J. Stadler, C. Stanciu, C. Stupperich, and A. J. Meixner, “Tighter focusing with a parabolic mirror,” Opt. Lett. 33(7), 681–683 (2008).
[Crossref]
[PubMed]
A. April, “Nonparaxial elegant Laguerre-Gaussian beams,” Opt. Lett. 33(12), 1392–1394 (2008).
[Crossref]
[PubMed]
A. April, “Nonparaxial TM and TE beams in free space,” Opt. Lett. 33(14), 1563–1565 (2008).
[Crossref]
[PubMed]
R. K. Singh, P. Senthilkumaran, and K. Singh, “Effect of primary coma on the focusing of a Laguerre–Gaussian beam by a high numerical aperture system; vectorial diffraction theory,” J. Opt. A, Pure Appl. Opt. 10(9pp), (2008).
[Crossref]
N. Bokor and N. Davidson, “4π Focusing with single paraboloid mirror,” Opt. Commun. 281(22), 5499–5503 (2008).
[Crossref]
C. Varin, M. Piché, and M. A. Porras, “Acceleration of electrons from rest to GeV energies by ultrashort transverse magnetic laser pulses in free space,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 71(2), 026603 (2005).
[Crossref]
[PubMed]
D. P. Biss and T. G. Brown, “Primary aberrations in focused radially polarized vortex beams,” Opt. Express 12(3), 384–393 (2004).
[Crossref]
[PubMed]
C. J. R. Sheppard, “Orthogonal aberration functions for high-aperture optical systems,” J. Opt. Soc. Am. A 21(5), 832–838 (2004).
[Crossref]
N. Davidson and N. Bokor, “High-numerical-aperture focusing of radially polarized doughnut beams with a parabolic mirror and a flat diffractive lens,” Opt. Lett. 29(12), 1318–1320 (2004).
[Crossref]
[PubMed]
N. Bokor and N. Davidson, “Toward a spherical spot distribution with 4π focusing of radially polarized light,” Opt. Lett. 29(17), 1968–1970 (2004).
[Crossref]
[PubMed]
R. Dorn, S. Quabis, and G. Leuchs, “Sharper focus for a radially polarized light beam,” Phys. Rev. Lett. 91(23), 233901 (2003).
[Crossref]
[PubMed]
S. Quabis, R. Dorn, M. Eberler, O. Glöckl, and G. Leuchs, “The focus of light – theoretical calculation and experimental tomographic reconstruction,” Appl. Phys. B 72, 109–113 (2001).
M. A. Lieb and A. J. Meixner, “A high numerical aperture parabolic mirror as imaging device for confocal microscopy,” Opt. Express 8(7), 458–474 (2001).
[Crossref]
[PubMed]
P. Varga and P. Török, “Focusing of electromagnetic waves by paraboloid mirrors. I. Theory,” J. Opt. Soc. Am. A 17(11), 2081–2089 (2000).
[Crossref]
Z. Ulanowski and I. K. Ludlow, “Scalar field of nonparaxial Gaussian beams,” Opt. Lett. 25(24), 1792–1794 (2000).
[Crossref]
K. S. Youngworth and T. G. Brown, “Focusing of high numerical aperture cylindrical-vector beams,” Opt. Express 7(2), 77–87 (2000).
[Crossref]
[PubMed]
S. Quabis, R. Dorn, M. Eberler, O. Glöckl, and G. Leuchs, “Focusing light to a tighter spot,” Opt. Commun. 179(1-6), 1–7 (2000).
[Crossref]
C. J. R. Sheppard and S. Saghafi, “Beam modes beyond the paraxial approximation: A scalar treatment,” Phys. Rev. A 57(4), 2971–2979 (1998).
[Crossref]
C. J. R. Sheppard, “Vector diffraction in paraboloidal mirrors with Seidel aberrations: effects of small object displacements,” Opt. Commun. 138(4-6), 262–264 (1997).
[Crossref]
R. Kant, “An analytical method of vector diffraction for focusing optical systems with Seidel aberrations II: Astigmatism and coma,” J. Mod. Opt. 42(2), 299–320 (1995).
[Crossref]
C. J. R. Sheppard and K. G. Larkin, “Optimal concentration of electromagnetic radiation,” J. Mod. Opt. 41(7), 1495–1505 (1994).
[Crossref]
L. W. Davis, “Theory of electromagnetic beams,” Phys. Rev. A 19(3), 1177–1179 (1979).
[Crossref]
G. A. Deschamps, “Gaussian beam as a bundle of complex rays,” Electron. Lett. 7(23), 684–685 (1971).
[Crossref]
B. Richards and E. Wolf, “Electromagnetic Diffraction in Optical Systems. II. Structure of the Image Field in an Aplanatic System,” Proc. R. Soc. Lond. A Math. Phys. Sci. 253(1274), 358–379 (1959).
[Crossref]
M. Couture and P.-A. Bélanger, “From Gaussian beam to complex-source-point spherical wave,” Phys. Rev. A 24(1), 355–359 (1981).
[Crossref]
M. Couture and P.-A. Bélanger, “From Gaussian beam to complex-source-point spherical wave,” Phys. Rev. A 24(1), 355–359 (1981).
[Crossref]
G. A. Deschamps, “Gaussian beam as a bundle of complex rays,” Electron. Lett. 7(23), 684–685 (1971).
[Crossref]
R. Dorn, S. Quabis, and G. Leuchs, “Sharper focus for a radially polarized light beam,” Phys. Rev. Lett. 91(23), 233901 (2003).
[Crossref]
[PubMed]
S. Quabis, R. Dorn, M. Eberler, O. Glöckl, and G. Leuchs, “The focus of light – theoretical calculation and experimental tomographic reconstruction,” Appl. Phys. B 72, 109–113 (2001).
S. Quabis, R. Dorn, M. Eberler, O. Glöckl, and G. Leuchs, “Focusing light to a tighter spot,” Opt. Commun. 179(1-6), 1–7 (2000).
[Crossref]
S. Quabis, R. Dorn, M. Eberler, O. Glöckl, and G. Leuchs, “The focus of light – theoretical calculation and experimental tomographic reconstruction,” Appl. Phys. B 72, 109–113 (2001).
S. Quabis, R. Dorn, M. Eberler, O. Glöckl, and G. Leuchs, “Focusing light to a tighter spot,” Opt. Commun. 179(1-6), 1–7 (2000).
[Crossref]
S. Quabis, R. Dorn, M. Eberler, O. Glöckl, and G. Leuchs, “The focus of light – theoretical calculation and experimental tomographic reconstruction,” Appl. Phys. B 72, 109–113 (2001).
S. Quabis, R. Dorn, M. Eberler, O. Glöckl, and G. Leuchs, “Focusing light to a tighter spot,” Opt. Commun. 179(1-6), 1–7 (2000).
[Crossref]
R. Kant, “An analytical method of vector diffraction for focusing optical systems with Seidel aberrations II: Astigmatism and coma,” J. Mod. Opt. 42(2), 299–320 (1995).
[Crossref]
C. J. R. Sheppard and K. G. Larkin, “Optimal concentration of electromagnetic radiation,” J. Mod. Opt. 41(7), 1495–1505 (1994).
[Crossref]
R. Dorn, S. Quabis, and G. Leuchs, “Sharper focus for a radially polarized light beam,” Phys. Rev. Lett. 91(23), 233901 (2003).
[Crossref]
[PubMed]
S. Quabis, R. Dorn, M. Eberler, O. Glöckl, and G. Leuchs, “The focus of light – theoretical calculation and experimental tomographic reconstruction,” Appl. Phys. B 72, 109–113 (2001).
S. Quabis, R. Dorn, M. Eberler, O. Glöckl, and G. Leuchs, “Focusing light to a tighter spot,” Opt. Commun. 179(1-6), 1–7 (2000).
[Crossref]
H. Dehez, M. Piché, and Y. De Koninck, “Enhanced resolution in two-photon imaging using a TM(01) laser beam at a dielectric interface,” Opt. Lett. 34(23), 3601–3603 (2009).
[Crossref]
[PubMed]
C. Varin, M. Piché, and M. A. Porras, “Acceleration of electrons from rest to GeV energies by ultrashort transverse magnetic laser pulses in free space,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 71(2), 026603 (2005).
[Crossref]
[PubMed]
C. Varin, M. Piché, and M. A. Porras, “Acceleration of electrons from rest to GeV energies by ultrashort transverse magnetic laser pulses in free space,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 71(2), 026603 (2005).
[Crossref]
[PubMed]
R. Dorn, S. Quabis, and G. Leuchs, “Sharper focus for a radially polarized light beam,” Phys. Rev. Lett. 91(23), 233901 (2003).
[Crossref]
[PubMed]
S. Quabis, R. Dorn, M. Eberler, O. Glöckl, and G. Leuchs, “The focus of light – theoretical calculation and experimental tomographic reconstruction,” Appl. Phys. B 72, 109–113 (2001).
S. Quabis, R. Dorn, M. Eberler, O. Glöckl, and G. Leuchs, “Focusing light to a tighter spot,” Opt. Commun. 179(1-6), 1–7 (2000).
[Crossref]
B. Richards and E. Wolf, “Electromagnetic Diffraction in Optical Systems. II. Structure of the Image Field in an Aplanatic System,” Proc. R. Soc. Lond. A Math. Phys. Sci. 253(1274), 358–379 (1959).
[Crossref]
R. K. Singh, P. Senthilkumaran, and K. Singh, “Effect of primary coma on the focusing of a Laguerre–Gaussian beam by a high numerical aperture system; vectorial diffraction theory,” J. Opt. A, Pure Appl. Opt. 10(9pp), (2008).
[Crossref]
C. J. R. Sheppard, “Orthogonal aberration functions for high-aperture optical systems,” J. Opt. Soc. Am. A 21(5), 832–838 (2004).
[Crossref]
C. J. R. Sheppard and S. Saghafi, “Electromagnetic Gaussian beams beyond the paraxial approximation,” J. Opt. Soc. Am. A 16(6), 1381–1386 (1999).
[Crossref]
C. J. R. Sheppard and S. Saghafi, “Transverse-electric and transverse-magnetic beam modes beyond the paraxial approximation,” Opt. Lett. 24(22), 1543–1545 (1999).
[Crossref]
C. J. R. Sheppard and S. Saghafi, “Beam modes beyond the paraxial approximation: A scalar treatment,” Phys. Rev. A 57(4), 2971–2979 (1998).
[Crossref]
C. J. R. Sheppard, “Vector diffraction in paraboloidal mirrors with Seidel aberrations: effects of small object displacements,” Opt. Commun. 138(4-6), 262–264 (1997).
[Crossref]
C. J. R. Sheppard and K. G. Larkin, “Optimal concentration of electromagnetic radiation,” J. Mod. Opt. 41(7), 1495–1505 (1994).
[Crossref]
R. K. Singh, P. Senthilkumaran, and K. Singh, “Effect of primary coma on the focusing of a Laguerre–Gaussian beam by a high numerical aperture system; vectorial diffraction theory,” J. Opt. A, Pure Appl. Opt. 10(9pp), (2008).
[Crossref]
R. K. Singh, P. Senthilkumaran, and K. Singh, “Effect of primary coma on the focusing of a Laguerre–Gaussian beam by a high numerical aperture system; vectorial diffraction theory,” J. Opt. A, Pure Appl. Opt. 10(9pp), (2008).
[Crossref]
C. Varin, M. Piché, and M. A. Porras, “Acceleration of electrons from rest to GeV energies by ultrashort transverse magnetic laser pulses in free space,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 71(2), 026603 (2005).
[Crossref]
[PubMed]
B. Richards and E. Wolf, “Electromagnetic Diffraction in Optical Systems. II. Structure of the Image Field in an Aplanatic System,” Proc. R. Soc. Lond. A Math. Phys. Sci. 253(1274), 358–379 (1959).
[Crossref]
S. Quabis, R. Dorn, M. Eberler, O. Glöckl, and G. Leuchs, “The focus of light – theoretical calculation and experimental tomographic reconstruction,” Appl. Phys. B 72, 109–113 (2001).
G. A. Deschamps, “Gaussian beam as a bundle of complex rays,” Electron. Lett. 7(23), 684–685 (1971).
[Crossref]
C. J. R. Sheppard and K. G. Larkin, “Optimal concentration of electromagnetic radiation,” J. Mod. Opt. 41(7), 1495–1505 (1994).
[Crossref]
R. Kant, “An analytical method of vector diffraction for focusing optical systems with Seidel aberrations II: Astigmatism and coma,” J. Mod. Opt. 42(2), 299–320 (1995).
[Crossref]
R. K. Singh, P. Senthilkumaran, and K. Singh, “Effect of primary coma on the focusing of a Laguerre–Gaussian beam by a high numerical aperture system; vectorial diffraction theory,” J. Opt. A, Pure Appl. Opt. 10(9pp), (2008).
[Crossref]
N. Bokor and N. Davidson, “4π Focusing with single paraboloid mirror,” Opt. Commun. 281(22), 5499–5503 (2008).
[Crossref]
C. J. R. Sheppard, “Vector diffraction in paraboloidal mirrors with Seidel aberrations: effects of small object displacements,” Opt. Commun. 138(4-6), 262–264 (1997).
[Crossref]
S. Quabis, R. Dorn, M. Eberler, O. Glöckl, and G. Leuchs, “Focusing light to a tighter spot,” Opt. Commun. 179(1-6), 1–7 (2000).
[Crossref]
Z. Ulanowski and I. K. Ludlow, “Scalar field of nonparaxial Gaussian beams,” Opt. Lett. 25(24), 1792–1794 (2000).
[Crossref]
N. Davidson and N. Bokor, “High-numerical-aperture focusing of radially polarized doughnut beams with a parabolic mirror and a flat diffractive lens,” Opt. Lett. 29(12), 1318–1320 (2004).
[Crossref]
[PubMed]
N. Bokor and N. Davidson, “Toward a spherical spot distribution with 4π focusing of radially polarized light,” Opt. Lett. 29(17), 1968–1970 (2004).
[Crossref]
[PubMed]
J. Stadler, C. Stanciu, C. Stupperich, and A. J. Meixner, “Tighter focusing with a parabolic mirror,” Opt. Lett. 33(7), 681–683 (2008).
[Crossref]
[PubMed]
A. April, “Nonparaxial elegant Laguerre-Gaussian beams,” Opt. Lett. 33(12), 1392–1394 (2008).
[Crossref]
[PubMed]
A. April, “Nonparaxial TM and TE beams in free space,” Opt. Lett. 33(14), 1563–1565 (2008).
[Crossref]
[PubMed]
H. Dehez, M. Piché, and Y. De Koninck, “Enhanced resolution in two-photon imaging using a TM(01) laser beam at a dielectric interface,” Opt. Lett. 34(23), 3601–3603 (2009).
[Crossref]
[PubMed]
L. W. Davis and G. Patsakos, “TM and TE electromagnetic beams in free space,” Opt. Lett. 6(1), 22–23 (1981).
[Crossref]
[PubMed]
C. J. R. Sheppard and S. Saghafi, “Transverse-electric and transverse-magnetic beam modes beyond the paraxial approximation,” Opt. Lett. 24(22), 1543–1545 (1999).
[Crossref]
L. W. Davis, “Theory of electromagnetic beams,” Phys. Rev. A 19(3), 1177–1179 (1979).
[Crossref]
M. Couture and P.-A. Bélanger, “From Gaussian beam to complex-source-point spherical wave,” Phys. Rev. A 24(1), 355–359 (1981).
[Crossref]
C. J. R. Sheppard and S. Saghafi, “Beam modes beyond the paraxial approximation: A scalar treatment,” Phys. Rev. A 57(4), 2971–2979 (1998).
[Crossref]
C. Varin, M. Piché, and M. A. Porras, “Acceleration of electrons from rest to GeV energies by ultrashort transverse magnetic laser pulses in free space,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 71(2), 026603 (2005).
[Crossref]
[PubMed]
R. Dorn, S. Quabis, and G. Leuchs, “Sharper focus for a radially polarized light beam,” Phys. Rev. Lett. 91(23), 233901 (2003).
[Crossref]
[PubMed]
B. Richards and E. Wolf, “Electromagnetic Diffraction in Optical Systems. II. Structure of the Image Field in an Aplanatic System,” Proc. R. Soc. Lond. A Math. Phys. Sci. 253(1274), 358–379 (1959).
[Crossref]
G. Arfken, Mathematical Methods for Physicists, 3rd ed., (Oxford, Ohio, Academic Press, Inc., 1985).
L. Novotny, and B. Hecht, Principles of nano-optics, (Cambridge University Press, 2006, Chap. 3).