Koschny, M. Kafesaki, and E. N. Economou, “The science of negative index materials,” J. Phys. Condens. Matter 20(30), 304217 (2008).
[CrossRef]

J. Phys. D: Appl. Phys. (1)

H. Tao, C. M. Bingham, D. Philon, K. Fan, A. C. Strikwerda, D. Shrekenhamer, W. J. Padilla, X. Zhang, and R. D. Averitt, “A dual band terahertz metamaterial absorber,” J. Phys. D: Appl. Phys. 43(22), 225102 (2010).
[CrossRef]

Metamaterials (1)

C. L. Holloway, A. Dienstfrey, E. F. Kuester, J. F. O’Hara, A. K. Azad, and A. J. Taylor, “A discussion on the interpretation and characterization of metafilms/metasurfaces: the two–dimensional equivalent of metamaterials,” Metamaterials 3(2), 100–112 (2009).
[CrossRef]

Microwave Opt. Technol. Lett. (1)

D. J. Kern and D. H. Werner, “A genetic algorithm approach to the design of ultra–thin electromagnetic bandgap absorbers,” Microwave Opt. Technol. Lett. 38(1), 61–64 (2003).
[CrossRef]

Opt. Lett. (2)

Photon. and Nanostruct.: Fundam. and Appl. (1)

J. Zhou, T. Koschny, M. Kafesaki, and C. M. Soukoulis, “Size dependence and convergence of the retrieval parameters of metamaterials,” Photon. and Nanostruct.: Fundam. and Appl. 6(1), 96–101 (2008).
[CrossRef]

Phys. Rep. (1)

K. Busch, G. von Freymann, S. Linden, S. F. Mingaleev, L. Tkeshelashvili, and M. Wegener, “Periodic nanostructures for photonics,” Phys. Rep. 444, 101–202 (2007).
[CrossRef]

Phys. Rev. E (1)

A. Alø and N. Engheta, “Achieving transparency with plasmonic and metamaterial coatings,” Phys. Rev. E 72, 016623 (2005).
[CrossRef]

Phys. Rev. Lett. (2)

Y. Lai. J. Ng, H. Y. Chen, D. Han, J. Xiao, Z. Zhang, and C. T. Chan, “Illusion optics: the optical transformation of an object into another object,” Phys. Rev. Lett. 102, 253902 (2009).
[CrossRef] [PubMed]

D. R. Smith, W. J. Padilla, D. C. Vier, S. C. N. Nasser, and S. Schultz, “Composite medium with simultaneously negative permeability and permittivity,” Phys. Rev. Lett. 84(18), 4184–4187 (2000).
[CrossRef] [PubMed]

Phys. Status Solidi B (1)

H. Guo, N. Liu, L. Fu, H. Schweizer, S. Kaiser, and H. Giessen, “Thickness dependence of the optical properties of split–ring resonator metamaterials,” Phys. Status Solidi B 244(4), 1256–1261 (2007).
[CrossRef]

Science (3)

N. Fang, H. Lee, C. Sun, and X. Zhang, “Sub–diffraction–limited optical imaging with a silver superlens,” Science 308, 534–537 (2005).
[CrossRef] [PubMed]

J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science 312, 1780–1782 (2006).
[CrossRef] [PubMed]

R. F. Service, “Next wave of metamaterials hopes to fuel the revolution,” Science 327, 138–139 (2010).
[CrossRef] [PubMed]

Small (1)

K. Kordás, T. Mustonen, G. Tóth, H. Jantunen, M. Lajunen, C. Soldano, S. Talapatra, S. Kar, R. Vajtai, P. Ajayan, “Inkjet printing of electrically conductive patterns of carbon nanotubes,” Small 2, 1021–1025 (2006).
[CrossRef] [PubMed]

Other (4)

C. Christopoulos, The transmission–line modeling method: TLM (IEEE Press, New York, 1995).
[CrossRef] [PubMed]

C. Caloz and T. Itoh, Electromagnetic metamaterials: transmission line theory and microwave applications (Wiley–IEEE Press, New Jersey, 2006).

H. Wakatsuchi, J. Paul, S. Greedy, and C. Christopoulos, “Contribution of conductive loss to cut–wire metamaterial absorbers,” presented at 2010 Asia–Pacific Radio Science Conference (AP–RASC’10), Toyama, Japan, 22–26 Sept. 2010.

H. Tao, C. M. Bingham, A. C. Strikwerda, D. Pilon, D. Shrekenhamer, N. I. Landy, K. Fan, X. Zhang, W. J. Padilla, and R. D. Averitt, “Highly flexible wide angle of incidence terahertz metamaterial absorber: design, fabrication, and characterization,” Phys. Rev. B 78, 241103(2008).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

(Color online) Default structures of simulated CW metamaterials and their properties. Magnitudes of scattering parameters of (a) lossless single CW and (b) lossless paired CW. (c) Electric field and (d) conduction current of the magnetic resonance frequency (24.89 GHz). (e) Electric field and (f) conduction current of the electric resonance frequency (26.71 GHz).

Fig. 2
Fig. 2

(Color online) Absorptances of single CW having constant resistance values. (a) Details of the simulated single CW metamaterial. (b) Absorptance of the single CW composed of only lossy metal. In the inset the absorptance dependence on R at 26.59 GHz is illustrated. (c) The conduction current I and the dissipated power P (= IR2) in the CW with various values of R. The inset describes an equivalent circuit for the single CW, where R, L and C represent the sheet resistance, the total inductance and the total capacitance, respectively. (d) – (f) Absorptances of the single CW composed of both lossless metal part and lossy metal part. The lossy metal parts were restricted to both edges (0.9 mm per each edge and 1.8 mm in total) in (d) and one edge in (e) (1.8 mm) and in (f) (1.2 mm).

Fig. 3
Fig. 3

(Color online) Absorptance of different lengths of single CWs (a) and absorptance of structure composed of part or all of the CWs (b). The lengths and the resistances in the legends represent the CW length and R, respectively.

Fig. 4
Fig. 4

(Color online) Characteristics of paired CW. Geometrical asymmetry was introduced as is described in (a). (b) |S11| of the lossless paired CW having the various geometrical offset length dx. The inset shows |S21| of each structure. (c) Absorptance of the symmetrically paired CW with various R. (d) Absorptances of the paired CW with various dx. From (b) to (d) dx is expressed in each legend. In these figures same values of R are used for the front CW and the back CW. In (e) to (g) various combinations of R are applied for both CWs. (e), (f) and (g) show the absorptances of no offset at 26.35 GHz, 1.2 mm offset at 26.23 GHz and 2.4 mm offset at 27.20 GHz, respectively. The dots in the figures represent the calculated sheet resistance patterns and the intermediate values were estimated by using spline interpolation.

Fig. 5
Fig. 5

(Color online) Absorptance of single CW metamaterial placed on a PEC wall. (a) shows absorptances of different lengths of CWs. The inset describes the simulated situation. In (b) another pair of the CW used in (a) is placed orthogonally to the first, as is illustrated in the inset. In (c) part or all of the CW pairs are combined as one metamaterial unit. The inset shows the structure having all the CW pairs. (d) shows that use of two CW exhibits a double absorptance peak close to the individual peaks. (e) illustrates absorptance of three CW pairs (5.1, 3.9 and 3.3 mm). Modification of the resistance value used for the 3.3 mm CW leads to a triple absorptance peak. The resistance values used for the 3.3 mm CW are shown in the legend. The other resistance values are the same as those of (b). In (f) absorptance of two CW pairs of 5.1 and 3.9 mm is improved by use of adjusted resistance values. In addition, the use of a lossless 4.5 mm CW pair exhibits a strong reduction of the absorptance at about 30 GHz.

Tables (1)

Tables Icon

Table 1 Absorptance peaks of paired CW with various x axis offset dx.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

Γ = R 0 Z 0 R 0 + Z 0 and T = 2 R 0 R 0 + Z 0 ,

Metrics