Abstract

This work describes a method for rapidly and conveniently fabricating high-performance conductive patterns on poly (vinylidene fluoride) substrates using a 248nm excimer laser. It shows that the artificial active centre, created by laser direct etching technique, could facilely control the formation of modified layer, avoiding the laser threshold in processing. Using the etching lines to structure the nonconductive paths, the controllable patterns can be formed in selective areas through the designed photo-mask when 248nm laser irradiation. The modified layer exhibits a high-grade electrical conductivity of 2.80 Ω−1cm−1 increased by 13 orders of magnitude, and the considerable improvement in conductivity could be attributed to the carbon enrichment, especially the structural formation of C-C.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. Gangopadhyay and A. De, “Conducting polymer nanocomposites: A brief overview,” Chem. Mater. 12(3), 608–622 (2000).
    [CrossRef]
  2. S. R. Forrest, “The path to ubiquitous and low-cost organic electronic appliances on plastic,” Nature 428(6986), 911–918 (2004).
    [CrossRef] [PubMed]
  3. A. N. Aleshin, “Polymer nanofibers and nanotubes: Change transport and device application,” Adv. Mater. (Deerfield Beach Fla.) 18(1), 17–27 (2006).
    [CrossRef]
  4. J. R. Tumbleston, D. H. Ko, E. T. Samulski, and R. Lopez, “Absorption and quasiguided mode analysis of organic solar cells with photonic crystal photoactive layers,” Opt. Express 17(9), 7670–7681 (2009).
    [CrossRef] [PubMed]
  5. A. J. Heeger, “Semiconducting polymers: the Third Generation,” Chem. Soc. Rev. 39(7), 2354–2371 (2010).
    [CrossRef] [PubMed]
  6. A. Pron and P. Rannou, “Processible conjugated polymers: from organic semiconductor to organic metals and superconductors,” Prog. Polym. Sci. 27(1), 135–190 (2002).
    [CrossRef]
  7. U. Lange, N. V. Roznyatovskaya, and V. M. Mirsky, “Conducting polymers in chemical sensors and arrays,” Anal. Chim. Acta 614(1), 1–26 (2008).
    [CrossRef] [PubMed]
  8. D. H. Read and J. E. Martin, “Field-structured chemiresistors,” Adv. Funct. Mater. 20(10), 1577–1584 (2010).
    [CrossRef]
  9. J. Roncali, “Conjugated poly(thiophenes)-synthesis, functionalization, and applications,” Chem. Rev. 92(4), 711–738 (1992).
    [CrossRef]
  10. D. Li, J. X. Huang, and R. B. Kaner, “Polyaniline nanofibers: a unique polymer nanostructure for versatile applications,” Acc. Chem. Res. 42(1), 135–145 (2009).
    [CrossRef]
  11. Y. L. Ji and Y. J. Jiang, “Increasing the electrical conductivity of poly(vinylidene fluoride) by KrF excimer laser irradiation,” Appl. Phys. Lett. 89(22), 221103 (2006).
    [CrossRef]
  12. R. Srinivasan, R. R. Hall, and D. C. Allbee, “Generation of electrically conducting features in polymimide (Kapton(TM)) films with continuous- wave, ultraviolet-laser radiation,” Appl. Phys. Lett. 63(24), 3382–3383 (1993).
    [CrossRef]
  13. Z. Y. Qin, X. Y. Huang, D. K. Wang, T. He, Q. Wang, and Y. Zhang, “Formation of conducting layer on excimer-laser-irradiated polyimide film surfaces,” Surf. Interface Anal. 29(8), 514–518 (2000).
    [CrossRef]
  14. C. Becker, S. Etienne, J. Bour, D. Ruch, and F. Aubriet, “Comparison of CO2 laser and atmospheric plasma treatments on the thermal stability and structural modifications of microporous poly(vinyl chloride)/Silica composites,” Eur. Phys. J. Appl. Phys. 43(3), 301–307 (2008).
    [CrossRef]
  15. T. Sultana, G. L. Georgiev, G. Auner, G. Newaz, H. Herfurth, and R. Patwa, “XPS analysis of laser transmission micro-joint between poly(vinylidene fluoride) and titanium,” Appl. Surf. Sci. 255(5), 2569–2573 (2008).
    [CrossRef]
  16. Y. Wang, K. L. Ren, and Q. M. Zhang, “Direct piezolelectric response of piezopolymer polyvinylidene fluoride under high mechanical strain and stress,” Appl. Phys. Lett. 91(22), 222905 (2007).
    [CrossRef]
  17. M. D. Duca, C. L. Plosceanu, and T. Pop, “Effect of X-rays on poly (vinylidene fluoride) in X-ray photoelectron spectroscopy,” J. Appl. Polym. Sci. 67(13), 2125–2129 (1998).
    [CrossRef]
  18. S. R. George, J. A. Leraas, S. C. Langford, and J. T. Dickinson, “Interaction of 157-nm excimer laser radiation with fluorocarbon polymers,” Appl. Surf. Sci. 255(24), 9558–9561 (2009).
    [CrossRef]
  19. Y. Izumi, S. Kawanishi, S. Hara, D. Yoshikawa, and T. Yamamoto, “Irradiation effect of excimer laser light on poly(vinylidene fluoride) (PVdF) film,” Bull. Chem. Soc. Jpn. 71(11), 2721–2725 (1998).
    [CrossRef]

2010 (2)

A. J. Heeger, “Semiconducting polymers: the Third Generation,” Chem. Soc. Rev. 39(7), 2354–2371 (2010).
[CrossRef] [PubMed]

D. H. Read and J. E. Martin, “Field-structured chemiresistors,” Adv. Funct. Mater. 20(10), 1577–1584 (2010).
[CrossRef]

2009 (3)

J. R. Tumbleston, D. H. Ko, E. T. Samulski, and R. Lopez, “Absorption and quasiguided mode analysis of organic solar cells with photonic crystal photoactive layers,” Opt. Express 17(9), 7670–7681 (2009).
[CrossRef] [PubMed]

D. Li, J. X. Huang, and R. B. Kaner, “Polyaniline nanofibers: a unique polymer nanostructure for versatile applications,” Acc. Chem. Res. 42(1), 135–145 (2009).
[CrossRef]

S. R. George, J. A. Leraas, S. C. Langford, and J. T. Dickinson, “Interaction of 157-nm excimer laser radiation with fluorocarbon polymers,” Appl. Surf. Sci. 255(24), 9558–9561 (2009).
[CrossRef]

2008 (3)

U. Lange, N. V. Roznyatovskaya, and V. M. Mirsky, “Conducting polymers in chemical sensors and arrays,” Anal. Chim. Acta 614(1), 1–26 (2008).
[CrossRef] [PubMed]

C. Becker, S. Etienne, J. Bour, D. Ruch, and F. Aubriet, “Comparison of CO2 laser and atmospheric plasma treatments on the thermal stability and structural modifications of microporous poly(vinyl chloride)/Silica composites,” Eur. Phys. J. Appl. Phys. 43(3), 301–307 (2008).
[CrossRef]

T. Sultana, G. L. Georgiev, G. Auner, G. Newaz, H. Herfurth, and R. Patwa, “XPS analysis of laser transmission micro-joint between poly(vinylidene fluoride) and titanium,” Appl. Surf. Sci. 255(5), 2569–2573 (2008).
[CrossRef]

2007 (1)

Y. Wang, K. L. Ren, and Q. M. Zhang, “Direct piezolelectric response of piezopolymer polyvinylidene fluoride under high mechanical strain and stress,” Appl. Phys. Lett. 91(22), 222905 (2007).
[CrossRef]

2006 (2)

Y. L. Ji and Y. J. Jiang, “Increasing the electrical conductivity of poly(vinylidene fluoride) by KrF excimer laser irradiation,” Appl. Phys. Lett. 89(22), 221103 (2006).
[CrossRef]

A. N. Aleshin, “Polymer nanofibers and nanotubes: Change transport and device application,” Adv. Mater. (Deerfield Beach Fla.) 18(1), 17–27 (2006).
[CrossRef]

2004 (1)

S. R. Forrest, “The path to ubiquitous and low-cost organic electronic appliances on plastic,” Nature 428(6986), 911–918 (2004).
[CrossRef] [PubMed]

2002 (1)

A. Pron and P. Rannou, “Processible conjugated polymers: from organic semiconductor to organic metals and superconductors,” Prog. Polym. Sci. 27(1), 135–190 (2002).
[CrossRef]

2000 (2)

R. Gangopadhyay and A. De, “Conducting polymer nanocomposites: A brief overview,” Chem. Mater. 12(3), 608–622 (2000).
[CrossRef]

Z. Y. Qin, X. Y. Huang, D. K. Wang, T. He, Q. Wang, and Y. Zhang, “Formation of conducting layer on excimer-laser-irradiated polyimide film surfaces,” Surf. Interface Anal. 29(8), 514–518 (2000).
[CrossRef]

1998 (2)

M. D. Duca, C. L. Plosceanu, and T. Pop, “Effect of X-rays on poly (vinylidene fluoride) in X-ray photoelectron spectroscopy,” J. Appl. Polym. Sci. 67(13), 2125–2129 (1998).
[CrossRef]

Y. Izumi, S. Kawanishi, S. Hara, D. Yoshikawa, and T. Yamamoto, “Irradiation effect of excimer laser light on poly(vinylidene fluoride) (PVdF) film,” Bull. Chem. Soc. Jpn. 71(11), 2721–2725 (1998).
[CrossRef]

1993 (1)

R. Srinivasan, R. R. Hall, and D. C. Allbee, “Generation of electrically conducting features in polymimide (Kapton(TM)) films with continuous- wave, ultraviolet-laser radiation,” Appl. Phys. Lett. 63(24), 3382–3383 (1993).
[CrossRef]

1992 (1)

J. Roncali, “Conjugated poly(thiophenes)-synthesis, functionalization, and applications,” Chem. Rev. 92(4), 711–738 (1992).
[CrossRef]

Aleshin, A. N.

A. N. Aleshin, “Polymer nanofibers and nanotubes: Change transport and device application,” Adv. Mater. (Deerfield Beach Fla.) 18(1), 17–27 (2006).
[CrossRef]

Allbee, D. C.

R. Srinivasan, R. R. Hall, and D. C. Allbee, “Generation of electrically conducting features in polymimide (Kapton(TM)) films with continuous- wave, ultraviolet-laser radiation,” Appl. Phys. Lett. 63(24), 3382–3383 (1993).
[CrossRef]

Aubriet, F.

C. Becker, S. Etienne, J. Bour, D. Ruch, and F. Aubriet, “Comparison of CO2 laser and atmospheric plasma treatments on the thermal stability and structural modifications of microporous poly(vinyl chloride)/Silica composites,” Eur. Phys. J. Appl. Phys. 43(3), 301–307 (2008).
[CrossRef]

Auner, G.

T. Sultana, G. L. Georgiev, G. Auner, G. Newaz, H. Herfurth, and R. Patwa, “XPS analysis of laser transmission micro-joint between poly(vinylidene fluoride) and titanium,” Appl. Surf. Sci. 255(5), 2569–2573 (2008).
[CrossRef]

Becker, C.

C. Becker, S. Etienne, J. Bour, D. Ruch, and F. Aubriet, “Comparison of CO2 laser and atmospheric plasma treatments on the thermal stability and structural modifications of microporous poly(vinyl chloride)/Silica composites,” Eur. Phys. J. Appl. Phys. 43(3), 301–307 (2008).
[CrossRef]

Bour, J.

C. Becker, S. Etienne, J. Bour, D. Ruch, and F. Aubriet, “Comparison of CO2 laser and atmospheric plasma treatments on the thermal stability and structural modifications of microporous poly(vinyl chloride)/Silica composites,” Eur. Phys. J. Appl. Phys. 43(3), 301–307 (2008).
[CrossRef]

De, A.

R. Gangopadhyay and A. De, “Conducting polymer nanocomposites: A brief overview,” Chem. Mater. 12(3), 608–622 (2000).
[CrossRef]

Dickinson, J. T.

S. R. George, J. A. Leraas, S. C. Langford, and J. T. Dickinson, “Interaction of 157-nm excimer laser radiation with fluorocarbon polymers,” Appl. Surf. Sci. 255(24), 9558–9561 (2009).
[CrossRef]

Duca, M. D.

M. D. Duca, C. L. Plosceanu, and T. Pop, “Effect of X-rays on poly (vinylidene fluoride) in X-ray photoelectron spectroscopy,” J. Appl. Polym. Sci. 67(13), 2125–2129 (1998).
[CrossRef]

Etienne, S.

C. Becker, S. Etienne, J. Bour, D. Ruch, and F. Aubriet, “Comparison of CO2 laser and atmospheric plasma treatments on the thermal stability and structural modifications of microporous poly(vinyl chloride)/Silica composites,” Eur. Phys. J. Appl. Phys. 43(3), 301–307 (2008).
[CrossRef]

Forrest, S. R.

S. R. Forrest, “The path to ubiquitous and low-cost organic electronic appliances on plastic,” Nature 428(6986), 911–918 (2004).
[CrossRef] [PubMed]

Gangopadhyay, R.

R. Gangopadhyay and A. De, “Conducting polymer nanocomposites: A brief overview,” Chem. Mater. 12(3), 608–622 (2000).
[CrossRef]

George, S. R.

S. R. George, J. A. Leraas, S. C. Langford, and J. T. Dickinson, “Interaction of 157-nm excimer laser radiation with fluorocarbon polymers,” Appl. Surf. Sci. 255(24), 9558–9561 (2009).
[CrossRef]

Georgiev, G. L.

T. Sultana, G. L. Georgiev, G. Auner, G. Newaz, H. Herfurth, and R. Patwa, “XPS analysis of laser transmission micro-joint between poly(vinylidene fluoride) and titanium,” Appl. Surf. Sci. 255(5), 2569–2573 (2008).
[CrossRef]

Hall, R. R.

R. Srinivasan, R. R. Hall, and D. C. Allbee, “Generation of electrically conducting features in polymimide (Kapton(TM)) films with continuous- wave, ultraviolet-laser radiation,” Appl. Phys. Lett. 63(24), 3382–3383 (1993).
[CrossRef]

Hara, S.

Y. Izumi, S. Kawanishi, S. Hara, D. Yoshikawa, and T. Yamamoto, “Irradiation effect of excimer laser light on poly(vinylidene fluoride) (PVdF) film,” Bull. Chem. Soc. Jpn. 71(11), 2721–2725 (1998).
[CrossRef]

He, T.

Z. Y. Qin, X. Y. Huang, D. K. Wang, T. He, Q. Wang, and Y. Zhang, “Formation of conducting layer on excimer-laser-irradiated polyimide film surfaces,” Surf. Interface Anal. 29(8), 514–518 (2000).
[CrossRef]

Heeger, A. J.

A. J. Heeger, “Semiconducting polymers: the Third Generation,” Chem. Soc. Rev. 39(7), 2354–2371 (2010).
[CrossRef] [PubMed]

Herfurth, H.

T. Sultana, G. L. Georgiev, G. Auner, G. Newaz, H. Herfurth, and R. Patwa, “XPS analysis of laser transmission micro-joint between poly(vinylidene fluoride) and titanium,” Appl. Surf. Sci. 255(5), 2569–2573 (2008).
[CrossRef]

Huang, J. X.

D. Li, J. X. Huang, and R. B. Kaner, “Polyaniline nanofibers: a unique polymer nanostructure for versatile applications,” Acc. Chem. Res. 42(1), 135–145 (2009).
[CrossRef]

Huang, X. Y.

Z. Y. Qin, X. Y. Huang, D. K. Wang, T. He, Q. Wang, and Y. Zhang, “Formation of conducting layer on excimer-laser-irradiated polyimide film surfaces,” Surf. Interface Anal. 29(8), 514–518 (2000).
[CrossRef]

Izumi, Y.

Y. Izumi, S. Kawanishi, S. Hara, D. Yoshikawa, and T. Yamamoto, “Irradiation effect of excimer laser light on poly(vinylidene fluoride) (PVdF) film,” Bull. Chem. Soc. Jpn. 71(11), 2721–2725 (1998).
[CrossRef]

Ji, Y. L.

Y. L. Ji and Y. J. Jiang, “Increasing the electrical conductivity of poly(vinylidene fluoride) by KrF excimer laser irradiation,” Appl. Phys. Lett. 89(22), 221103 (2006).
[CrossRef]

Jiang, Y. J.

Y. L. Ji and Y. J. Jiang, “Increasing the electrical conductivity of poly(vinylidene fluoride) by KrF excimer laser irradiation,” Appl. Phys. Lett. 89(22), 221103 (2006).
[CrossRef]

Kaner, R. B.

D. Li, J. X. Huang, and R. B. Kaner, “Polyaniline nanofibers: a unique polymer nanostructure for versatile applications,” Acc. Chem. Res. 42(1), 135–145 (2009).
[CrossRef]

Kawanishi, S.

Y. Izumi, S. Kawanishi, S. Hara, D. Yoshikawa, and T. Yamamoto, “Irradiation effect of excimer laser light on poly(vinylidene fluoride) (PVdF) film,” Bull. Chem. Soc. Jpn. 71(11), 2721–2725 (1998).
[CrossRef]

Ko, D. H.

Lange, U.

U. Lange, N. V. Roznyatovskaya, and V. M. Mirsky, “Conducting polymers in chemical sensors and arrays,” Anal. Chim. Acta 614(1), 1–26 (2008).
[CrossRef] [PubMed]

Langford, S. C.

S. R. George, J. A. Leraas, S. C. Langford, and J. T. Dickinson, “Interaction of 157-nm excimer laser radiation with fluorocarbon polymers,” Appl. Surf. Sci. 255(24), 9558–9561 (2009).
[CrossRef]

Leraas, J. A.

S. R. George, J. A. Leraas, S. C. Langford, and J. T. Dickinson, “Interaction of 157-nm excimer laser radiation with fluorocarbon polymers,” Appl. Surf. Sci. 255(24), 9558–9561 (2009).
[CrossRef]

Li, D.

D. Li, J. X. Huang, and R. B. Kaner, “Polyaniline nanofibers: a unique polymer nanostructure for versatile applications,” Acc. Chem. Res. 42(1), 135–145 (2009).
[CrossRef]

Lopez, R.

Martin, J. E.

D. H. Read and J. E. Martin, “Field-structured chemiresistors,” Adv. Funct. Mater. 20(10), 1577–1584 (2010).
[CrossRef]

Mirsky, V. M.

U. Lange, N. V. Roznyatovskaya, and V. M. Mirsky, “Conducting polymers in chemical sensors and arrays,” Anal. Chim. Acta 614(1), 1–26 (2008).
[CrossRef] [PubMed]

Newaz, G.

T. Sultana, G. L. Georgiev, G. Auner, G. Newaz, H. Herfurth, and R. Patwa, “XPS analysis of laser transmission micro-joint between poly(vinylidene fluoride) and titanium,” Appl. Surf. Sci. 255(5), 2569–2573 (2008).
[CrossRef]

Patwa, R.

T. Sultana, G. L. Georgiev, G. Auner, G. Newaz, H. Herfurth, and R. Patwa, “XPS analysis of laser transmission micro-joint between poly(vinylidene fluoride) and titanium,” Appl. Surf. Sci. 255(5), 2569–2573 (2008).
[CrossRef]

Plosceanu, C. L.

M. D. Duca, C. L. Plosceanu, and T. Pop, “Effect of X-rays on poly (vinylidene fluoride) in X-ray photoelectron spectroscopy,” J. Appl. Polym. Sci. 67(13), 2125–2129 (1998).
[CrossRef]

Pop, T.

M. D. Duca, C. L. Plosceanu, and T. Pop, “Effect of X-rays on poly (vinylidene fluoride) in X-ray photoelectron spectroscopy,” J. Appl. Polym. Sci. 67(13), 2125–2129 (1998).
[CrossRef]

Pron, A.

A. Pron and P. Rannou, “Processible conjugated polymers: from organic semiconductor to organic metals and superconductors,” Prog. Polym. Sci. 27(1), 135–190 (2002).
[CrossRef]

Qin, Z. Y.

Z. Y. Qin, X. Y. Huang, D. K. Wang, T. He, Q. Wang, and Y. Zhang, “Formation of conducting layer on excimer-laser-irradiated polyimide film surfaces,” Surf. Interface Anal. 29(8), 514–518 (2000).
[CrossRef]

Rannou, P.

A. Pron and P. Rannou, “Processible conjugated polymers: from organic semiconductor to organic metals and superconductors,” Prog. Polym. Sci. 27(1), 135–190 (2002).
[CrossRef]

Read, D. H.

D. H. Read and J. E. Martin, “Field-structured chemiresistors,” Adv. Funct. Mater. 20(10), 1577–1584 (2010).
[CrossRef]

Ren, K. L.

Y. Wang, K. L. Ren, and Q. M. Zhang, “Direct piezolelectric response of piezopolymer polyvinylidene fluoride under high mechanical strain and stress,” Appl. Phys. Lett. 91(22), 222905 (2007).
[CrossRef]

Roncali, J.

J. Roncali, “Conjugated poly(thiophenes)-synthesis, functionalization, and applications,” Chem. Rev. 92(4), 711–738 (1992).
[CrossRef]

Roznyatovskaya, N. V.

U. Lange, N. V. Roznyatovskaya, and V. M. Mirsky, “Conducting polymers in chemical sensors and arrays,” Anal. Chim. Acta 614(1), 1–26 (2008).
[CrossRef] [PubMed]

Ruch, D.

C. Becker, S. Etienne, J. Bour, D. Ruch, and F. Aubriet, “Comparison of CO2 laser and atmospheric plasma treatments on the thermal stability and structural modifications of microporous poly(vinyl chloride)/Silica composites,” Eur. Phys. J. Appl. Phys. 43(3), 301–307 (2008).
[CrossRef]

Samulski, E. T.

Srinivasan, R.

R. Srinivasan, R. R. Hall, and D. C. Allbee, “Generation of electrically conducting features in polymimide (Kapton(TM)) films with continuous- wave, ultraviolet-laser radiation,” Appl. Phys. Lett. 63(24), 3382–3383 (1993).
[CrossRef]

Sultana, T.

T. Sultana, G. L. Georgiev, G. Auner, G. Newaz, H. Herfurth, and R. Patwa, “XPS analysis of laser transmission micro-joint between poly(vinylidene fluoride) and titanium,” Appl. Surf. Sci. 255(5), 2569–2573 (2008).
[CrossRef]

Tumbleston, J. R.

Wang, D. K.

Z. Y. Qin, X. Y. Huang, D. K. Wang, T. He, Q. Wang, and Y. Zhang, “Formation of conducting layer on excimer-laser-irradiated polyimide film surfaces,” Surf. Interface Anal. 29(8), 514–518 (2000).
[CrossRef]

Wang, Q.

Z. Y. Qin, X. Y. Huang, D. K. Wang, T. He, Q. Wang, and Y. Zhang, “Formation of conducting layer on excimer-laser-irradiated polyimide film surfaces,” Surf. Interface Anal. 29(8), 514–518 (2000).
[CrossRef]

Wang, Y.

Y. Wang, K. L. Ren, and Q. M. Zhang, “Direct piezolelectric response of piezopolymer polyvinylidene fluoride under high mechanical strain and stress,” Appl. Phys. Lett. 91(22), 222905 (2007).
[CrossRef]

Yamamoto, T.

Y. Izumi, S. Kawanishi, S. Hara, D. Yoshikawa, and T. Yamamoto, “Irradiation effect of excimer laser light on poly(vinylidene fluoride) (PVdF) film,” Bull. Chem. Soc. Jpn. 71(11), 2721–2725 (1998).
[CrossRef]

Yoshikawa, D.

Y. Izumi, S. Kawanishi, S. Hara, D. Yoshikawa, and T. Yamamoto, “Irradiation effect of excimer laser light on poly(vinylidene fluoride) (PVdF) film,” Bull. Chem. Soc. Jpn. 71(11), 2721–2725 (1998).
[CrossRef]

Zhang, Q. M.

Y. Wang, K. L. Ren, and Q. M. Zhang, “Direct piezolelectric response of piezopolymer polyvinylidene fluoride under high mechanical strain and stress,” Appl. Phys. Lett. 91(22), 222905 (2007).
[CrossRef]

Zhang, Y.

Z. Y. Qin, X. Y. Huang, D. K. Wang, T. He, Q. Wang, and Y. Zhang, “Formation of conducting layer on excimer-laser-irradiated polyimide film surfaces,” Surf. Interface Anal. 29(8), 514–518 (2000).
[CrossRef]

Acc. Chem. Res. (1)

D. Li, J. X. Huang, and R. B. Kaner, “Polyaniline nanofibers: a unique polymer nanostructure for versatile applications,” Acc. Chem. Res. 42(1), 135–145 (2009).
[CrossRef]

Adv. Funct. Mater. (1)

D. H. Read and J. E. Martin, “Field-structured chemiresistors,” Adv. Funct. Mater. 20(10), 1577–1584 (2010).
[CrossRef]

Adv. Mater. (Deerfield Beach Fla.) (1)

A. N. Aleshin, “Polymer nanofibers and nanotubes: Change transport and device application,” Adv. Mater. (Deerfield Beach Fla.) 18(1), 17–27 (2006).
[CrossRef]

Anal. Chim. Acta (1)

U. Lange, N. V. Roznyatovskaya, and V. M. Mirsky, “Conducting polymers in chemical sensors and arrays,” Anal. Chim. Acta 614(1), 1–26 (2008).
[CrossRef] [PubMed]

Appl. Phys. Lett. (3)

Y. Wang, K. L. Ren, and Q. M. Zhang, “Direct piezolelectric response of piezopolymer polyvinylidene fluoride under high mechanical strain and stress,” Appl. Phys. Lett. 91(22), 222905 (2007).
[CrossRef]

Y. L. Ji and Y. J. Jiang, “Increasing the electrical conductivity of poly(vinylidene fluoride) by KrF excimer laser irradiation,” Appl. Phys. Lett. 89(22), 221103 (2006).
[CrossRef]

R. Srinivasan, R. R. Hall, and D. C. Allbee, “Generation of electrically conducting features in polymimide (Kapton(TM)) films with continuous- wave, ultraviolet-laser radiation,” Appl. Phys. Lett. 63(24), 3382–3383 (1993).
[CrossRef]

Appl. Surf. Sci. (2)

S. R. George, J. A. Leraas, S. C. Langford, and J. T. Dickinson, “Interaction of 157-nm excimer laser radiation with fluorocarbon polymers,” Appl. Surf. Sci. 255(24), 9558–9561 (2009).
[CrossRef]

T. Sultana, G. L. Georgiev, G. Auner, G. Newaz, H. Herfurth, and R. Patwa, “XPS analysis of laser transmission micro-joint between poly(vinylidene fluoride) and titanium,” Appl. Surf. Sci. 255(5), 2569–2573 (2008).
[CrossRef]

Bull. Chem. Soc. Jpn. (1)

Y. Izumi, S. Kawanishi, S. Hara, D. Yoshikawa, and T. Yamamoto, “Irradiation effect of excimer laser light on poly(vinylidene fluoride) (PVdF) film,” Bull. Chem. Soc. Jpn. 71(11), 2721–2725 (1998).
[CrossRef]

Chem. Mater. (1)

R. Gangopadhyay and A. De, “Conducting polymer nanocomposites: A brief overview,” Chem. Mater. 12(3), 608–622 (2000).
[CrossRef]

Chem. Rev. (1)

J. Roncali, “Conjugated poly(thiophenes)-synthesis, functionalization, and applications,” Chem. Rev. 92(4), 711–738 (1992).
[CrossRef]

Chem. Soc. Rev. (1)

A. J. Heeger, “Semiconducting polymers: the Third Generation,” Chem. Soc. Rev. 39(7), 2354–2371 (2010).
[CrossRef] [PubMed]

Eur. Phys. J. Appl. Phys. (1)

C. Becker, S. Etienne, J. Bour, D. Ruch, and F. Aubriet, “Comparison of CO2 laser and atmospheric plasma treatments on the thermal stability and structural modifications of microporous poly(vinyl chloride)/Silica composites,” Eur. Phys. J. Appl. Phys. 43(3), 301–307 (2008).
[CrossRef]

J. Appl. Polym. Sci. (1)

M. D. Duca, C. L. Plosceanu, and T. Pop, “Effect of X-rays on poly (vinylidene fluoride) in X-ray photoelectron spectroscopy,” J. Appl. Polym. Sci. 67(13), 2125–2129 (1998).
[CrossRef]

Nature (1)

S. R. Forrest, “The path to ubiquitous and low-cost organic electronic appliances on plastic,” Nature 428(6986), 911–918 (2004).
[CrossRef] [PubMed]

Opt. Express (1)

Prog. Polym. Sci. (1)

A. Pron and P. Rannou, “Processible conjugated polymers: from organic semiconductor to organic metals and superconductors,” Prog. Polym. Sci. 27(1), 135–190 (2002).
[CrossRef]

Surf. Interface Anal. (1)

Z. Y. Qin, X. Y. Huang, D. K. Wang, T. He, Q. Wang, and Y. Zhang, “Formation of conducting layer on excimer-laser-irradiated polyimide film surfaces,” Surf. Interface Anal. 29(8), 514–518 (2000).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Schematic views of 248nm excimer laser direct etching optical system (a) and 248nm excimer laser irradiation optical system (b).

Fig. 2
Fig. 2

Effect of etching defects on the fabrication of inducing modified layer on PVDF surface: (a) Optical image of eight circle defects etched at 300mJ, 100 pulses; (b) and (c) Typical surface features around the etched defects; (d) and (e) show a uniform modified layer with regular net-like microstructure after laser irradiation at 90mJ/cm2, 50pulses. (b), (c), (d) and (e) are investigated by LSCM.

Fig. 3
Fig. 3

The fabrication process of a simple circle-like conductive pattern on substrates.

Fig. 4
Fig. 4

Optical images (b), (c) and (d) of the evolution of the circle-like conducting layer on PVDF surface. In the SEM image (a) the 0.20-mm-with etching lines was created by laser etching process and structured a circle-like pattern with a diameter of 6 mm (b).(c) shows the transition state of generating a modified layer on the assembled sample. The SEM images of (e) and (f) are the detail with enlarged scale of the edge of final formed sample (d).

Fig. 5
Fig. 5

Optical images of fabricating a spiral electronic pattern on PVDF substrate with the different number of laser shots in (a) 0, (b) 150, (c) 200, (d) 250, (e) 300, and (f) 350 pulses.

Fig. 6
Fig. 6

Typical XPS spectra for C1s and F1s before and after laser irradiation (E = 45 mJ/cm2).

Tables (1)

Tables Icon

Table 1 Average conductivity (σ) of the conducting layer treated at five different laser fluences and the optimal number of laser shots for modification (N)

Metrics