Abstract

We report on the spectroscopic characterization, continuous-wave and continuous wave mode-locked laser performance of bulk Tm3+:GPNG fluorogermanate and Tm3+-Ho3+:TZN tellurite glass lasers around 2 μm. A slope efficiency of up to 50% and 190 mW of output power were achieved from the Tm3+:GPNG laser at 1944 nm during continuous wave operation. The Tm3+-Ho3+:TZN laser produced a 26% slope efficiency with a maximum output power of 74 mW at 2012 nm. The Tm3+:GPNG produced near-transform-limited pulses of 410 fs duration centered at 1997 nm with up to 84 mW of average output power and repetition frequency of 222 MHz when was passively modelocked using an ion-implanted InGaAsSb-based quantum well SESAM. Using the same SESAM, the Tm3+-Ho3+:TZN laser generated 630-fs pulses with 38 mW of average output power at 2012 nm. Data analysis of pulses at different intracavity pulse energies provided an estimation of n2 at 2012 nm of 2.9 × 10−15 cm2/W for the Tm3+-Ho3+:TZN

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. F. El-Sherif and T. A. King, “Soft and hard tissue ablation with short-pulse high peak power and continuous thulium-silica fibre lasers,” Lasers Med. Sci. 18(3), 139–147 (2003).
    [CrossRef] [PubMed]
  2. S. D. Jackson, “Efficient Tm3+, Ho3+-co-doped silica fibre laser diode pumped at 1150 nm,” Opt. Commun. 281(14), 3837–3840 (2008).
    [CrossRef]
  3. Y. Tsang, B. Richards, D. Binks, J. Lousteau, and A. Jha, “Tm(3+)/Ho(3+) codoped tellurite fiber laser,” Opt. Lett. 33(11), 1282–1284 (2008).
    [CrossRef] [PubMed]
  4. B. M. Walsh, “Review of Tm and Ho materials; spectroscopy and lasers,” Laser Phys. 19(4), 855–866 (2009).
    [CrossRef]
  5. J. F. Wu, Z. Yao, J. Zong, and S. B. Jiang, “Highly efficient high-power thulium-doped germanate glass fiber laser,” Opt. Lett. 32(6), 638–640 (2007).
    [CrossRef] [PubMed]
  6. R. W. Waynant, I. K. Ilev, and I. Gannot, “Mid-infrared laser applications in medicine and biology,” Philos. Trans. R. Soc. Lond. A 359(1780), 635–644 (2001).
    [CrossRef]
  7. R. C. Sharp, D. E. Spock, N. Pan, and J. Elliot, “190-fs passively mode-locked thulium fiber laser with a low threshold,” Opt. Lett. 21(12), 881–883 (1996).
    [CrossRef] [PubMed]
  8. G. Imeshev and M. E. Fermann, “230-kW peak power femtosecond pulses from a high power tunable source based on amplification in Tm-doped fiber,” Opt. Express 13(19), 7424–7431 (2005).
    [CrossRef] [PubMed]
  9. F. Fusari, A. A. Lagatsky, B. Richards, A. Jha, W. Sibbett, and C. T. A. Brown, “Spectroscopic and lasing performance of Tm3+-doped bulk TZN and TZNG tellurite glasses operating around 1.9 µm,” Opt. Express 16(23), 19146–19151 (2008).
    [CrossRef]
  10. F. Fusari, S. Vetter, A. A. Lagatsky, B. Richards, S. Calvez, A. Jha, M. D. Dawson, W. Sibbett, and C. T. A. Brown, “Tunable laser operation of a Tm3+-doped tellurite glass laser near 2 μm pumped by a 1211 nm semiconductor disk laser,” Opt. Mater. In press.
  11. B. Richards, Y. Tsang, D. Binks, J. Lousteau, and A. Jha, “Efficient similar to 2 μm Tm3+-doped tellurite fiber lase,” Opt. Lett. 33(4), 402–404 (2008).
    [CrossRef] [PubMed]
  12. A. A. Lagatsky, F. Fusari, S. Calvez, S. V. Kurilchik, V. E. Kisel, N. V. Kuleshov, M. D. Dawson, C. T. A. Brown, and W. Sibbett, “Femtosecond pulse operation of a Tm,Ho-codoped crystalline laser near 2 microm,” Opt. Lett. 35(2), 172–174 (2010).
    [CrossRef] [PubMed]
  13. X. Jiang, J. Lousteau, B. Richards, and A. Jha, “Investigation on germanium oxide-based glasses for infrared optical fibre development,” Opt. Mater. 31(11), 1701–1706 (2009).
    [CrossRef]
  14. J. S. Wang, E. M. Vogel, and E. Snitzer, “Tellurite Glass: A new candidate for fiber devices,” Opt. Mater. 3(3), 187–203 (1994).
    [CrossRef]
  15. S. Todoroki, K. Hirao, and N. Soga, “Local-Structure around Rare-Earth Ions in Indium-Based and Lead-Based Fluoride Glasses with High up-Conversion Efficiency,” J. Non-Cryst. Sol. 143, 46–51 (1992).
    [CrossRef]
  16. J. E. Shelby and E. A. Bolden, ““Formation and Properties of Lead Fluorogermanate Glasses,” J. Non-Cryst. Sol. 142, 269–277 (1992).
    [CrossRef]
  17. S. X. Shen, A. Jha, E. Zhang, and S. Wilson, “Tm3+-Ho3+ and Tm3+-Tb3+ energy transfer in tellurite glass,” J. Lumin. 126(2), 434–440 (2007).
    [CrossRef]
  18. J. B. Gruber, M. E. Hills, M. D. Seltzer, S. B. Stevens, C. A. Morrison, G. A. Turner, and M. R. Kokta, “Energy-levels and crystal quantum states of trivalent holmium in Yttrium-Aluminum-Garnet,” J. Appl. Phys. 69(12), 8183–8204 (1991).
    [CrossRef]
  19. S. A. Payne, L. L. Chase, L. K. Smith, W. L. Kway, and W. F. Krupke, “Infrared Cross-Section Measurements for Crystals Doped with Er3+, Tm3+, and Ho3+,” IEEE J. Quantum Electron. 28(11), 2619–2630 (1992).
    [CrossRef]
  20. J. A. Caird, S. A. Payne, P. R. Staber, A. J. Ramponi, L. L. Chase, and W. F. Krupke, “Quantum Electronic Properties of the Na3Ga2Li3FI12 Cr3+ Laser,” IEEE J. Quantum Electron. 24(6), 1077–1099 (1988).
    [CrossRef]
  21. A. A. Lagatsky, F. Fusari, S. V. Kurilchik, V. E. Kisel, A. S. Yasukevich, N. V. Kuleshov, A. A. Pavlyuk, C. T. A. Brown, and W. Sibbett, “Optical spectroscopy and efficient continuous-wave operation near 2 μm for a Tm, Ho:KYW laser crystal,” Appl. Phys. B 97(2), 321–326 (2009).
    [CrossRef]
  22. H. A. Haus, “Mode-locking of lasers,” IEEE J. Sel. Top. Quantum Electron. 6(6), 1173–1185 (2000).
    [CrossRef]
  23. R. Adair, L. L. Chase, and S. A. Payne, “Nonlinear refractive-index measurements of glasses using three-wave frequency mixing,” J. Opt. Soc. Am. B 4(6), 875–881 (1987).
    [CrossRef]
  24. G. Turri, V. Sudesh, M. Richardson, M. Bass, A. Toncelli, and M. Tonelli, “Temperature-dependent spectroscopic properties of Tm3+ in germanate, silica, and phosphate glasses: A comparative study,” J. Appl. Phys. 103(9), 093104 (2008).
    [CrossRef]

2010

2009

X. Jiang, J. Lousteau, B. Richards, and A. Jha, “Investigation on germanium oxide-based glasses for infrared optical fibre development,” Opt. Mater. 31(11), 1701–1706 (2009).
[CrossRef]

B. M. Walsh, “Review of Tm and Ho materials; spectroscopy and lasers,” Laser Phys. 19(4), 855–866 (2009).
[CrossRef]

A. A. Lagatsky, F. Fusari, S. V. Kurilchik, V. E. Kisel, A. S. Yasukevich, N. V. Kuleshov, A. A. Pavlyuk, C. T. A. Brown, and W. Sibbett, “Optical spectroscopy and efficient continuous-wave operation near 2 μm for a Tm, Ho:KYW laser crystal,” Appl. Phys. B 97(2), 321–326 (2009).
[CrossRef]

2008

2007

S. X. Shen, A. Jha, E. Zhang, and S. Wilson, “Tm3+-Ho3+ and Tm3+-Tb3+ energy transfer in tellurite glass,” J. Lumin. 126(2), 434–440 (2007).
[CrossRef]

J. F. Wu, Z. Yao, J. Zong, and S. B. Jiang, “Highly efficient high-power thulium-doped germanate glass fiber laser,” Opt. Lett. 32(6), 638–640 (2007).
[CrossRef] [PubMed]

2005

2003

A. F. El-Sherif and T. A. King, “Soft and hard tissue ablation with short-pulse high peak power and continuous thulium-silica fibre lasers,” Lasers Med. Sci. 18(3), 139–147 (2003).
[CrossRef] [PubMed]

2001

R. W. Waynant, I. K. Ilev, and I. Gannot, “Mid-infrared laser applications in medicine and biology,” Philos. Trans. R. Soc. Lond. A 359(1780), 635–644 (2001).
[CrossRef]

2000

H. A. Haus, “Mode-locking of lasers,” IEEE J. Sel. Top. Quantum Electron. 6(6), 1173–1185 (2000).
[CrossRef]

1996

1994

J. S. Wang, E. M. Vogel, and E. Snitzer, “Tellurite Glass: A new candidate for fiber devices,” Opt. Mater. 3(3), 187–203 (1994).
[CrossRef]

1992

S. Todoroki, K. Hirao, and N. Soga, “Local-Structure around Rare-Earth Ions in Indium-Based and Lead-Based Fluoride Glasses with High up-Conversion Efficiency,” J. Non-Cryst. Sol. 143, 46–51 (1992).
[CrossRef]

J. E. Shelby and E. A. Bolden, ““Formation and Properties of Lead Fluorogermanate Glasses,” J. Non-Cryst. Sol. 142, 269–277 (1992).
[CrossRef]

S. A. Payne, L. L. Chase, L. K. Smith, W. L. Kway, and W. F. Krupke, “Infrared Cross-Section Measurements for Crystals Doped with Er3+, Tm3+, and Ho3+,” IEEE J. Quantum Electron. 28(11), 2619–2630 (1992).
[CrossRef]

1991

J. B. Gruber, M. E. Hills, M. D. Seltzer, S. B. Stevens, C. A. Morrison, G. A. Turner, and M. R. Kokta, “Energy-levels and crystal quantum states of trivalent holmium in Yttrium-Aluminum-Garnet,” J. Appl. Phys. 69(12), 8183–8204 (1991).
[CrossRef]

1988

J. A. Caird, S. A. Payne, P. R. Staber, A. J. Ramponi, L. L. Chase, and W. F. Krupke, “Quantum Electronic Properties of the Na3Ga2Li3FI12 Cr3+ Laser,” IEEE J. Quantum Electron. 24(6), 1077–1099 (1988).
[CrossRef]

1987

Adair, R.

Bass, M.

G. Turri, V. Sudesh, M. Richardson, M. Bass, A. Toncelli, and M. Tonelli, “Temperature-dependent spectroscopic properties of Tm3+ in germanate, silica, and phosphate glasses: A comparative study,” J. Appl. Phys. 103(9), 093104 (2008).
[CrossRef]

Binks, D.

Bolden, E. A.

J. E. Shelby and E. A. Bolden, ““Formation and Properties of Lead Fluorogermanate Glasses,” J. Non-Cryst. Sol. 142, 269–277 (1992).
[CrossRef]

Brown, C. T. A.

A. A. Lagatsky, F. Fusari, S. Calvez, S. V. Kurilchik, V. E. Kisel, N. V. Kuleshov, M. D. Dawson, C. T. A. Brown, and W. Sibbett, “Femtosecond pulse operation of a Tm,Ho-codoped crystalline laser near 2 microm,” Opt. Lett. 35(2), 172–174 (2010).
[CrossRef] [PubMed]

A. A. Lagatsky, F. Fusari, S. V. Kurilchik, V. E. Kisel, A. S. Yasukevich, N. V. Kuleshov, A. A. Pavlyuk, C. T. A. Brown, and W. Sibbett, “Optical spectroscopy and efficient continuous-wave operation near 2 μm for a Tm, Ho:KYW laser crystal,” Appl. Phys. B 97(2), 321–326 (2009).
[CrossRef]

F. Fusari, A. A. Lagatsky, B. Richards, A. Jha, W. Sibbett, and C. T. A. Brown, “Spectroscopic and lasing performance of Tm3+-doped bulk TZN and TZNG tellurite glasses operating around 1.9 µm,” Opt. Express 16(23), 19146–19151 (2008).
[CrossRef]

F. Fusari, S. Vetter, A. A. Lagatsky, B. Richards, S. Calvez, A. Jha, M. D. Dawson, W. Sibbett, and C. T. A. Brown, “Tunable laser operation of a Tm3+-doped tellurite glass laser near 2 μm pumped by a 1211 nm semiconductor disk laser,” Opt. Mater. In press.

Caird, J. A.

J. A. Caird, S. A. Payne, P. R. Staber, A. J. Ramponi, L. L. Chase, and W. F. Krupke, “Quantum Electronic Properties of the Na3Ga2Li3FI12 Cr3+ Laser,” IEEE J. Quantum Electron. 24(6), 1077–1099 (1988).
[CrossRef]

Calvez, S.

A. A. Lagatsky, F. Fusari, S. Calvez, S. V. Kurilchik, V. E. Kisel, N. V. Kuleshov, M. D. Dawson, C. T. A. Brown, and W. Sibbett, “Femtosecond pulse operation of a Tm,Ho-codoped crystalline laser near 2 microm,” Opt. Lett. 35(2), 172–174 (2010).
[CrossRef] [PubMed]

F. Fusari, S. Vetter, A. A. Lagatsky, B. Richards, S. Calvez, A. Jha, M. D. Dawson, W. Sibbett, and C. T. A. Brown, “Tunable laser operation of a Tm3+-doped tellurite glass laser near 2 μm pumped by a 1211 nm semiconductor disk laser,” Opt. Mater. In press.

Chase, L. L.

S. A. Payne, L. L. Chase, L. K. Smith, W. L. Kway, and W. F. Krupke, “Infrared Cross-Section Measurements for Crystals Doped with Er3+, Tm3+, and Ho3+,” IEEE J. Quantum Electron. 28(11), 2619–2630 (1992).
[CrossRef]

J. A. Caird, S. A. Payne, P. R. Staber, A. J. Ramponi, L. L. Chase, and W. F. Krupke, “Quantum Electronic Properties of the Na3Ga2Li3FI12 Cr3+ Laser,” IEEE J. Quantum Electron. 24(6), 1077–1099 (1988).
[CrossRef]

R. Adair, L. L. Chase, and S. A. Payne, “Nonlinear refractive-index measurements of glasses using three-wave frequency mixing,” J. Opt. Soc. Am. B 4(6), 875–881 (1987).
[CrossRef]

Dawson, M. D.

A. A. Lagatsky, F. Fusari, S. Calvez, S. V. Kurilchik, V. E. Kisel, N. V. Kuleshov, M. D. Dawson, C. T. A. Brown, and W. Sibbett, “Femtosecond pulse operation of a Tm,Ho-codoped crystalline laser near 2 microm,” Opt. Lett. 35(2), 172–174 (2010).
[CrossRef] [PubMed]

F. Fusari, S. Vetter, A. A. Lagatsky, B. Richards, S. Calvez, A. Jha, M. D. Dawson, W. Sibbett, and C. T. A. Brown, “Tunable laser operation of a Tm3+-doped tellurite glass laser near 2 μm pumped by a 1211 nm semiconductor disk laser,” Opt. Mater. In press.

Elliot, J.

El-Sherif, A. F.

A. F. El-Sherif and T. A. King, “Soft and hard tissue ablation with short-pulse high peak power and continuous thulium-silica fibre lasers,” Lasers Med. Sci. 18(3), 139–147 (2003).
[CrossRef] [PubMed]

Fermann, M. E.

Fusari, F.

A. A. Lagatsky, F. Fusari, S. Calvez, S. V. Kurilchik, V. E. Kisel, N. V. Kuleshov, M. D. Dawson, C. T. A. Brown, and W. Sibbett, “Femtosecond pulse operation of a Tm,Ho-codoped crystalline laser near 2 microm,” Opt. Lett. 35(2), 172–174 (2010).
[CrossRef] [PubMed]

A. A. Lagatsky, F. Fusari, S. V. Kurilchik, V. E. Kisel, A. S. Yasukevich, N. V. Kuleshov, A. A. Pavlyuk, C. T. A. Brown, and W. Sibbett, “Optical spectroscopy and efficient continuous-wave operation near 2 μm for a Tm, Ho:KYW laser crystal,” Appl. Phys. B 97(2), 321–326 (2009).
[CrossRef]

F. Fusari, A. A. Lagatsky, B. Richards, A. Jha, W. Sibbett, and C. T. A. Brown, “Spectroscopic and lasing performance of Tm3+-doped bulk TZN and TZNG tellurite glasses operating around 1.9 µm,” Opt. Express 16(23), 19146–19151 (2008).
[CrossRef]

F. Fusari, S. Vetter, A. A. Lagatsky, B. Richards, S. Calvez, A. Jha, M. D. Dawson, W. Sibbett, and C. T. A. Brown, “Tunable laser operation of a Tm3+-doped tellurite glass laser near 2 μm pumped by a 1211 nm semiconductor disk laser,” Opt. Mater. In press.

Gannot, I.

R. W. Waynant, I. K. Ilev, and I. Gannot, “Mid-infrared laser applications in medicine and biology,” Philos. Trans. R. Soc. Lond. A 359(1780), 635–644 (2001).
[CrossRef]

Gruber, J. B.

J. B. Gruber, M. E. Hills, M. D. Seltzer, S. B. Stevens, C. A. Morrison, G. A. Turner, and M. R. Kokta, “Energy-levels and crystal quantum states of trivalent holmium in Yttrium-Aluminum-Garnet,” J. Appl. Phys. 69(12), 8183–8204 (1991).
[CrossRef]

Haus, H. A.

H. A. Haus, “Mode-locking of lasers,” IEEE J. Sel. Top. Quantum Electron. 6(6), 1173–1185 (2000).
[CrossRef]

Hills, M. E.

J. B. Gruber, M. E. Hills, M. D. Seltzer, S. B. Stevens, C. A. Morrison, G. A. Turner, and M. R. Kokta, “Energy-levels and crystal quantum states of trivalent holmium in Yttrium-Aluminum-Garnet,” J. Appl. Phys. 69(12), 8183–8204 (1991).
[CrossRef]

Hirao, K.

S. Todoroki, K. Hirao, and N. Soga, “Local-Structure around Rare-Earth Ions in Indium-Based and Lead-Based Fluoride Glasses with High up-Conversion Efficiency,” J. Non-Cryst. Sol. 143, 46–51 (1992).
[CrossRef]

Ilev, I. K.

R. W. Waynant, I. K. Ilev, and I. Gannot, “Mid-infrared laser applications in medicine and biology,” Philos. Trans. R. Soc. Lond. A 359(1780), 635–644 (2001).
[CrossRef]

Imeshev, G.

Jackson, S. D.

S. D. Jackson, “Efficient Tm3+, Ho3+-co-doped silica fibre laser diode pumped at 1150 nm,” Opt. Commun. 281(14), 3837–3840 (2008).
[CrossRef]

Jha, A.

X. Jiang, J. Lousteau, B. Richards, and A. Jha, “Investigation on germanium oxide-based glasses for infrared optical fibre development,” Opt. Mater. 31(11), 1701–1706 (2009).
[CrossRef]

B. Richards, Y. Tsang, D. Binks, J. Lousteau, and A. Jha, “Efficient similar to 2 μm Tm3+-doped tellurite fiber lase,” Opt. Lett. 33(4), 402–404 (2008).
[CrossRef] [PubMed]

Y. Tsang, B. Richards, D. Binks, J. Lousteau, and A. Jha, “Tm(3+)/Ho(3+) codoped tellurite fiber laser,” Opt. Lett. 33(11), 1282–1284 (2008).
[CrossRef] [PubMed]

F. Fusari, A. A. Lagatsky, B. Richards, A. Jha, W. Sibbett, and C. T. A. Brown, “Spectroscopic and lasing performance of Tm3+-doped bulk TZN and TZNG tellurite glasses operating around 1.9 µm,” Opt. Express 16(23), 19146–19151 (2008).
[CrossRef]

S. X. Shen, A. Jha, E. Zhang, and S. Wilson, “Tm3+-Ho3+ and Tm3+-Tb3+ energy transfer in tellurite glass,” J. Lumin. 126(2), 434–440 (2007).
[CrossRef]

F. Fusari, S. Vetter, A. A. Lagatsky, B. Richards, S. Calvez, A. Jha, M. D. Dawson, W. Sibbett, and C. T. A. Brown, “Tunable laser operation of a Tm3+-doped tellurite glass laser near 2 μm pumped by a 1211 nm semiconductor disk laser,” Opt. Mater. In press.

Jiang, S. B.

Jiang, X.

X. Jiang, J. Lousteau, B. Richards, and A. Jha, “Investigation on germanium oxide-based glasses for infrared optical fibre development,” Opt. Mater. 31(11), 1701–1706 (2009).
[CrossRef]

King, T. A.

A. F. El-Sherif and T. A. King, “Soft and hard tissue ablation with short-pulse high peak power and continuous thulium-silica fibre lasers,” Lasers Med. Sci. 18(3), 139–147 (2003).
[CrossRef] [PubMed]

Kisel, V. E.

A. A. Lagatsky, F. Fusari, S. Calvez, S. V. Kurilchik, V. E. Kisel, N. V. Kuleshov, M. D. Dawson, C. T. A. Brown, and W. Sibbett, “Femtosecond pulse operation of a Tm,Ho-codoped crystalline laser near 2 microm,” Opt. Lett. 35(2), 172–174 (2010).
[CrossRef] [PubMed]

A. A. Lagatsky, F. Fusari, S. V. Kurilchik, V. E. Kisel, A. S. Yasukevich, N. V. Kuleshov, A. A. Pavlyuk, C. T. A. Brown, and W. Sibbett, “Optical spectroscopy and efficient continuous-wave operation near 2 μm for a Tm, Ho:KYW laser crystal,” Appl. Phys. B 97(2), 321–326 (2009).
[CrossRef]

Kokta, M. R.

J. B. Gruber, M. E. Hills, M. D. Seltzer, S. B. Stevens, C. A. Morrison, G. A. Turner, and M. R. Kokta, “Energy-levels and crystal quantum states of trivalent holmium in Yttrium-Aluminum-Garnet,” J. Appl. Phys. 69(12), 8183–8204 (1991).
[CrossRef]

Krupke, W. F.

S. A. Payne, L. L. Chase, L. K. Smith, W. L. Kway, and W. F. Krupke, “Infrared Cross-Section Measurements for Crystals Doped with Er3+, Tm3+, and Ho3+,” IEEE J. Quantum Electron. 28(11), 2619–2630 (1992).
[CrossRef]

J. A. Caird, S. A. Payne, P. R. Staber, A. J. Ramponi, L. L. Chase, and W. F. Krupke, “Quantum Electronic Properties of the Na3Ga2Li3FI12 Cr3+ Laser,” IEEE J. Quantum Electron. 24(6), 1077–1099 (1988).
[CrossRef]

Kuleshov, N. V.

A. A. Lagatsky, F. Fusari, S. Calvez, S. V. Kurilchik, V. E. Kisel, N. V. Kuleshov, M. D. Dawson, C. T. A. Brown, and W. Sibbett, “Femtosecond pulse operation of a Tm,Ho-codoped crystalline laser near 2 microm,” Opt. Lett. 35(2), 172–174 (2010).
[CrossRef] [PubMed]

A. A. Lagatsky, F. Fusari, S. V. Kurilchik, V. E. Kisel, A. S. Yasukevich, N. V. Kuleshov, A. A. Pavlyuk, C. T. A. Brown, and W. Sibbett, “Optical spectroscopy and efficient continuous-wave operation near 2 μm for a Tm, Ho:KYW laser crystal,” Appl. Phys. B 97(2), 321–326 (2009).
[CrossRef]

Kurilchik, S. V.

A. A. Lagatsky, F. Fusari, S. Calvez, S. V. Kurilchik, V. E. Kisel, N. V. Kuleshov, M. D. Dawson, C. T. A. Brown, and W. Sibbett, “Femtosecond pulse operation of a Tm,Ho-codoped crystalline laser near 2 microm,” Opt. Lett. 35(2), 172–174 (2010).
[CrossRef] [PubMed]

A. A. Lagatsky, F. Fusari, S. V. Kurilchik, V. E. Kisel, A. S. Yasukevich, N. V. Kuleshov, A. A. Pavlyuk, C. T. A. Brown, and W. Sibbett, “Optical spectroscopy and efficient continuous-wave operation near 2 μm for a Tm, Ho:KYW laser crystal,” Appl. Phys. B 97(2), 321–326 (2009).
[CrossRef]

Kway, W. L.

S. A. Payne, L. L. Chase, L. K. Smith, W. L. Kway, and W. F. Krupke, “Infrared Cross-Section Measurements for Crystals Doped with Er3+, Tm3+, and Ho3+,” IEEE J. Quantum Electron. 28(11), 2619–2630 (1992).
[CrossRef]

Lagatsky, A. A.

A. A. Lagatsky, F. Fusari, S. Calvez, S. V. Kurilchik, V. E. Kisel, N. V. Kuleshov, M. D. Dawson, C. T. A. Brown, and W. Sibbett, “Femtosecond pulse operation of a Tm,Ho-codoped crystalline laser near 2 microm,” Opt. Lett. 35(2), 172–174 (2010).
[CrossRef] [PubMed]

A. A. Lagatsky, F. Fusari, S. V. Kurilchik, V. E. Kisel, A. S. Yasukevich, N. V. Kuleshov, A. A. Pavlyuk, C. T. A. Brown, and W. Sibbett, “Optical spectroscopy and efficient continuous-wave operation near 2 μm for a Tm, Ho:KYW laser crystal,” Appl. Phys. B 97(2), 321–326 (2009).
[CrossRef]

F. Fusari, A. A. Lagatsky, B. Richards, A. Jha, W. Sibbett, and C. T. A. Brown, “Spectroscopic and lasing performance of Tm3+-doped bulk TZN and TZNG tellurite glasses operating around 1.9 µm,” Opt. Express 16(23), 19146–19151 (2008).
[CrossRef]

F. Fusari, S. Vetter, A. A. Lagatsky, B. Richards, S. Calvez, A. Jha, M. D. Dawson, W. Sibbett, and C. T. A. Brown, “Tunable laser operation of a Tm3+-doped tellurite glass laser near 2 μm pumped by a 1211 nm semiconductor disk laser,” Opt. Mater. In press.

Lousteau, J.

Morrison, C. A.

J. B. Gruber, M. E. Hills, M. D. Seltzer, S. B. Stevens, C. A. Morrison, G. A. Turner, and M. R. Kokta, “Energy-levels and crystal quantum states of trivalent holmium in Yttrium-Aluminum-Garnet,” J. Appl. Phys. 69(12), 8183–8204 (1991).
[CrossRef]

Pan, N.

Pavlyuk, A. A.

A. A. Lagatsky, F. Fusari, S. V. Kurilchik, V. E. Kisel, A. S. Yasukevich, N. V. Kuleshov, A. A. Pavlyuk, C. T. A. Brown, and W. Sibbett, “Optical spectroscopy and efficient continuous-wave operation near 2 μm for a Tm, Ho:KYW laser crystal,” Appl. Phys. B 97(2), 321–326 (2009).
[CrossRef]

Payne, S. A.

S. A. Payne, L. L. Chase, L. K. Smith, W. L. Kway, and W. F. Krupke, “Infrared Cross-Section Measurements for Crystals Doped with Er3+, Tm3+, and Ho3+,” IEEE J. Quantum Electron. 28(11), 2619–2630 (1992).
[CrossRef]

J. A. Caird, S. A. Payne, P. R. Staber, A. J. Ramponi, L. L. Chase, and W. F. Krupke, “Quantum Electronic Properties of the Na3Ga2Li3FI12 Cr3+ Laser,” IEEE J. Quantum Electron. 24(6), 1077–1099 (1988).
[CrossRef]

R. Adair, L. L. Chase, and S. A. Payne, “Nonlinear refractive-index measurements of glasses using three-wave frequency mixing,” J. Opt. Soc. Am. B 4(6), 875–881 (1987).
[CrossRef]

Ramponi, A. J.

J. A. Caird, S. A. Payne, P. R. Staber, A. J. Ramponi, L. L. Chase, and W. F. Krupke, “Quantum Electronic Properties of the Na3Ga2Li3FI12 Cr3+ Laser,” IEEE J. Quantum Electron. 24(6), 1077–1099 (1988).
[CrossRef]

Richards, B.

X. Jiang, J. Lousteau, B. Richards, and A. Jha, “Investigation on germanium oxide-based glasses for infrared optical fibre development,” Opt. Mater. 31(11), 1701–1706 (2009).
[CrossRef]

B. Richards, Y. Tsang, D. Binks, J. Lousteau, and A. Jha, “Efficient similar to 2 μm Tm3+-doped tellurite fiber lase,” Opt. Lett. 33(4), 402–404 (2008).
[CrossRef] [PubMed]

Y. Tsang, B. Richards, D. Binks, J. Lousteau, and A. Jha, “Tm(3+)/Ho(3+) codoped tellurite fiber laser,” Opt. Lett. 33(11), 1282–1284 (2008).
[CrossRef] [PubMed]

F. Fusari, A. A. Lagatsky, B. Richards, A. Jha, W. Sibbett, and C. T. A. Brown, “Spectroscopic and lasing performance of Tm3+-doped bulk TZN and TZNG tellurite glasses operating around 1.9 µm,” Opt. Express 16(23), 19146–19151 (2008).
[CrossRef]

F. Fusari, S. Vetter, A. A. Lagatsky, B. Richards, S. Calvez, A. Jha, M. D. Dawson, W. Sibbett, and C. T. A. Brown, “Tunable laser operation of a Tm3+-doped tellurite glass laser near 2 μm pumped by a 1211 nm semiconductor disk laser,” Opt. Mater. In press.

Richardson, M.

G. Turri, V. Sudesh, M. Richardson, M. Bass, A. Toncelli, and M. Tonelli, “Temperature-dependent spectroscopic properties of Tm3+ in germanate, silica, and phosphate glasses: A comparative study,” J. Appl. Phys. 103(9), 093104 (2008).
[CrossRef]

Seltzer, M. D.

J. B. Gruber, M. E. Hills, M. D. Seltzer, S. B. Stevens, C. A. Morrison, G. A. Turner, and M. R. Kokta, “Energy-levels and crystal quantum states of trivalent holmium in Yttrium-Aluminum-Garnet,” J. Appl. Phys. 69(12), 8183–8204 (1991).
[CrossRef]

Sharp, R. C.

Shelby, J. E.

J. E. Shelby and E. A. Bolden, ““Formation and Properties of Lead Fluorogermanate Glasses,” J. Non-Cryst. Sol. 142, 269–277 (1992).
[CrossRef]

Shen, S. X.

S. X. Shen, A. Jha, E. Zhang, and S. Wilson, “Tm3+-Ho3+ and Tm3+-Tb3+ energy transfer in tellurite glass,” J. Lumin. 126(2), 434–440 (2007).
[CrossRef]

Sibbett, W.

A. A. Lagatsky, F. Fusari, S. Calvez, S. V. Kurilchik, V. E. Kisel, N. V. Kuleshov, M. D. Dawson, C. T. A. Brown, and W. Sibbett, “Femtosecond pulse operation of a Tm,Ho-codoped crystalline laser near 2 microm,” Opt. Lett. 35(2), 172–174 (2010).
[CrossRef] [PubMed]

A. A. Lagatsky, F. Fusari, S. V. Kurilchik, V. E. Kisel, A. S. Yasukevich, N. V. Kuleshov, A. A. Pavlyuk, C. T. A. Brown, and W. Sibbett, “Optical spectroscopy and efficient continuous-wave operation near 2 μm for a Tm, Ho:KYW laser crystal,” Appl. Phys. B 97(2), 321–326 (2009).
[CrossRef]

F. Fusari, A. A. Lagatsky, B. Richards, A. Jha, W. Sibbett, and C. T. A. Brown, “Spectroscopic and lasing performance of Tm3+-doped bulk TZN and TZNG tellurite glasses operating around 1.9 µm,” Opt. Express 16(23), 19146–19151 (2008).
[CrossRef]

F. Fusari, S. Vetter, A. A. Lagatsky, B. Richards, S. Calvez, A. Jha, M. D. Dawson, W. Sibbett, and C. T. A. Brown, “Tunable laser operation of a Tm3+-doped tellurite glass laser near 2 μm pumped by a 1211 nm semiconductor disk laser,” Opt. Mater. In press.

Smith, L. K.

S. A. Payne, L. L. Chase, L. K. Smith, W. L. Kway, and W. F. Krupke, “Infrared Cross-Section Measurements for Crystals Doped with Er3+, Tm3+, and Ho3+,” IEEE J. Quantum Electron. 28(11), 2619–2630 (1992).
[CrossRef]

Snitzer, E.

J. S. Wang, E. M. Vogel, and E. Snitzer, “Tellurite Glass: A new candidate for fiber devices,” Opt. Mater. 3(3), 187–203 (1994).
[CrossRef]

Soga, N.

S. Todoroki, K. Hirao, and N. Soga, “Local-Structure around Rare-Earth Ions in Indium-Based and Lead-Based Fluoride Glasses with High up-Conversion Efficiency,” J. Non-Cryst. Sol. 143, 46–51 (1992).
[CrossRef]

Spock, D. E.

Staber, P. R.

J. A. Caird, S. A. Payne, P. R. Staber, A. J. Ramponi, L. L. Chase, and W. F. Krupke, “Quantum Electronic Properties of the Na3Ga2Li3FI12 Cr3+ Laser,” IEEE J. Quantum Electron. 24(6), 1077–1099 (1988).
[CrossRef]

Stevens, S. B.

J. B. Gruber, M. E. Hills, M. D. Seltzer, S. B. Stevens, C. A. Morrison, G. A. Turner, and M. R. Kokta, “Energy-levels and crystal quantum states of trivalent holmium in Yttrium-Aluminum-Garnet,” J. Appl. Phys. 69(12), 8183–8204 (1991).
[CrossRef]

Sudesh, V.

G. Turri, V. Sudesh, M. Richardson, M. Bass, A. Toncelli, and M. Tonelli, “Temperature-dependent spectroscopic properties of Tm3+ in germanate, silica, and phosphate glasses: A comparative study,” J. Appl. Phys. 103(9), 093104 (2008).
[CrossRef]

Todoroki, S.

S. Todoroki, K. Hirao, and N. Soga, “Local-Structure around Rare-Earth Ions in Indium-Based and Lead-Based Fluoride Glasses with High up-Conversion Efficiency,” J. Non-Cryst. Sol. 143, 46–51 (1992).
[CrossRef]

Toncelli, A.

G. Turri, V. Sudesh, M. Richardson, M. Bass, A. Toncelli, and M. Tonelli, “Temperature-dependent spectroscopic properties of Tm3+ in germanate, silica, and phosphate glasses: A comparative study,” J. Appl. Phys. 103(9), 093104 (2008).
[CrossRef]

Tonelli, M.

G. Turri, V. Sudesh, M. Richardson, M. Bass, A. Toncelli, and M. Tonelli, “Temperature-dependent spectroscopic properties of Tm3+ in germanate, silica, and phosphate glasses: A comparative study,” J. Appl. Phys. 103(9), 093104 (2008).
[CrossRef]

Tsang, Y.

Turner, G. A.

J. B. Gruber, M. E. Hills, M. D. Seltzer, S. B. Stevens, C. A. Morrison, G. A. Turner, and M. R. Kokta, “Energy-levels and crystal quantum states of trivalent holmium in Yttrium-Aluminum-Garnet,” J. Appl. Phys. 69(12), 8183–8204 (1991).
[CrossRef]

Turri, G.

G. Turri, V. Sudesh, M. Richardson, M. Bass, A. Toncelli, and M. Tonelli, “Temperature-dependent spectroscopic properties of Tm3+ in germanate, silica, and phosphate glasses: A comparative study,” J. Appl. Phys. 103(9), 093104 (2008).
[CrossRef]

Vetter, S.

F. Fusari, S. Vetter, A. A. Lagatsky, B. Richards, S. Calvez, A. Jha, M. D. Dawson, W. Sibbett, and C. T. A. Brown, “Tunable laser operation of a Tm3+-doped tellurite glass laser near 2 μm pumped by a 1211 nm semiconductor disk laser,” Opt. Mater. In press.

Vogel, E. M.

J. S. Wang, E. M. Vogel, and E. Snitzer, “Tellurite Glass: A new candidate for fiber devices,” Opt. Mater. 3(3), 187–203 (1994).
[CrossRef]

Walsh, B. M.

B. M. Walsh, “Review of Tm and Ho materials; spectroscopy and lasers,” Laser Phys. 19(4), 855–866 (2009).
[CrossRef]

Wang, J. S.

J. S. Wang, E. M. Vogel, and E. Snitzer, “Tellurite Glass: A new candidate for fiber devices,” Opt. Mater. 3(3), 187–203 (1994).
[CrossRef]

Waynant, R. W.

R. W. Waynant, I. K. Ilev, and I. Gannot, “Mid-infrared laser applications in medicine and biology,” Philos. Trans. R. Soc. Lond. A 359(1780), 635–644 (2001).
[CrossRef]

Wilson, S.

S. X. Shen, A. Jha, E. Zhang, and S. Wilson, “Tm3+-Ho3+ and Tm3+-Tb3+ energy transfer in tellurite glass,” J. Lumin. 126(2), 434–440 (2007).
[CrossRef]

Wu, J. F.

Yao, Z.

Yasukevich, A. S.

A. A. Lagatsky, F. Fusari, S. V. Kurilchik, V. E. Kisel, A. S. Yasukevich, N. V. Kuleshov, A. A. Pavlyuk, C. T. A. Brown, and W. Sibbett, “Optical spectroscopy and efficient continuous-wave operation near 2 μm for a Tm, Ho:KYW laser crystal,” Appl. Phys. B 97(2), 321–326 (2009).
[CrossRef]

Zhang, E.

S. X. Shen, A. Jha, E. Zhang, and S. Wilson, “Tm3+-Ho3+ and Tm3+-Tb3+ energy transfer in tellurite glass,” J. Lumin. 126(2), 434–440 (2007).
[CrossRef]

Zong, J.

Appl. Phys. B

A. A. Lagatsky, F. Fusari, S. V. Kurilchik, V. E. Kisel, A. S. Yasukevich, N. V. Kuleshov, A. A. Pavlyuk, C. T. A. Brown, and W. Sibbett, “Optical spectroscopy and efficient continuous-wave operation near 2 μm for a Tm, Ho:KYW laser crystal,” Appl. Phys. B 97(2), 321–326 (2009).
[CrossRef]

IEEE J. Quantum Electron.

S. A. Payne, L. L. Chase, L. K. Smith, W. L. Kway, and W. F. Krupke, “Infrared Cross-Section Measurements for Crystals Doped with Er3+, Tm3+, and Ho3+,” IEEE J. Quantum Electron. 28(11), 2619–2630 (1992).
[CrossRef]

J. A. Caird, S. A. Payne, P. R. Staber, A. J. Ramponi, L. L. Chase, and W. F. Krupke, “Quantum Electronic Properties of the Na3Ga2Li3FI12 Cr3+ Laser,” IEEE J. Quantum Electron. 24(6), 1077–1099 (1988).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron.

H. A. Haus, “Mode-locking of lasers,” IEEE J. Sel. Top. Quantum Electron. 6(6), 1173–1185 (2000).
[CrossRef]

J. Appl. Phys.

J. B. Gruber, M. E. Hills, M. D. Seltzer, S. B. Stevens, C. A. Morrison, G. A. Turner, and M. R. Kokta, “Energy-levels and crystal quantum states of trivalent holmium in Yttrium-Aluminum-Garnet,” J. Appl. Phys. 69(12), 8183–8204 (1991).
[CrossRef]

G. Turri, V. Sudesh, M. Richardson, M. Bass, A. Toncelli, and M. Tonelli, “Temperature-dependent spectroscopic properties of Tm3+ in germanate, silica, and phosphate glasses: A comparative study,” J. Appl. Phys. 103(9), 093104 (2008).
[CrossRef]

J. Lumin.

S. X. Shen, A. Jha, E. Zhang, and S. Wilson, “Tm3+-Ho3+ and Tm3+-Tb3+ energy transfer in tellurite glass,” J. Lumin. 126(2), 434–440 (2007).
[CrossRef]

J. Non-Cryst. Sol.

S. Todoroki, K. Hirao, and N. Soga, “Local-Structure around Rare-Earth Ions in Indium-Based and Lead-Based Fluoride Glasses with High up-Conversion Efficiency,” J. Non-Cryst. Sol. 143, 46–51 (1992).
[CrossRef]

J. E. Shelby and E. A. Bolden, ““Formation and Properties of Lead Fluorogermanate Glasses,” J. Non-Cryst. Sol. 142, 269–277 (1992).
[CrossRef]

J. Opt. Soc. Am. B

Laser Phys.

B. M. Walsh, “Review of Tm and Ho materials; spectroscopy and lasers,” Laser Phys. 19(4), 855–866 (2009).
[CrossRef]

Lasers Med. Sci.

A. F. El-Sherif and T. A. King, “Soft and hard tissue ablation with short-pulse high peak power and continuous thulium-silica fibre lasers,” Lasers Med. Sci. 18(3), 139–147 (2003).
[CrossRef] [PubMed]

Opt. Commun.

S. D. Jackson, “Efficient Tm3+, Ho3+-co-doped silica fibre laser diode pumped at 1150 nm,” Opt. Commun. 281(14), 3837–3840 (2008).
[CrossRef]

Opt. Express

Opt. Lett.

Opt. Mater.

X. Jiang, J. Lousteau, B. Richards, and A. Jha, “Investigation on germanium oxide-based glasses for infrared optical fibre development,” Opt. Mater. 31(11), 1701–1706 (2009).
[CrossRef]

J. S. Wang, E. M. Vogel, and E. Snitzer, “Tellurite Glass: A new candidate for fiber devices,” Opt. Mater. 3(3), 187–203 (1994).
[CrossRef]

F. Fusari, S. Vetter, A. A. Lagatsky, B. Richards, S. Calvez, A. Jha, M. D. Dawson, W. Sibbett, and C. T. A. Brown, “Tunable laser operation of a Tm3+-doped tellurite glass laser near 2 μm pumped by a 1211 nm semiconductor disk laser,” Opt. Mater. In press.

Philos. Trans. R. Soc. Lond. A

R. W. Waynant, I. K. Ilev, and I. Gannot, “Mid-infrared laser applications in medicine and biology,” Philos. Trans. R. Soc. Lond. A 359(1780), 635–644 (2001).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Calculated absorption cross sections (left axis) for both glass samples using the measured absorption coefficient spectra (right axis). All peaks are highlighted with their respective wavelength and absorption level from the ground 3H6 level of Tm3+ or 5I8 level of Ho3+. Non boxed values refer to Tm3+ transitions, boxed values refer to Ho3+ transitions.

Fig. 2
Fig. 2

The emission cross section spectra of the two glass samples as calculated with the reciprocity method from the absorption cross sections and parameters reported in reference [19]. Non boxed values refer to the Tm3+ transition to ground level 3H6, boxed values refer to the Ho3+ transition to ground levels 5I8.

Fig. 3
Fig. 3

The experimental setup used for the laser experiments. M1 and M2 – plano-concave HR mirrors (r1 = −75 mm and r2 = −100mm), M3 and M4 plane high reflectivity or output coupler mirrors. LE - glass laser element, IRP - infrared grade fused silica prisms, SESAM - semiconductor saturable absorber mirror (was used during modelocking experiments). The SESAM was replaced with an HR mirror for cw characterization.

Fig. 4
Fig. 4

a) Tm3+:GPNG output power vs. absorbed pump power for 0.8%, 2.0%, 4.1% and 6.1% OCs with associated slope efficiencies of 32%, 40%, 47% and 50% respectively. b) Tm3+,Ho3+:TZN output power vs. absorbed pump power for 0.8% and 2. % OCs with associated slope efficiencies of 18% and 26%.

Fig. 5
Fig. 5

Tunabilities normalized to the maximum power for Tm3+:GPNG and Tm3+,Ho3+:TZN glass lasers. Data were measured with the 0.8% OC. The straight lines highlight the full width at half maximum of the tunability profiles. FWHM = 145 nm for the Tm3+:GPNG and 125 nm for the Tm3+,Ho3+:TZN.

Fig. 6
Fig. 6

The absorbed to average output power characteristics of (a) Tm:fluorogermanate and (b) Tm,Ho:tellurite glass lasers with the SESAM in place.

Fig. 7
Fig. 7

(a) The intensity autocorrelation trace with sech2 fit (dotted line) and (b) the corresponding optical spectrum of the shortest pulses obtained from the Tm:fluorogermanate laser.

Fig. 8
Fig. 8

(a) The intensity autocorrelation trace with sech2 fit (dot line) and (b) optical spectrum of the shortest modelocked pulses from the Tm,Ho:tellurite glass laser.

Fig. 9
Fig. 9

The pulse durations τP as a function of the intracavity pulse energy for the Tm3+,Ho3+:TZN laser.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

τ P = 1.7627 4 | D | δ L E P
n 2 = w L 2 λ δ L 4 L g

Metrics