Abstract

We describe experimental demonstration of spectrum-sliced elastic optical path network (SLICE) architecture. We employ optical orthogonal frequency-division multiplexing (OFDM) modulation format and bandwidth-variable optical cross-connects (OXC) to generate, transmit and receive optical paths with bandwidths of up to 1 Tb/s. We experimentally demonstrate elastic optical path setup and spectrally-efficient transmission of multiple channels with bit rates ranging from 40 to 140 Gb/s between six nodes of a mesh network. We show dynamic bandwidth scalability for optical paths with bit rates of 40 to 440 Gb/s. Moreover, we demonstrate multihop transmission of a 1 Tb/s optical path over 400 km of standard single-mode fiber (SMF). Finally, we investigate the filtering properties and the required guard band width for spectrally-efficient allocation of optical paths in SLICE.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Jinno, “Emerging advanced optical transmission technologies: their impact on optical transport networks and optical packet switching,” Proc. Photonics in Switching 2008, S-06–3 (2008).
  2. M. Jinno, Y. Miyamoto, and Y. Hibino, “Optical transport networks in 2015,” Nat. Photonics 1(3), 157–159 (2007).
    [CrossRef]
  3. L. Smarr, “Riding the light towards new science,” Nat. Photonics 1(3), 133–135 (2007).
    [CrossRef]
  4. A. Gumaste and S. Q. Zheng, “Next-generation optical storage area networks: the light-trails approach,” IEEE Commun. Mag. 43(3), 72–79 (2005).
    [CrossRef]
  5. D. Shirai, T. Kawano, T. Fujii, K. Kaneko, N. Ohta, S. Ono, S. Arai, and T. Ogoshi, “Real time switching and streaming transmission of uncompressed 4K motion pictures,” Future Gener. Comput. Syst. 25(2), 192–197 (2009).
    [CrossRef]
  6. J. McDonough, “Moving standards to 100 Gbe and beyond,” IEEE Commun. Mag. 45(11), 6–9 (2007).
    [CrossRef]
  7. M. Tomizawa, J. Yamawaku, Y. Takigawa, M. Koga, Y. Miyamoto, T. Morioka, and K. Hagimoto, “Terabit LAN with optical virtual concatenation for Grid applications with super-computers,” Proc. OFC/NFOEC 2005, OThG6 (2005).
  8. T. S. El-Bawab and Jong-Dug Shin, “Optical packet switching in core networks: between vision and reality,” IEEE Commun. Mag. 40(9), 60–65 (2002).
    [CrossRef]
  9. S. Chandrasekhar, and X. Liu, “Mixed 10/40/100-Gb/s transmission through bandwidth-managed ROADMs”, Proc. OECC 2008, WeQ-1 (2008).
  10. M. Jinno, H. Takara, B. Kozicki, Y. Tsukishima, T. Yoshimatsu, T. Kobayashi, Y. Miyamoto, K. Yonenaga, A. Takada, O. Ishida, and S. Matsuoka, “Demonstration of novel spectrum-efficient elastic optical path network with per-channel variable capacity of 40 Gb/s to over 400 Gb/s,” Proc. ECOC 2008, Th.3.F.6 (2008).
  11. Y. Sone, A. Watanabe, W. Imajuku, Y. Tsukishima, B. Kozicki, H. Takara, and M. Jinno, “Highly survivable restoration scheme employing optical bandwidth squeezing in spectrum-sliced elastic optical path (SLICE) network,” Proc. OFC/NFOEC 2009, OThO2 (2009).
  12. J.-K. Rhee, F. Garcia, A. Ellis, B. Hallock, T. Kennedy, T. Lackey, R. G. Lindquist, J. P. Kondis, B. A. Scott, J. M. Harris, D. Wolf, and M. Dugan, “Variable passband optical add-drop multiplexer using wavelength selective switch,” Proc. ECOC 2001, 550–551 (2001).
  13. R. Ryf, Y. Su, L. Moller, S. Chandrasekhar, D. T. Xiang Liu, Neilson, and C. R. Giles, “Wavelength blocking filter with flexible data rates and channel spacing,” J. Lightwave Technol. 23(1), 54–61 (2005).
    [CrossRef]
  14. G. Baxter, S. Frisken, D. Abakoumov, H. Zhou, I. Clarke, A. Bartos, and S. Poole, “Highly programmable wavelength selective switch based on liquid crystal on silicon switching elements,” Proc. OFC/NFOEC2006, OTuF2 (2006).
  15. Y. Miyamoto, A. Sano, H. Masuda, E. Yoshida, and S. Aisawa, “Enhancing the capacity beyond terabit per second for transparent optical transport network,” Proc. ECOC 2007, 10.5.1 (2007).
  16. W. Shieh and C. Athaudage, “Coherent optical orthogonal frequency division multiplexing,” Electron. Lett. 42(10), 587–589 (2006).
    [CrossRef]
  17. S. L. Jansen, I. Morita, and H. Tanaka, “16x52.5-Gb/s, 50-GHz spaced, POLMUX- CO-OFDM transmission over 4,160 km of SSMF enabled by MIMO processing,” Proc. ECOC 2007, PD1.3 (2007).
  18. H. Sanjoh, E. Yamada, and Y. Yoshikuni, “Optical orthogonal frequency division multiplexing using frequency/time domain filtering for high spectral efficiency up to 1 bit/s/Hz,” Proc. OFC 2002, ThD1 (2002).
  19. A. Sano, H. Masuda, E. Yoshida, T. Kobayashi, E. Yamada, Y. Miyamoto, F. Inuzuka, Y. Hibino, Y. Takatori, and K. Hagimoto, “30 x 100-Gb/s all-optical OFDM transmission over 1300 km SMF with 10 ROADM nodes,” ECOC2007, PD1.7 (2007).
  20. B. Kozicki, H. Takara, Y. Tsukishima, T. Yoshimatsu, T. Kobayashi, K. Yonenaga, and M. Jinno, “Optical path aggregation for 1 Tb/s transmission in spectrum-sliced elastic optical path network,” IEEE Photon. Technol. Lett. 22(17), 1315–1317 (2010).
    [CrossRef]
  21. M. Jinno, H. Takara, B. Kozicki, Y. Tsukishima, Y. Sone, and S. Matsuoka, “Spectrum-efficient and scalable elastic optical path network: architecture, benefits, and enabling technologies,” IEEE Commun. Mag. 47(11), 66–73 (2009).
    [CrossRef]
  22. T. Kobayashi, A. Sano, E. Yamada, Y. Miyamoto, H. Takara, and A. Takada, “Electro-optically multiplexed 110 Gbit/s optical OFDM signal transmission over 80 km SMF without dispersion compensation,” Electron. Lett. 44(3), 225–226 (2008).
    [CrossRef]
  23. K. Takiguchi, M. Oguma, T. Shibata, and H. Takahashi, “Optical OFDM demultiplexer using silica PLC based optical FFT circuit,” in Proc. OFC/NFOEC 2009, OWO3 (2009).
  24. M. E. Marhic, “Discrete Fourier transforms by single-mode star networks,” Opt. Lett. 12(1), 63–65 (1987).
    [CrossRef] [PubMed]
  25. X. Liu, Y.-H. Kao, M. Movassaghi, and R. C. Giles, “Tolerance to in-band coherent crosstalk of differential phase-shift-keyed signal with balanced detection and FEC,” IEEE Photon. Technol. Lett. 16(4), 1209–1211 (2004).
    [CrossRef]
  26. B. Mikkelsen, C. Rasmussen, P. Mamyshev, and F. Liu, “Partial DPSK with excellent filter tolerance and OSNR sensitivity,” Electron. Lett. 42(23), 1363–1364 (2006).
    [CrossRef]
  27. S. Chandrasekhar, X. Liu, and A. R. Chraplyvy, “Improving the filtering tolerance of 42.7-Gb/s partial-DPSK by optimized power imbalance,” Proc. OFC 2009, OMM1 (2009).

2010

B. Kozicki, H. Takara, Y. Tsukishima, T. Yoshimatsu, T. Kobayashi, K. Yonenaga, and M. Jinno, “Optical path aggregation for 1 Tb/s transmission in spectrum-sliced elastic optical path network,” IEEE Photon. Technol. Lett. 22(17), 1315–1317 (2010).
[CrossRef]

2009

M. Jinno, H. Takara, B. Kozicki, Y. Tsukishima, Y. Sone, and S. Matsuoka, “Spectrum-efficient and scalable elastic optical path network: architecture, benefits, and enabling technologies,” IEEE Commun. Mag. 47(11), 66–73 (2009).
[CrossRef]

D. Shirai, T. Kawano, T. Fujii, K. Kaneko, N. Ohta, S. Ono, S. Arai, and T. Ogoshi, “Real time switching and streaming transmission of uncompressed 4K motion pictures,” Future Gener. Comput. Syst. 25(2), 192–197 (2009).
[CrossRef]

2008

T. Kobayashi, A. Sano, E. Yamada, Y. Miyamoto, H. Takara, and A. Takada, “Electro-optically multiplexed 110 Gbit/s optical OFDM signal transmission over 80 km SMF without dispersion compensation,” Electron. Lett. 44(3), 225–226 (2008).
[CrossRef]

2007

J. McDonough, “Moving standards to 100 Gbe and beyond,” IEEE Commun. Mag. 45(11), 6–9 (2007).
[CrossRef]

M. Jinno, Y. Miyamoto, and Y. Hibino, “Optical transport networks in 2015,” Nat. Photonics 1(3), 157–159 (2007).
[CrossRef]

L. Smarr, “Riding the light towards new science,” Nat. Photonics 1(3), 133–135 (2007).
[CrossRef]

2006

W. Shieh and C. Athaudage, “Coherent optical orthogonal frequency division multiplexing,” Electron. Lett. 42(10), 587–589 (2006).
[CrossRef]

B. Mikkelsen, C. Rasmussen, P. Mamyshev, and F. Liu, “Partial DPSK with excellent filter tolerance and OSNR sensitivity,” Electron. Lett. 42(23), 1363–1364 (2006).
[CrossRef]

2005

2004

X. Liu, Y.-H. Kao, M. Movassaghi, and R. C. Giles, “Tolerance to in-band coherent crosstalk of differential phase-shift-keyed signal with balanced detection and FEC,” IEEE Photon. Technol. Lett. 16(4), 1209–1211 (2004).
[CrossRef]

2002

T. S. El-Bawab and Jong-Dug Shin, “Optical packet switching in core networks: between vision and reality,” IEEE Commun. Mag. 40(9), 60–65 (2002).
[CrossRef]

1987

Arai, S.

D. Shirai, T. Kawano, T. Fujii, K. Kaneko, N. Ohta, S. Ono, S. Arai, and T. Ogoshi, “Real time switching and streaming transmission of uncompressed 4K motion pictures,” Future Gener. Comput. Syst. 25(2), 192–197 (2009).
[CrossRef]

Athaudage, C.

W. Shieh and C. Athaudage, “Coherent optical orthogonal frequency division multiplexing,” Electron. Lett. 42(10), 587–589 (2006).
[CrossRef]

Chandrasekhar, S.

El-Bawab, T. S.

T. S. El-Bawab and Jong-Dug Shin, “Optical packet switching in core networks: between vision and reality,” IEEE Commun. Mag. 40(9), 60–65 (2002).
[CrossRef]

Fujii, T.

D. Shirai, T. Kawano, T. Fujii, K. Kaneko, N. Ohta, S. Ono, S. Arai, and T. Ogoshi, “Real time switching and streaming transmission of uncompressed 4K motion pictures,” Future Gener. Comput. Syst. 25(2), 192–197 (2009).
[CrossRef]

Giles, C. R.

Giles, R. C.

X. Liu, Y.-H. Kao, M. Movassaghi, and R. C. Giles, “Tolerance to in-band coherent crosstalk of differential phase-shift-keyed signal with balanced detection and FEC,” IEEE Photon. Technol. Lett. 16(4), 1209–1211 (2004).
[CrossRef]

Gumaste, A.

A. Gumaste and S. Q. Zheng, “Next-generation optical storage area networks: the light-trails approach,” IEEE Commun. Mag. 43(3), 72–79 (2005).
[CrossRef]

Hibino, Y.

M. Jinno, Y. Miyamoto, and Y. Hibino, “Optical transport networks in 2015,” Nat. Photonics 1(3), 157–159 (2007).
[CrossRef]

Jinno, M.

B. Kozicki, H. Takara, Y. Tsukishima, T. Yoshimatsu, T. Kobayashi, K. Yonenaga, and M. Jinno, “Optical path aggregation for 1 Tb/s transmission in spectrum-sliced elastic optical path network,” IEEE Photon. Technol. Lett. 22(17), 1315–1317 (2010).
[CrossRef]

M. Jinno, H. Takara, B. Kozicki, Y. Tsukishima, Y. Sone, and S. Matsuoka, “Spectrum-efficient and scalable elastic optical path network: architecture, benefits, and enabling technologies,” IEEE Commun. Mag. 47(11), 66–73 (2009).
[CrossRef]

M. Jinno, Y. Miyamoto, and Y. Hibino, “Optical transport networks in 2015,” Nat. Photonics 1(3), 157–159 (2007).
[CrossRef]

Jong-Dug Shin,

T. S. El-Bawab and Jong-Dug Shin, “Optical packet switching in core networks: between vision and reality,” IEEE Commun. Mag. 40(9), 60–65 (2002).
[CrossRef]

Kaneko, K.

D. Shirai, T. Kawano, T. Fujii, K. Kaneko, N. Ohta, S. Ono, S. Arai, and T. Ogoshi, “Real time switching and streaming transmission of uncompressed 4K motion pictures,” Future Gener. Comput. Syst. 25(2), 192–197 (2009).
[CrossRef]

Kao, Y.-H.

X. Liu, Y.-H. Kao, M. Movassaghi, and R. C. Giles, “Tolerance to in-band coherent crosstalk of differential phase-shift-keyed signal with balanced detection and FEC,” IEEE Photon. Technol. Lett. 16(4), 1209–1211 (2004).
[CrossRef]

Kawano, T.

D. Shirai, T. Kawano, T. Fujii, K. Kaneko, N. Ohta, S. Ono, S. Arai, and T. Ogoshi, “Real time switching and streaming transmission of uncompressed 4K motion pictures,” Future Gener. Comput. Syst. 25(2), 192–197 (2009).
[CrossRef]

Kobayashi, T.

B. Kozicki, H. Takara, Y. Tsukishima, T. Yoshimatsu, T. Kobayashi, K. Yonenaga, and M. Jinno, “Optical path aggregation for 1 Tb/s transmission in spectrum-sliced elastic optical path network,” IEEE Photon. Technol. Lett. 22(17), 1315–1317 (2010).
[CrossRef]

T. Kobayashi, A. Sano, E. Yamada, Y. Miyamoto, H. Takara, and A. Takada, “Electro-optically multiplexed 110 Gbit/s optical OFDM signal transmission over 80 km SMF without dispersion compensation,” Electron. Lett. 44(3), 225–226 (2008).
[CrossRef]

Kozicki, B.

B. Kozicki, H. Takara, Y. Tsukishima, T. Yoshimatsu, T. Kobayashi, K. Yonenaga, and M. Jinno, “Optical path aggregation for 1 Tb/s transmission in spectrum-sliced elastic optical path network,” IEEE Photon. Technol. Lett. 22(17), 1315–1317 (2010).
[CrossRef]

M. Jinno, H. Takara, B. Kozicki, Y. Tsukishima, Y. Sone, and S. Matsuoka, “Spectrum-efficient and scalable elastic optical path network: architecture, benefits, and enabling technologies,” IEEE Commun. Mag. 47(11), 66–73 (2009).
[CrossRef]

Liu, F.

B. Mikkelsen, C. Rasmussen, P. Mamyshev, and F. Liu, “Partial DPSK with excellent filter tolerance and OSNR sensitivity,” Electron. Lett. 42(23), 1363–1364 (2006).
[CrossRef]

Liu, X.

X. Liu, Y.-H. Kao, M. Movassaghi, and R. C. Giles, “Tolerance to in-band coherent crosstalk of differential phase-shift-keyed signal with balanced detection and FEC,” IEEE Photon. Technol. Lett. 16(4), 1209–1211 (2004).
[CrossRef]

Mamyshev, P.

B. Mikkelsen, C. Rasmussen, P. Mamyshev, and F. Liu, “Partial DPSK with excellent filter tolerance and OSNR sensitivity,” Electron. Lett. 42(23), 1363–1364 (2006).
[CrossRef]

Marhic, M. E.

Matsuoka, S.

M. Jinno, H. Takara, B. Kozicki, Y. Tsukishima, Y. Sone, and S. Matsuoka, “Spectrum-efficient and scalable elastic optical path network: architecture, benefits, and enabling technologies,” IEEE Commun. Mag. 47(11), 66–73 (2009).
[CrossRef]

McDonough, J.

J. McDonough, “Moving standards to 100 Gbe and beyond,” IEEE Commun. Mag. 45(11), 6–9 (2007).
[CrossRef]

Mikkelsen, B.

B. Mikkelsen, C. Rasmussen, P. Mamyshev, and F. Liu, “Partial DPSK with excellent filter tolerance and OSNR sensitivity,” Electron. Lett. 42(23), 1363–1364 (2006).
[CrossRef]

Miyamoto, Y.

T. Kobayashi, A. Sano, E. Yamada, Y. Miyamoto, H. Takara, and A. Takada, “Electro-optically multiplexed 110 Gbit/s optical OFDM signal transmission over 80 km SMF without dispersion compensation,” Electron. Lett. 44(3), 225–226 (2008).
[CrossRef]

M. Jinno, Y. Miyamoto, and Y. Hibino, “Optical transport networks in 2015,” Nat. Photonics 1(3), 157–159 (2007).
[CrossRef]

Moller, L.

Movassaghi, M.

X. Liu, Y.-H. Kao, M. Movassaghi, and R. C. Giles, “Tolerance to in-band coherent crosstalk of differential phase-shift-keyed signal with balanced detection and FEC,” IEEE Photon. Technol. Lett. 16(4), 1209–1211 (2004).
[CrossRef]

Neilson,

Ogoshi, T.

D. Shirai, T. Kawano, T. Fujii, K. Kaneko, N. Ohta, S. Ono, S. Arai, and T. Ogoshi, “Real time switching and streaming transmission of uncompressed 4K motion pictures,” Future Gener. Comput. Syst. 25(2), 192–197 (2009).
[CrossRef]

Ohta, N.

D. Shirai, T. Kawano, T. Fujii, K. Kaneko, N. Ohta, S. Ono, S. Arai, and T. Ogoshi, “Real time switching and streaming transmission of uncompressed 4K motion pictures,” Future Gener. Comput. Syst. 25(2), 192–197 (2009).
[CrossRef]

Ono, S.

D. Shirai, T. Kawano, T. Fujii, K. Kaneko, N. Ohta, S. Ono, S. Arai, and T. Ogoshi, “Real time switching and streaming transmission of uncompressed 4K motion pictures,” Future Gener. Comput. Syst. 25(2), 192–197 (2009).
[CrossRef]

Rasmussen, C.

B. Mikkelsen, C. Rasmussen, P. Mamyshev, and F. Liu, “Partial DPSK with excellent filter tolerance and OSNR sensitivity,” Electron. Lett. 42(23), 1363–1364 (2006).
[CrossRef]

Ryf, R.

Sano, A.

T. Kobayashi, A. Sano, E. Yamada, Y. Miyamoto, H. Takara, and A. Takada, “Electro-optically multiplexed 110 Gbit/s optical OFDM signal transmission over 80 km SMF without dispersion compensation,” Electron. Lett. 44(3), 225–226 (2008).
[CrossRef]

Shieh, W.

W. Shieh and C. Athaudage, “Coherent optical orthogonal frequency division multiplexing,” Electron. Lett. 42(10), 587–589 (2006).
[CrossRef]

Shirai, D.

D. Shirai, T. Kawano, T. Fujii, K. Kaneko, N. Ohta, S. Ono, S. Arai, and T. Ogoshi, “Real time switching and streaming transmission of uncompressed 4K motion pictures,” Future Gener. Comput. Syst. 25(2), 192–197 (2009).
[CrossRef]

Smarr, L.

L. Smarr, “Riding the light towards new science,” Nat. Photonics 1(3), 133–135 (2007).
[CrossRef]

Sone, Y.

M. Jinno, H. Takara, B. Kozicki, Y. Tsukishima, Y. Sone, and S. Matsuoka, “Spectrum-efficient and scalable elastic optical path network: architecture, benefits, and enabling technologies,” IEEE Commun. Mag. 47(11), 66–73 (2009).
[CrossRef]

Su, Y.

Takada, A.

T. Kobayashi, A. Sano, E. Yamada, Y. Miyamoto, H. Takara, and A. Takada, “Electro-optically multiplexed 110 Gbit/s optical OFDM signal transmission over 80 km SMF without dispersion compensation,” Electron. Lett. 44(3), 225–226 (2008).
[CrossRef]

Takara, H.

B. Kozicki, H. Takara, Y. Tsukishima, T. Yoshimatsu, T. Kobayashi, K. Yonenaga, and M. Jinno, “Optical path aggregation for 1 Tb/s transmission in spectrum-sliced elastic optical path network,” IEEE Photon. Technol. Lett. 22(17), 1315–1317 (2010).
[CrossRef]

M. Jinno, H. Takara, B. Kozicki, Y. Tsukishima, Y. Sone, and S. Matsuoka, “Spectrum-efficient and scalable elastic optical path network: architecture, benefits, and enabling technologies,” IEEE Commun. Mag. 47(11), 66–73 (2009).
[CrossRef]

T. Kobayashi, A. Sano, E. Yamada, Y. Miyamoto, H. Takara, and A. Takada, “Electro-optically multiplexed 110 Gbit/s optical OFDM signal transmission over 80 km SMF without dispersion compensation,” Electron. Lett. 44(3), 225–226 (2008).
[CrossRef]

Tsukishima, Y.

B. Kozicki, H. Takara, Y. Tsukishima, T. Yoshimatsu, T. Kobayashi, K. Yonenaga, and M. Jinno, “Optical path aggregation for 1 Tb/s transmission in spectrum-sliced elastic optical path network,” IEEE Photon. Technol. Lett. 22(17), 1315–1317 (2010).
[CrossRef]

M. Jinno, H. Takara, B. Kozicki, Y. Tsukishima, Y. Sone, and S. Matsuoka, “Spectrum-efficient and scalable elastic optical path network: architecture, benefits, and enabling technologies,” IEEE Commun. Mag. 47(11), 66–73 (2009).
[CrossRef]

Xiang Liu, D. T.

Yamada, E.

T. Kobayashi, A. Sano, E. Yamada, Y. Miyamoto, H. Takara, and A. Takada, “Electro-optically multiplexed 110 Gbit/s optical OFDM signal transmission over 80 km SMF without dispersion compensation,” Electron. Lett. 44(3), 225–226 (2008).
[CrossRef]

Yonenaga, K.

B. Kozicki, H. Takara, Y. Tsukishima, T. Yoshimatsu, T. Kobayashi, K. Yonenaga, and M. Jinno, “Optical path aggregation for 1 Tb/s transmission in spectrum-sliced elastic optical path network,” IEEE Photon. Technol. Lett. 22(17), 1315–1317 (2010).
[CrossRef]

Yoshimatsu, T.

B. Kozicki, H. Takara, Y. Tsukishima, T. Yoshimatsu, T. Kobayashi, K. Yonenaga, and M. Jinno, “Optical path aggregation for 1 Tb/s transmission in spectrum-sliced elastic optical path network,” IEEE Photon. Technol. Lett. 22(17), 1315–1317 (2010).
[CrossRef]

Zheng, S. Q.

A. Gumaste and S. Q. Zheng, “Next-generation optical storage area networks: the light-trails approach,” IEEE Commun. Mag. 43(3), 72–79 (2005).
[CrossRef]

Electron. Lett.

W. Shieh and C. Athaudage, “Coherent optical orthogonal frequency division multiplexing,” Electron. Lett. 42(10), 587–589 (2006).
[CrossRef]

T. Kobayashi, A. Sano, E. Yamada, Y. Miyamoto, H. Takara, and A. Takada, “Electro-optically multiplexed 110 Gbit/s optical OFDM signal transmission over 80 km SMF without dispersion compensation,” Electron. Lett. 44(3), 225–226 (2008).
[CrossRef]

B. Mikkelsen, C. Rasmussen, P. Mamyshev, and F. Liu, “Partial DPSK with excellent filter tolerance and OSNR sensitivity,” Electron. Lett. 42(23), 1363–1364 (2006).
[CrossRef]

Future Gener. Comput. Syst.

D. Shirai, T. Kawano, T. Fujii, K. Kaneko, N. Ohta, S. Ono, S. Arai, and T. Ogoshi, “Real time switching and streaming transmission of uncompressed 4K motion pictures,” Future Gener. Comput. Syst. 25(2), 192–197 (2009).
[CrossRef]

IEEE Commun. Mag.

J. McDonough, “Moving standards to 100 Gbe and beyond,” IEEE Commun. Mag. 45(11), 6–9 (2007).
[CrossRef]

A. Gumaste and S. Q. Zheng, “Next-generation optical storage area networks: the light-trails approach,” IEEE Commun. Mag. 43(3), 72–79 (2005).
[CrossRef]

T. S. El-Bawab and Jong-Dug Shin, “Optical packet switching in core networks: between vision and reality,” IEEE Commun. Mag. 40(9), 60–65 (2002).
[CrossRef]

M. Jinno, H. Takara, B. Kozicki, Y. Tsukishima, Y. Sone, and S. Matsuoka, “Spectrum-efficient and scalable elastic optical path network: architecture, benefits, and enabling technologies,” IEEE Commun. Mag. 47(11), 66–73 (2009).
[CrossRef]

IEEE Photon. Technol. Lett.

B. Kozicki, H. Takara, Y. Tsukishima, T. Yoshimatsu, T. Kobayashi, K. Yonenaga, and M. Jinno, “Optical path aggregation for 1 Tb/s transmission in spectrum-sliced elastic optical path network,” IEEE Photon. Technol. Lett. 22(17), 1315–1317 (2010).
[CrossRef]

X. Liu, Y.-H. Kao, M. Movassaghi, and R. C. Giles, “Tolerance to in-band coherent crosstalk of differential phase-shift-keyed signal with balanced detection and FEC,” IEEE Photon. Technol. Lett. 16(4), 1209–1211 (2004).
[CrossRef]

J. Lightwave Technol.

Nat. Photonics

M. Jinno, Y. Miyamoto, and Y. Hibino, “Optical transport networks in 2015,” Nat. Photonics 1(3), 157–159 (2007).
[CrossRef]

L. Smarr, “Riding the light towards new science,” Nat. Photonics 1(3), 133–135 (2007).
[CrossRef]

Opt. Lett.

Other

S. Chandrasekhar, X. Liu, and A. R. Chraplyvy, “Improving the filtering tolerance of 42.7-Gb/s partial-DPSK by optimized power imbalance,” Proc. OFC 2009, OMM1 (2009).

K. Takiguchi, M. Oguma, T. Shibata, and H. Takahashi, “Optical OFDM demultiplexer using silica PLC based optical FFT circuit,” in Proc. OFC/NFOEC 2009, OWO3 (2009).

M. Jinno, “Emerging advanced optical transmission technologies: their impact on optical transport networks and optical packet switching,” Proc. Photonics in Switching 2008, S-06–3 (2008).

S. Chandrasekhar, and X. Liu, “Mixed 10/40/100-Gb/s transmission through bandwidth-managed ROADMs”, Proc. OECC 2008, WeQ-1 (2008).

M. Jinno, H. Takara, B. Kozicki, Y. Tsukishima, T. Yoshimatsu, T. Kobayashi, Y. Miyamoto, K. Yonenaga, A. Takada, O. Ishida, and S. Matsuoka, “Demonstration of novel spectrum-efficient elastic optical path network with per-channel variable capacity of 40 Gb/s to over 400 Gb/s,” Proc. ECOC 2008, Th.3.F.6 (2008).

Y. Sone, A. Watanabe, W. Imajuku, Y. Tsukishima, B. Kozicki, H. Takara, and M. Jinno, “Highly survivable restoration scheme employing optical bandwidth squeezing in spectrum-sliced elastic optical path (SLICE) network,” Proc. OFC/NFOEC 2009, OThO2 (2009).

J.-K. Rhee, F. Garcia, A. Ellis, B. Hallock, T. Kennedy, T. Lackey, R. G. Lindquist, J. P. Kondis, B. A. Scott, J. M. Harris, D. Wolf, and M. Dugan, “Variable passband optical add-drop multiplexer using wavelength selective switch,” Proc. ECOC 2001, 550–551 (2001).

G. Baxter, S. Frisken, D. Abakoumov, H. Zhou, I. Clarke, A. Bartos, and S. Poole, “Highly programmable wavelength selective switch based on liquid crystal on silicon switching elements,” Proc. OFC/NFOEC2006, OTuF2 (2006).

Y. Miyamoto, A. Sano, H. Masuda, E. Yoshida, and S. Aisawa, “Enhancing the capacity beyond terabit per second for transparent optical transport network,” Proc. ECOC 2007, 10.5.1 (2007).

M. Tomizawa, J. Yamawaku, Y. Takigawa, M. Koga, Y. Miyamoto, T. Morioka, and K. Hagimoto, “Terabit LAN with optical virtual concatenation for Grid applications with super-computers,” Proc. OFC/NFOEC 2005, OThG6 (2005).

S. L. Jansen, I. Morita, and H. Tanaka, “16x52.5-Gb/s, 50-GHz spaced, POLMUX- CO-OFDM transmission over 4,160 km of SSMF enabled by MIMO processing,” Proc. ECOC 2007, PD1.3 (2007).

H. Sanjoh, E. Yamada, and Y. Yoshikuni, “Optical orthogonal frequency division multiplexing using frequency/time domain filtering for high spectral efficiency up to 1 bit/s/Hz,” Proc. OFC 2002, ThD1 (2002).

A. Sano, H. Masuda, E. Yoshida, T. Kobayashi, E. Yamada, Y. Miyamoto, F. Inuzuka, Y. Hibino, Y. Takatori, and K. Hagimoto, “30 x 100-Gb/s all-optical OFDM transmission over 1300 km SMF with 10 ROADM nodes,” ECOC2007, PD1.7 (2007).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (13)

Fig. 1
Fig. 1

The concept of spectrum-sliced elastic optical path network (SLICE). Flexible-rate transceivers allocate end-to-end optical paths with right-sized bandwidth adjusted to traffic demand. The optical paths are transmitted through bandwidth-variable optical cross-connects (BV OXC) which enable allocation of optical spectrum exactly matching the capacity of optical paths.

Fig. 2
Fig. 2

Key technologies for SLICE network – BV OXC: (a) OXC with continuously BV wavelength-selective switches (WSS); comparison of spectra of: (b) optical OFDM path; (c) conventional WDM channels; (d) ultra-high speed single channel.

Fig. 3
Fig. 3

Key technologies for SLICE network – BV transmitter. IF – interface.

Fig. 4
Fig. 4

Experimental setup: (a) optical OFDM DPSK transmitter; optical spectra of: (b) equalized multicarrier comb, (c) modulated subcarriers in even channels, (d) modulated even and odd channels merged into optical OFDM signal. CW – continuous wave, EQL – equalizer, PPG – pulse pattern generator.

Fig. 5
Fig. 5

(a) Experimental DPSK OFDM receiver setup; (b) optical spectra corresponding to the input of the receiver; (c) even and odd (d) subcarriers demodulated by 1/2 bit delay Mach-Zehnder delay interferometer (MZDI); (e) subcarriers after the arrayed-waveguide grating (AWG) filter. The received signal waveforms are shown without and with the optical gate (f and g, respectively). BPD – balanced photodiode, CDR – clock and data recovery, BERT – bit-error rate tester.

Fig. 6
Fig. 6

(a) Receiver OSNR penalty as a function of bit position misalignment between even and odd channels of OFDM signal; (b) OSNR penalty as a function of coherent cross-talk; (c) OSNR penalty as a function fiber input power level.

Fig. 7
Fig. 7

Experimental network setup – six nodes A~F arranged in mesh topology are connected by links a~i. The table represents connections established in the network experiment

Fig. 8
Fig. 8

Optical spectra of paths traversing the network shown in Fig. 7 captured in respective links a~e. The lower plot shows the Q-factor performance of path δ at node F.

Fig. 9
Fig. 9

Optical spectra of bandwidth-scalable path carrying 40~440 Gb/s traffic. The lower plot shows the Q-factor performance of the 440 Gb/s optical path dropped at node F.

Fig. 10
Fig. 10

Optical spectra of bandwidth-scalable paths in multiple optical path transmission.

Fig. 11
Fig. 11

1 Tb/s transmission recirculating loop experiment: (a) experimental setup; (b) 50 subcarrier optical signal spectrum; (c) OSNR penalty as a function of the number of loops.

Fig. 12
Fig. 12

Filtering and cross-talk penalty: (a) elastic optical path spectrum, (b) spectrum of two neighboring paths; (c) spectrum of the edge subcarrier; (d) edge subcarrier penalty as a function of filtering stages; (e) model for investigation of guard band width and filter bandwidth.

Fig. 13
Fig. 13

Guard band width and filter shape simulation result. Edge subcarrier power penalty in function of filtering stages for guard band of: (a) 1 subcarrier, (b) 2 subcarriers, and (c) 3 subcarriers.

Metrics