Abstract

This paper shows that customised broadband absorption of electromagnetic waves having arbitrary polarisation is possible by use of lossy cut–wire (CW) metamaterials. These useful features are confirmed by numerical simulations in which different lengths of CW pairs are combined as one periodic metamaterial unit and placed near to a perfect electric conductor (PEC). So far metamaterial absorbers have exhibited some interesting features, which are not available from conventional absorbers, e.g. straightforward adjustment of electromagnetic properties and size reduction. The paper shows how with proper design a broad range of absorber characteristics may be obtained.

© 2010 Optical Society of America

PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. R. Smith, W. J. Padilla, D. C. Vier, S. C. N. Nasser, and S. Schultz, “Composite medium with simultaneously negative permeability and permittivity,” Phys. Rev. Lett. 84(18), 4184–4187 (2000).
    [CrossRef]
  2. C. Caloz and T. Itoh, Electromagnetic metamaterials: transmission line theory and microwave applications (Wiley–IEEE Press, New Jersey, 2006).
  3. K. Busch, G. von Freymann, S. Linden, S. F. Mingaleev, L. Tkeshelashvili, and M. Wegener, “Periodic nanostructures for photonics,” Phys. Rep. 444, 101–202 (2007).
    [CrossRef]
  4. C. M. Soukoulis, J. Zhou, T. Koschny, M. Kafesaki, and E. N. Economou, “The science of negative index materials,” J. Phys. Condens. Matter 20(30), 304217 (2008).
    [CrossRef]
  5. N. Fang, H. Lee, C. Sun, and X. Zhang, “Sub–diffraction–limited optical imaging with a silver superlens,” Science 308, 534–537 (2005).
    [CrossRef]
  6. J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science 312, 1780–1782 (2006).
    [CrossRef]
  7. A. Alø and N. Engheta, “Achieving transparency with plasmonic and metamaterial coatings,” Phys. Rev. E 72, 016623 (2005).
    [CrossRef]
  8. Y. Lai. J. Ng, H. Y. Chen, D. Han, J. Xiao, Z. Zhang, and C. T. Chan, “Illusion optics: the optical transformation of an object into another object,” Phys. Rev. Lett. 102, 253902 (2009).
    [CrossRef]
  9. R. F. Service, “Next wave of metamaterials hopes to fuel the revolution,” Science 327, 138–139 (2010).
    [CrossRef]
  10. A. A. Govyadinov, V. A. Podolskiy, and A. Noginov, “Active metamaterials: sign of refractive index and gain–assisted dispersion management,” Appl. Phys. Lett. 91, 191103 (2007).
    [CrossRef]
  11. X. Luo, T. Yang, Y. Gu, H. Chen, and H. Ma, “Conceal an entrance by means of superscatterer,” Appl. Phys. Lett. 94, 223513 (2009).
    [CrossRef]
  12. D. J. Kern and D. H. Werner, “A genetic algorithm approach to the design of ultra–thin electromagnetic bandgap absorbers,” Microwave Opt. Technol. Lett. 38(1), 61–64 (2003).
    [CrossRef]
  13. H. Wakatsuchi, J. Paul, S. Greedy, and C. Christopoulos, “Contribution of conductive loss to cut–wire metamaterial absorbers,” presented at 2010 Asia–Pacific Radio Science Conference (AP–RASC’10), Toyama, Japan, 22–26 Sept. 2010.
  14. J. Zhou, E. N. Economon, T. Koschny, and C. M. Soukoulis, “Unifying approach to left handed material design,” Opt. Lett. 31(24), 3620–3622 (2006).
    [CrossRef]
  15. H. Guo, N. Liu, L. Fu, H. Schweizer, S. Kaiser, and H. Giessen, “Thickness dependence of the optical properties of split–ring resonator metamaterials,” Phys. Status Solidi B 244(4), 1256–1261 (2007).
    [CrossRef]
  16. G. Dolling, C. Enkrich, M. Wegener, C. M. Soukoulis, and S. Linden, “Low–loss negative–index metamaterial at telecommunication wavelengths,” Opt. Lett. 31(12), 1800–1802 (2006).
    [CrossRef]
  17. H. Tao, C. M. Bingham, A. C. Strikwerda, D. Pilon, D. Shrekenhamer, N. I. Landy, K. Fan, X. Zhang, W. J. Padilla, and R. D. Averitt, “Highly flexible wide angle of incidence terahertz metamaterial absorber: design, fabrication, and characterization,” Phys. Rev. B 78, 241103(2008).
  18. K. Kordás, T. Mustonen, G. Tóth, H. Jantunen, M. Lajunen, C. Soldano, S. Talapatra, S. Kar, R. Vajtai, P. Ajayan, “Inkjet printing of electrically conductive patterns of carbon nanotubes,” Small 2, 1021–1025 (2006).
    [CrossRef]
  19. C. Christopoulos, The transmission–line modeling method: TLM (IEEE Press, New York, 1995).
  20. S. N. Burokur, A. Sellier, B. Kanté, and A. de Lustrac, “Symmetry breaking in metallic cut wire pairs metamaterials for negative refractive index,” Appl. Phys. Lett. 94, 201111 (2009).
    [CrossRef]
  21. J. Zhou, T. Koschny, M. Kafesaki, and C. M. Soukoulis, “Size dependence and convergence of the retrieval parameters of metamaterials,” Photon. and Nanostruct.: Fundam. and Appl. 6(1), 96–101 (2008).
    [CrossRef]
  22. C. L. Holloway, A. Dienstfrey, E. F. Kuester, J. F. O’Hara, A. K. Azad, and A. J. Taylor, “A discussion on the interpretation and characterization of metafilms/metasurfaces: the two–dimensional equivalent of metamaterials,” Metamaterials 3(2), 100–112 (2009).
    [CrossRef]
  23. J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, “Low frequency plasmons in thin–wire structures,” J. Phys. Condens. Matter 10(22), 4785–4809 (1998).
    [CrossRef]
  24. Q. Y. Wen, H. W. Zhang, Y. S. Xie, Q. H. Yang, and Y. L. Liu, “Dual band terahertz metamaterial absorber: design, fabrication, and characterization,” Appl. Phys. Lett. 95, 241111 (2009).
    [CrossRef]
  25. H. Tao, C. M. Bingham, D. Philon, K. Fan, A. C. Strikwerda, D. Shrekenhamer, W. J. Padilla, X. Zhang, and R. D. Averitt, “A dual band terahertz metamaterial absorber,” J. Phys. D: Appl. Phys. 43(22), 225102 (2010).
    [CrossRef]

2010 (2)

R. F. Service, “Next wave of metamaterials hopes to fuel the revolution,” Science 327, 138–139 (2010).
[CrossRef]

H. Tao, C. M. Bingham, D. Philon, K. Fan, A. C. Strikwerda, D. Shrekenhamer, W. J. Padilla, X. Zhang, and R. D. Averitt, “A dual band terahertz metamaterial absorber,” J. Phys. D: Appl. Phys. 43(22), 225102 (2010).
[CrossRef]

2009 (5)

Q. Y. Wen, H. W. Zhang, Y. S. Xie, Q. H. Yang, and Y. L. Liu, “Dual band terahertz metamaterial absorber: design, fabrication, and characterization,” Appl. Phys. Lett. 95, 241111 (2009).
[CrossRef]

X. Luo, T. Yang, Y. Gu, H. Chen, and H. Ma, “Conceal an entrance by means of superscatterer,” Appl. Phys. Lett. 94, 223513 (2009).
[CrossRef]

Y. Lai. J. Ng, H. Y. Chen, D. Han, J. Xiao, Z. Zhang, and C. T. Chan, “Illusion optics: the optical transformation of an object into another object,” Phys. Rev. Lett. 102, 253902 (2009).
[CrossRef]

S. N. Burokur, A. Sellier, B. Kanté, and A. de Lustrac, “Symmetry breaking in metallic cut wire pairs metamaterials for negative refractive index,” Appl. Phys. Lett. 94, 201111 (2009).
[CrossRef]

C. L. Holloway, A. Dienstfrey, E. F. Kuester, J. F. O’Hara, A. K. Azad, and A. J. Taylor, “A discussion on the interpretation and characterization of metafilms/metasurfaces: the two–dimensional equivalent of metamaterials,” Metamaterials 3(2), 100–112 (2009).
[CrossRef]

2008 (2)

J. Zhou, T. Koschny, M. Kafesaki, and C. M. Soukoulis, “Size dependence and convergence of the retrieval parameters of metamaterials,” Photon. and Nanostruct.: Fundam. and Appl. 6(1), 96–101 (2008).
[CrossRef]

C. M. Soukoulis, J. Zhou, T. Koschny, M. Kafesaki, and E. N. Economou, “The science of negative index materials,” J. Phys. Condens. Matter 20(30), 304217 (2008).
[CrossRef]

2007 (3)

K. Busch, G. von Freymann, S. Linden, S. F. Mingaleev, L. Tkeshelashvili, and M. Wegener, “Periodic nanostructures for photonics,” Phys. Rep. 444, 101–202 (2007).
[CrossRef]

A. A. Govyadinov, V. A. Podolskiy, and A. Noginov, “Active metamaterials: sign of refractive index and gain–assisted dispersion management,” Appl. Phys. Lett. 91, 191103 (2007).
[CrossRef]

H. Guo, N. Liu, L. Fu, H. Schweizer, S. Kaiser, and H. Giessen, “Thickness dependence of the optical properties of split–ring resonator metamaterials,” Phys. Status Solidi B 244(4), 1256–1261 (2007).
[CrossRef]

2006 (4)

G. Dolling, C. Enkrich, M. Wegener, C. M. Soukoulis, and S. Linden, “Low–loss negative–index metamaterial at telecommunication wavelengths,” Opt. Lett. 31(12), 1800–1802 (2006).
[CrossRef]

J. Zhou, E. N. Economon, T. Koschny, and C. M. Soukoulis, “Unifying approach to left handed material design,” Opt. Lett. 31(24), 3620–3622 (2006).
[CrossRef]

J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science 312, 1780–1782 (2006).
[CrossRef]

K. Kordás, T. Mustonen, G. Tóth, H. Jantunen, M. Lajunen, C. Soldano, S. Talapatra, S. Kar, R. Vajtai, P. Ajayan, “Inkjet printing of electrically conductive patterns of carbon nanotubes,” Small 2, 1021–1025 (2006).
[CrossRef]

2005 (2)

A. Alø and N. Engheta, “Achieving transparency with plasmonic and metamaterial coatings,” Phys. Rev. E 72, 016623 (2005).
[CrossRef]

N. Fang, H. Lee, C. Sun, and X. Zhang, “Sub–diffraction–limited optical imaging with a silver superlens,” Science 308, 534–537 (2005).
[CrossRef]

2003 (1)

D. J. Kern and D. H. Werner, “A genetic algorithm approach to the design of ultra–thin electromagnetic bandgap absorbers,” Microwave Opt. Technol. Lett. 38(1), 61–64 (2003).
[CrossRef]

2000 (1)

D. R. Smith, W. J. Padilla, D. C. Vier, S. C. N. Nasser, and S. Schultz, “Composite medium with simultaneously negative permeability and permittivity,” Phys. Rev. Lett. 84(18), 4184–4187 (2000).
[CrossRef]

1998 (1)

J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, “Low frequency plasmons in thin–wire structures,” J. Phys. Condens. Matter 10(22), 4785–4809 (1998).
[CrossRef]

Averitt, R. D.

H. Tao, C. M. Bingham, D. Philon, K. Fan, A. C. Strikwerda, D. Shrekenhamer, W. J. Padilla, X. Zhang, and R. D. Averitt, “A dual band terahertz metamaterial absorber,” J. Phys. D: Appl. Phys. 43(22), 225102 (2010).
[CrossRef]

Azad, A. K.

C. L. Holloway, A. Dienstfrey, E. F. Kuester, J. F. O’Hara, A. K. Azad, and A. J. Taylor, “A discussion on the interpretation and characterization of metafilms/metasurfaces: the two–dimensional equivalent of metamaterials,” Metamaterials 3(2), 100–112 (2009).
[CrossRef]

Bingham, C. M.

H. Tao, C. M. Bingham, D. Philon, K. Fan, A. C. Strikwerda, D. Shrekenhamer, W. J. Padilla, X. Zhang, and R. D. Averitt, “A dual band terahertz metamaterial absorber,” J. Phys. D: Appl. Phys. 43(22), 225102 (2010).
[CrossRef]

Burokur, S. N.

S. N. Burokur, A. Sellier, B. Kanté, and A. de Lustrac, “Symmetry breaking in metallic cut wire pairs metamaterials for negative refractive index,” Appl. Phys. Lett. 94, 201111 (2009).
[CrossRef]

Busch, K.

K. Busch, G. von Freymann, S. Linden, S. F. Mingaleev, L. Tkeshelashvili, and M. Wegener, “Periodic nanostructures for photonics,” Phys. Rep. 444, 101–202 (2007).
[CrossRef]

Chen, H.

X. Luo, T. Yang, Y. Gu, H. Chen, and H. Ma, “Conceal an entrance by means of superscatterer,” Appl. Phys. Lett. 94, 223513 (2009).
[CrossRef]

Dienstfrey, A.

C. L. Holloway, A. Dienstfrey, E. F. Kuester, J. F. O’Hara, A. K. Azad, and A. J. Taylor, “A discussion on the interpretation and characterization of metafilms/metasurfaces: the two–dimensional equivalent of metamaterials,” Metamaterials 3(2), 100–112 (2009).
[CrossRef]

Dolling, G.

Economon, E. N.

Economou, E. N.

C. M. Soukoulis, J. Zhou, T. Koschny, M. Kafesaki, and E. N. Economou, “The science of negative index materials,” J. Phys. Condens. Matter 20(30), 304217 (2008).
[CrossRef]

Enkrich, C.

Fan, K.

H. Tao, C. M. Bingham, D. Philon, K. Fan, A. C. Strikwerda, D. Shrekenhamer, W. J. Padilla, X. Zhang, and R. D. Averitt, “A dual band terahertz metamaterial absorber,” J. Phys. D: Appl. Phys. 43(22), 225102 (2010).
[CrossRef]

Fang, N.

N. Fang, H. Lee, C. Sun, and X. Zhang, “Sub–diffraction–limited optical imaging with a silver superlens,” Science 308, 534–537 (2005).
[CrossRef]

Fu, L.

H. Guo, N. Liu, L. Fu, H. Schweizer, S. Kaiser, and H. Giessen, “Thickness dependence of the optical properties of split–ring resonator metamaterials,” Phys. Status Solidi B 244(4), 1256–1261 (2007).
[CrossRef]

Giessen, H.

H. Guo, N. Liu, L. Fu, H. Schweizer, S. Kaiser, and H. Giessen, “Thickness dependence of the optical properties of split–ring resonator metamaterials,” Phys. Status Solidi B 244(4), 1256–1261 (2007).
[CrossRef]

Govyadinov, A. A.

A. A. Govyadinov, V. A. Podolskiy, and A. Noginov, “Active metamaterials: sign of refractive index and gain–assisted dispersion management,” Appl. Phys. Lett. 91, 191103 (2007).
[CrossRef]

Gu, Y.

X. Luo, T. Yang, Y. Gu, H. Chen, and H. Ma, “Conceal an entrance by means of superscatterer,” Appl. Phys. Lett. 94, 223513 (2009).
[CrossRef]

Guo, H.

H. Guo, N. Liu, L. Fu, H. Schweizer, S. Kaiser, and H. Giessen, “Thickness dependence of the optical properties of split–ring resonator metamaterials,” Phys. Status Solidi B 244(4), 1256–1261 (2007).
[CrossRef]

Holden, A. J.

J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, “Low frequency plasmons in thin–wire structures,” J. Phys. Condens. Matter 10(22), 4785–4809 (1998).
[CrossRef]

Holloway, C. L.

C. L. Holloway, A. Dienstfrey, E. F. Kuester, J. F. O’Hara, A. K. Azad, and A. J. Taylor, “A discussion on the interpretation and characterization of metafilms/metasurfaces: the two–dimensional equivalent of metamaterials,” Metamaterials 3(2), 100–112 (2009).
[CrossRef]

Kafesaki, M.

C. M. Soukoulis, J. Zhou, T. Koschny, M. Kafesaki, and E. N. Economou, “The science of negative index materials,” J. Phys. Condens. Matter 20(30), 304217 (2008).
[CrossRef]

J. Zhou, T. Koschny, M. Kafesaki, and C. M. Soukoulis, “Size dependence and convergence of the retrieval parameters of metamaterials,” Photon. and Nanostruct.: Fundam. and Appl. 6(1), 96–101 (2008).
[CrossRef]

Kaiser, S.

H. Guo, N. Liu, L. Fu, H. Schweizer, S. Kaiser, and H. Giessen, “Thickness dependence of the optical properties of split–ring resonator metamaterials,” Phys. Status Solidi B 244(4), 1256–1261 (2007).
[CrossRef]

Kern, D. J.

D. J. Kern and D. H. Werner, “A genetic algorithm approach to the design of ultra–thin electromagnetic bandgap absorbers,” Microwave Opt. Technol. Lett. 38(1), 61–64 (2003).
[CrossRef]

Kordás, K.

K. Kordás, T. Mustonen, G. Tóth, H. Jantunen, M. Lajunen, C. Soldano, S. Talapatra, S. Kar, R. Vajtai, P. Ajayan, “Inkjet printing of electrically conductive patterns of carbon nanotubes,” Small 2, 1021–1025 (2006).
[CrossRef]

Koschny, T.

C. M. Soukoulis, J. Zhou, T. Koschny, M. Kafesaki, and E. N. Economou, “The science of negative index materials,” J. Phys. Condens. Matter 20(30), 304217 (2008).
[CrossRef]

J. Zhou, T. Koschny, M. Kafesaki, and C. M. Soukoulis, “Size dependence and convergence of the retrieval parameters of metamaterials,” Photon. and Nanostruct.: Fundam. and Appl. 6(1), 96–101 (2008).
[CrossRef]

J. Zhou, E. N. Economon, T. Koschny, and C. M. Soukoulis, “Unifying approach to left handed material design,” Opt. Lett. 31(24), 3620–3622 (2006).
[CrossRef]

Kuester, E. F.

C. L. Holloway, A. Dienstfrey, E. F. Kuester, J. F. O’Hara, A. K. Azad, and A. J. Taylor, “A discussion on the interpretation and characterization of metafilms/metasurfaces: the two–dimensional equivalent of metamaterials,” Metamaterials 3(2), 100–112 (2009).
[CrossRef]

Lai, Y.

Y. Lai. J. Ng, H. Y. Chen, D. Han, J. Xiao, Z. Zhang, and C. T. Chan, “Illusion optics: the optical transformation of an object into another object,” Phys. Rev. Lett. 102, 253902 (2009).
[CrossRef]

Lee, H.

N. Fang, H. Lee, C. Sun, and X. Zhang, “Sub–diffraction–limited optical imaging with a silver superlens,” Science 308, 534–537 (2005).
[CrossRef]

Linden, S.

K. Busch, G. von Freymann, S. Linden, S. F. Mingaleev, L. Tkeshelashvili, and M. Wegener, “Periodic nanostructures for photonics,” Phys. Rep. 444, 101–202 (2007).
[CrossRef]

G. Dolling, C. Enkrich, M. Wegener, C. M. Soukoulis, and S. Linden, “Low–loss negative–index metamaterial at telecommunication wavelengths,” Opt. Lett. 31(12), 1800–1802 (2006).
[CrossRef]

Liu, N.

H. Guo, N. Liu, L. Fu, H. Schweizer, S. Kaiser, and H. Giessen, “Thickness dependence of the optical properties of split–ring resonator metamaterials,” Phys. Status Solidi B 244(4), 1256–1261 (2007).
[CrossRef]

Liu, Y. L.

Q. Y. Wen, H. W. Zhang, Y. S. Xie, Q. H. Yang, and Y. L. Liu, “Dual band terahertz metamaterial absorber: design, fabrication, and characterization,” Appl. Phys. Lett. 95, 241111 (2009).
[CrossRef]

Luo, X.

X. Luo, T. Yang, Y. Gu, H. Chen, and H. Ma, “Conceal an entrance by means of superscatterer,” Appl. Phys. Lett. 94, 223513 (2009).
[CrossRef]

Ma, H.

X. Luo, T. Yang, Y. Gu, H. Chen, and H. Ma, “Conceal an entrance by means of superscatterer,” Appl. Phys. Lett. 94, 223513 (2009).
[CrossRef]

Mingaleev, S. F.

K. Busch, G. von Freymann, S. Linden, S. F. Mingaleev, L. Tkeshelashvili, and M. Wegener, “Periodic nanostructures for photonics,” Phys. Rep. 444, 101–202 (2007).
[CrossRef]

Mustonen, T.

K. Kordás, T. Mustonen, G. Tóth, H. Jantunen, M. Lajunen, C. Soldano, S. Talapatra, S. Kar, R. Vajtai, P. Ajayan, “Inkjet printing of electrically conductive patterns of carbon nanotubes,” Small 2, 1021–1025 (2006).
[CrossRef]

Nasser, S. C. N.

D. R. Smith, W. J. Padilla, D. C. Vier, S. C. N. Nasser, and S. Schultz, “Composite medium with simultaneously negative permeability and permittivity,” Phys. Rev. Lett. 84(18), 4184–4187 (2000).
[CrossRef]

Noginov, A.

A. A. Govyadinov, V. A. Podolskiy, and A. Noginov, “Active metamaterials: sign of refractive index and gain–assisted dispersion management,” Appl. Phys. Lett. 91, 191103 (2007).
[CrossRef]

O’Hara, J. F.

C. L. Holloway, A. Dienstfrey, E. F. Kuester, J. F. O’Hara, A. K. Azad, and A. J. Taylor, “A discussion on the interpretation and characterization of metafilms/metasurfaces: the two–dimensional equivalent of metamaterials,” Metamaterials 3(2), 100–112 (2009).
[CrossRef]

Padilla, W. J.

H. Tao, C. M. Bingham, D. Philon, K. Fan, A. C. Strikwerda, D. Shrekenhamer, W. J. Padilla, X. Zhang, and R. D. Averitt, “A dual band terahertz metamaterial absorber,” J. Phys. D: Appl. Phys. 43(22), 225102 (2010).
[CrossRef]

D. R. Smith, W. J. Padilla, D. C. Vier, S. C. N. Nasser, and S. Schultz, “Composite medium with simultaneously negative permeability and permittivity,” Phys. Rev. Lett. 84(18), 4184–4187 (2000).
[CrossRef]

Pendry, J. B.

J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science 312, 1780–1782 (2006).
[CrossRef]

J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, “Low frequency plasmons in thin–wire structures,” J. Phys. Condens. Matter 10(22), 4785–4809 (1998).
[CrossRef]

Philon, D.

H. Tao, C. M. Bingham, D. Philon, K. Fan, A. C. Strikwerda, D. Shrekenhamer, W. J. Padilla, X. Zhang, and R. D. Averitt, “A dual band terahertz metamaterial absorber,” J. Phys. D: Appl. Phys. 43(22), 225102 (2010).
[CrossRef]

Podolskiy, V. A.

A. A. Govyadinov, V. A. Podolskiy, and A. Noginov, “Active metamaterials: sign of refractive index and gain–assisted dispersion management,” Appl. Phys. Lett. 91, 191103 (2007).
[CrossRef]

Robbins, D. J.

J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, “Low frequency plasmons in thin–wire structures,” J. Phys. Condens. Matter 10(22), 4785–4809 (1998).
[CrossRef]

Schultz, S.

D. R. Smith, W. J. Padilla, D. C. Vier, S. C. N. Nasser, and S. Schultz, “Composite medium with simultaneously negative permeability and permittivity,” Phys. Rev. Lett. 84(18), 4184–4187 (2000).
[CrossRef]

Schurig, D.

J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science 312, 1780–1782 (2006).
[CrossRef]

Schweizer, H.

H. Guo, N. Liu, L. Fu, H. Schweizer, S. Kaiser, and H. Giessen, “Thickness dependence of the optical properties of split–ring resonator metamaterials,” Phys. Status Solidi B 244(4), 1256–1261 (2007).
[CrossRef]

Sellier, A.

S. N. Burokur, A. Sellier, B. Kanté, and A. de Lustrac, “Symmetry breaking in metallic cut wire pairs metamaterials for negative refractive index,” Appl. Phys. Lett. 94, 201111 (2009).
[CrossRef]

Service, R. F.

R. F. Service, “Next wave of metamaterials hopes to fuel the revolution,” Science 327, 138–139 (2010).
[CrossRef]

Shrekenhamer, D.

H. Tao, C. M. Bingham, D. Philon, K. Fan, A. C. Strikwerda, D. Shrekenhamer, W. J. Padilla, X. Zhang, and R. D. Averitt, “A dual band terahertz metamaterial absorber,” J. Phys. D: Appl. Phys. 43(22), 225102 (2010).
[CrossRef]

Smith, D. R.

J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science 312, 1780–1782 (2006).
[CrossRef]

D. R. Smith, W. J. Padilla, D. C. Vier, S. C. N. Nasser, and S. Schultz, “Composite medium with simultaneously negative permeability and permittivity,” Phys. Rev. Lett. 84(18), 4184–4187 (2000).
[CrossRef]

Soukoulis, C. M.

C. M. Soukoulis, J. Zhou, T. Koschny, M. Kafesaki, and E. N. Economou, “The science of negative index materials,” J. Phys. Condens. Matter 20(30), 304217 (2008).
[CrossRef]

J. Zhou, T. Koschny, M. Kafesaki, and C. M. Soukoulis, “Size dependence and convergence of the retrieval parameters of metamaterials,” Photon. and Nanostruct.: Fundam. and Appl. 6(1), 96–101 (2008).
[CrossRef]

G. Dolling, C. Enkrich, M. Wegener, C. M. Soukoulis, and S. Linden, “Low–loss negative–index metamaterial at telecommunication wavelengths,” Opt. Lett. 31(12), 1800–1802 (2006).
[CrossRef]

J. Zhou, E. N. Economon, T. Koschny, and C. M. Soukoulis, “Unifying approach to left handed material design,” Opt. Lett. 31(24), 3620–3622 (2006).
[CrossRef]

Stewart, W. J.

J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, “Low frequency plasmons in thin–wire structures,” J. Phys. Condens. Matter 10(22), 4785–4809 (1998).
[CrossRef]

Strikwerda, A. C.

H. Tao, C. M. Bingham, D. Philon, K. Fan, A. C. Strikwerda, D. Shrekenhamer, W. J. Padilla, X. Zhang, and R. D. Averitt, “A dual band terahertz metamaterial absorber,” J. Phys. D: Appl. Phys. 43(22), 225102 (2010).
[CrossRef]

Sun, C.

N. Fang, H. Lee, C. Sun, and X. Zhang, “Sub–diffraction–limited optical imaging with a silver superlens,” Science 308, 534–537 (2005).
[CrossRef]

Tao, H.

H. Tao, C. M. Bingham, D. Philon, K. Fan, A. C. Strikwerda, D. Shrekenhamer, W. J. Padilla, X. Zhang, and R. D. Averitt, “A dual band terahertz metamaterial absorber,” J. Phys. D: Appl. Phys. 43(22), 225102 (2010).
[CrossRef]

Taylor, A. J.

C. L. Holloway, A. Dienstfrey, E. F. Kuester, J. F. O’Hara, A. K. Azad, and A. J. Taylor, “A discussion on the interpretation and characterization of metafilms/metasurfaces: the two–dimensional equivalent of metamaterials,” Metamaterials 3(2), 100–112 (2009).
[CrossRef]

Tkeshelashvili, L.

K. Busch, G. von Freymann, S. Linden, S. F. Mingaleev, L. Tkeshelashvili, and M. Wegener, “Periodic nanostructures for photonics,” Phys. Rep. 444, 101–202 (2007).
[CrossRef]

Vier, D. C.

D. R. Smith, W. J. Padilla, D. C. Vier, S. C. N. Nasser, and S. Schultz, “Composite medium with simultaneously negative permeability and permittivity,” Phys. Rev. Lett. 84(18), 4184–4187 (2000).
[CrossRef]

von Freymann, G.

K. Busch, G. von Freymann, S. Linden, S. F. Mingaleev, L. Tkeshelashvili, and M. Wegener, “Periodic nanostructures for photonics,” Phys. Rep. 444, 101–202 (2007).
[CrossRef]

Wegener, M.

K. Busch, G. von Freymann, S. Linden, S. F. Mingaleev, L. Tkeshelashvili, and M. Wegener, “Periodic nanostructures for photonics,” Phys. Rep. 444, 101–202 (2007).
[CrossRef]

G. Dolling, C. Enkrich, M. Wegener, C. M. Soukoulis, and S. Linden, “Low–loss negative–index metamaterial at telecommunication wavelengths,” Opt. Lett. 31(12), 1800–1802 (2006).
[CrossRef]

Wen, Q. Y.

Q. Y. Wen, H. W. Zhang, Y. S. Xie, Q. H. Yang, and Y. L. Liu, “Dual band terahertz metamaterial absorber: design, fabrication, and characterization,” Appl. Phys. Lett. 95, 241111 (2009).
[CrossRef]

Werner, D. H.

D. J. Kern and D. H. Werner, “A genetic algorithm approach to the design of ultra–thin electromagnetic bandgap absorbers,” Microwave Opt. Technol. Lett. 38(1), 61–64 (2003).
[CrossRef]

Xie, Y. S.

Q. Y. Wen, H. W. Zhang, Y. S. Xie, Q. H. Yang, and Y. L. Liu, “Dual band terahertz metamaterial absorber: design, fabrication, and characterization,” Appl. Phys. Lett. 95, 241111 (2009).
[CrossRef]

Yang, Q. H.

Q. Y. Wen, H. W. Zhang, Y. S. Xie, Q. H. Yang, and Y. L. Liu, “Dual band terahertz metamaterial absorber: design, fabrication, and characterization,” Appl. Phys. Lett. 95, 241111 (2009).
[CrossRef]

Yang, T.

X. Luo, T. Yang, Y. Gu, H. Chen, and H. Ma, “Conceal an entrance by means of superscatterer,” Appl. Phys. Lett. 94, 223513 (2009).
[CrossRef]

Zhang, H. W.

Q. Y. Wen, H. W. Zhang, Y. S. Xie, Q. H. Yang, and Y. L. Liu, “Dual band terahertz metamaterial absorber: design, fabrication, and characterization,” Appl. Phys. Lett. 95, 241111 (2009).
[CrossRef]

Zhang, X.

H. Tao, C. M. Bingham, D. Philon, K. Fan, A. C. Strikwerda, D. Shrekenhamer, W. J. Padilla, X. Zhang, and R. D. Averitt, “A dual band terahertz metamaterial absorber,” J. Phys. D: Appl. Phys. 43(22), 225102 (2010).
[CrossRef]

N. Fang, H. Lee, C. Sun, and X. Zhang, “Sub–diffraction–limited optical imaging with a silver superlens,” Science 308, 534–537 (2005).
[CrossRef]

Zhou, J.

C. M. Soukoulis, J. Zhou, T. Koschny, M. Kafesaki, and E. N. Economou, “The science of negative index materials,” J. Phys. Condens. Matter 20(30), 304217 (2008).
[CrossRef]

J. Zhou, T. Koschny, M. Kafesaki, and C. M. Soukoulis, “Size dependence and convergence of the retrieval parameters of metamaterials,” Photon. and Nanostruct.: Fundam. and Appl. 6(1), 96–101 (2008).
[CrossRef]

J. Zhou, E. N. Economon, T. Koschny, and C. M. Soukoulis, “Unifying approach to left handed material design,” Opt. Lett. 31(24), 3620–3622 (2006).
[CrossRef]

Appl. Phys. Lett. (4)

A. A. Govyadinov, V. A. Podolskiy, and A. Noginov, “Active metamaterials: sign of refractive index and gain–assisted dispersion management,” Appl. Phys. Lett. 91, 191103 (2007).
[CrossRef]

X. Luo, T. Yang, Y. Gu, H. Chen, and H. Ma, “Conceal an entrance by means of superscatterer,” Appl. Phys. Lett. 94, 223513 (2009).
[CrossRef]

S. N. Burokur, A. Sellier, B. Kanté, and A. de Lustrac, “Symmetry breaking in metallic cut wire pairs metamaterials for negative refractive index,” Appl. Phys. Lett. 94, 201111 (2009).
[CrossRef]

Q. Y. Wen, H. W. Zhang, Y. S. Xie, Q. H. Yang, and Y. L. Liu, “Dual band terahertz metamaterial absorber: design, fabrication, and characterization,” Appl. Phys. Lett. 95, 241111 (2009).
[CrossRef]

J. Phys. Condens. Matter (2)

J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, “Low frequency plasmons in thin–wire structures,” J. Phys. Condens. Matter 10(22), 4785–4809 (1998).
[CrossRef]

C. M. Soukoulis, J. Zhou, T. Koschny, M. Kafesaki, and E. N. Economou, “The science of negative index materials,” J. Phys. Condens. Matter 20(30), 304217 (2008).
[CrossRef]

J. Phys. D: Appl. Phys. (1)

H. Tao, C. M. Bingham, D. Philon, K. Fan, A. C. Strikwerda, D. Shrekenhamer, W. J. Padilla, X. Zhang, and R. D. Averitt, “A dual band terahertz metamaterial absorber,” J. Phys. D: Appl. Phys. 43(22), 225102 (2010).
[CrossRef]

Metamaterials (1)

C. L. Holloway, A. Dienstfrey, E. F. Kuester, J. F. O’Hara, A. K. Azad, and A. J. Taylor, “A discussion on the interpretation and characterization of metafilms/metasurfaces: the two–dimensional equivalent of metamaterials,” Metamaterials 3(2), 100–112 (2009).
[CrossRef]

Microwave Opt. Technol. Lett. (1)

D. J. Kern and D. H. Werner, “A genetic algorithm approach to the design of ultra–thin electromagnetic bandgap absorbers,” Microwave Opt. Technol. Lett. 38(1), 61–64 (2003).
[CrossRef]

Opt. Lett. (2)

Photon. and Nanostruct.: Fundam. and Appl. (1)

J. Zhou, T. Koschny, M. Kafesaki, and C. M. Soukoulis, “Size dependence and convergence of the retrieval parameters of metamaterials,” Photon. and Nanostruct.: Fundam. and Appl. 6(1), 96–101 (2008).
[CrossRef]

Phys. Rep. (1)

K. Busch, G. von Freymann, S. Linden, S. F. Mingaleev, L. Tkeshelashvili, and M. Wegener, “Periodic nanostructures for photonics,” Phys. Rep. 444, 101–202 (2007).
[CrossRef]

Phys. Rev. E (1)

A. Alø and N. Engheta, “Achieving transparency with plasmonic and metamaterial coatings,” Phys. Rev. E 72, 016623 (2005).
[CrossRef]

Phys. Rev. Lett. (2)

Y. Lai. J. Ng, H. Y. Chen, D. Han, J. Xiao, Z. Zhang, and C. T. Chan, “Illusion optics: the optical transformation of an object into another object,” Phys. Rev. Lett. 102, 253902 (2009).
[CrossRef]

D. R. Smith, W. J. Padilla, D. C. Vier, S. C. N. Nasser, and S. Schultz, “Composite medium with simultaneously negative permeability and permittivity,” Phys. Rev. Lett. 84(18), 4184–4187 (2000).
[CrossRef]

Phys. Status Solidi B (1)

H. Guo, N. Liu, L. Fu, H. Schweizer, S. Kaiser, and H. Giessen, “Thickness dependence of the optical properties of split–ring resonator metamaterials,” Phys. Status Solidi B 244(4), 1256–1261 (2007).
[CrossRef]

Science (3)

N. Fang, H. Lee, C. Sun, and X. Zhang, “Sub–diffraction–limited optical imaging with a silver superlens,” Science 308, 534–537 (2005).
[CrossRef]

J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science 312, 1780–1782 (2006).
[CrossRef]

R. F. Service, “Next wave of metamaterials hopes to fuel the revolution,” Science 327, 138–139 (2010).
[CrossRef]

Small (1)

K. Kordás, T. Mustonen, G. Tóth, H. Jantunen, M. Lajunen, C. Soldano, S. Talapatra, S. Kar, R. Vajtai, P. Ajayan, “Inkjet printing of electrically conductive patterns of carbon nanotubes,” Small 2, 1021–1025 (2006).
[CrossRef]

Other (4)

C. Christopoulos, The transmission–line modeling method: TLM (IEEE Press, New York, 1995).

C. Caloz and T. Itoh, Electromagnetic metamaterials: transmission line theory and microwave applications (Wiley–IEEE Press, New Jersey, 2006).

H. Wakatsuchi, J. Paul, S. Greedy, and C. Christopoulos, “Contribution of conductive loss to cut–wire metamaterial absorbers,” presented at 2010 Asia–Pacific Radio Science Conference (AP–RASC’10), Toyama, Japan, 22–26 Sept. 2010.

H. Tao, C. M. Bingham, A. C. Strikwerda, D. Pilon, D. Shrekenhamer, N. I. Landy, K. Fan, X. Zhang, W. J. Padilla, and R. D. Averitt, “Highly flexible wide angle of incidence terahertz metamaterial absorber: design, fabrication, and characterization,” Phys. Rev. B 78, 241103(2008).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Metrics