Abstract

The effect of doping by boron on optical properties of multilayers containing Si-NCs were studied by means of photoluminescence (PL), time-resolved PL, photoluminescence excitation (PLE), transmission and reflection measurements. It was found that PL decay is strongly non-single exponential and can be described by means of Laplace transform of log-normal decay rates distribution. It was also proposed that changes observed in the distribution central moments reflect the disorder induced by boron-doping.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. E.-C. Cho, M. A. Green, G. Conibeer, D. Song, Y.-H. Cho, G. Scardera, S. Huang, S. Park, X. J. Hao, and Y. Huang, “Silicon quantum dots in a dielectric matrix for All-Silicon Tandem Solar Cells,” Adv. OptoElectron. 2007, 69578 (2007).
  2. X. J. Hao, A. P. Podhorodecki, Y. S. Shen, G. Zatryb, J. Misiewicz, and M. A. Green, “Effects of Si-rich oxide layer stoichiometry on the structural and optical properties of Si QD/SiO2 multilayer films,” Nanotechnology 20(48), 485703 (2009).
    [CrossRef] [PubMed]
  3. M. Fujii, K. Toshikiyo, Y. Takase, Y. Yamaguchi, and S. Hayashi, “Below bulk-band-gap photoluminescence at room temperature from heavily P- and B-doped Si nanocrystal,” J. Appl. Phys. 94(3), 1990 (2003).
    [CrossRef]
  4. Y. Kanemitsu, “Slow decay dynamics of visible luminescence in porous silicon: Hopping of carriers confined on a shell region in nanometer-size Si crystallites,” Phys. Rev. B Condens. Matter 48(16), 12357–12360 (1993).
    [CrossRef] [PubMed]
  5. X. J. Hao, E.-C. Cho, C. Flynn, Y. S. Shen, G. Conibeer, and M. A. Green, “Effects of boron doping on the structural and optical properties of silicon nanocrystals in a silicon dioxide matrix,” Nanotechnology 19(42), 424019 (2008).
    [CrossRef] [PubMed]
  6. X. D. Pi, R. Gresback, R. W. Liptak, S. A. Campbell, and U. Kortshagen, “Doping efficiency, dopant location, and oxidation of Si nanocrystals,” Appl. Phys. Lett. 92(12), 123102 (2008).
    [CrossRef]
  7. A. Podhorodecki, J. Misiewicz, F. Gourbilleau, and R. Rizk, “Absorption mechanisms of Silicon Nanocrystals in cosputtered silicon-rich-silicon oxide films,” Electrochem. Solid-State Lett. 11(3), K31 (2008).
    [CrossRef]
  8. M. V. Wolkin, J. Jorne, P. M. Fauchet, G. Allan, and C. Delerue, “Electronic states and luminescence in porous silicon quantum dots: the role of oxygen,” Phys. Rev. Lett. 82(1), 197–200 (1999).
    [CrossRef]
  9. J. Trzmiel, K. Weron, J. Janczura, and E. Placzek-Popko, “Properties of the relaxation time distribution underlying the Kohlrausch-Williams-Watts photoionization of the DX center In Cd1-xMnxTe mixed crystals,” J. Phys. Condens. Matter 21(34), 345801 (2009).
    [CrossRef] [PubMed]
  10. M. N. Berberan-Santos, E. N. Bodunov, and B. Valeur, “Mathematical functions for the analysis of luminescence decays with underlying distributions 1. Kohlrausch decay function (stretched exponential),” Chem. Phys. 315(1-2), 171–182 (2005).
    [CrossRef]
  11. A. F. van Driel, I. S. Nikolaev, P. Vergeer, P. Lodahl, D. Vanmaekelbergh, and W. L. Vos, “Statistical analysis of time-resolved emission from ensembles of semiconductor quantum dots: interpretation of exponential decay models,” Phys. Rev. B 75(3), 035329 (2007).
    [CrossRef]

2009 (2)

X. J. Hao, A. P. Podhorodecki, Y. S. Shen, G. Zatryb, J. Misiewicz, and M. A. Green, “Effects of Si-rich oxide layer stoichiometry on the structural and optical properties of Si QD/SiO2 multilayer films,” Nanotechnology 20(48), 485703 (2009).
[CrossRef] [PubMed]

J. Trzmiel, K. Weron, J. Janczura, and E. Placzek-Popko, “Properties of the relaxation time distribution underlying the Kohlrausch-Williams-Watts photoionization of the DX center In Cd1-xMnxTe mixed crystals,” J. Phys. Condens. Matter 21(34), 345801 (2009).
[CrossRef] [PubMed]

2008 (3)

X. J. Hao, E.-C. Cho, C. Flynn, Y. S. Shen, G. Conibeer, and M. A. Green, “Effects of boron doping on the structural and optical properties of silicon nanocrystals in a silicon dioxide matrix,” Nanotechnology 19(42), 424019 (2008).
[CrossRef] [PubMed]

X. D. Pi, R. Gresback, R. W. Liptak, S. A. Campbell, and U. Kortshagen, “Doping efficiency, dopant location, and oxidation of Si nanocrystals,” Appl. Phys. Lett. 92(12), 123102 (2008).
[CrossRef]

A. Podhorodecki, J. Misiewicz, F. Gourbilleau, and R. Rizk, “Absorption mechanisms of Silicon Nanocrystals in cosputtered silicon-rich-silicon oxide films,” Electrochem. Solid-State Lett. 11(3), K31 (2008).
[CrossRef]

2007 (2)

E.-C. Cho, M. A. Green, G. Conibeer, D. Song, Y.-H. Cho, G. Scardera, S. Huang, S. Park, X. J. Hao, and Y. Huang, “Silicon quantum dots in a dielectric matrix for All-Silicon Tandem Solar Cells,” Adv. OptoElectron. 2007, 69578 (2007).

A. F. van Driel, I. S. Nikolaev, P. Vergeer, P. Lodahl, D. Vanmaekelbergh, and W. L. Vos, “Statistical analysis of time-resolved emission from ensembles of semiconductor quantum dots: interpretation of exponential decay models,” Phys. Rev. B 75(3), 035329 (2007).
[CrossRef]

2005 (1)

M. N. Berberan-Santos, E. N. Bodunov, and B. Valeur, “Mathematical functions for the analysis of luminescence decays with underlying distributions 1. Kohlrausch decay function (stretched exponential),” Chem. Phys. 315(1-2), 171–182 (2005).
[CrossRef]

2003 (1)

M. Fujii, K. Toshikiyo, Y. Takase, Y. Yamaguchi, and S. Hayashi, “Below bulk-band-gap photoluminescence at room temperature from heavily P- and B-doped Si nanocrystal,” J. Appl. Phys. 94(3), 1990 (2003).
[CrossRef]

1999 (1)

M. V. Wolkin, J. Jorne, P. M. Fauchet, G. Allan, and C. Delerue, “Electronic states and luminescence in porous silicon quantum dots: the role of oxygen,” Phys. Rev. Lett. 82(1), 197–200 (1999).
[CrossRef]

1993 (1)

Y. Kanemitsu, “Slow decay dynamics of visible luminescence in porous silicon: Hopping of carriers confined on a shell region in nanometer-size Si crystallites,” Phys. Rev. B Condens. Matter 48(16), 12357–12360 (1993).
[CrossRef] [PubMed]

Allan, G.

M. V. Wolkin, J. Jorne, P. M. Fauchet, G. Allan, and C. Delerue, “Electronic states and luminescence in porous silicon quantum dots: the role of oxygen,” Phys. Rev. Lett. 82(1), 197–200 (1999).
[CrossRef]

Berberan-Santos, M. N.

M. N. Berberan-Santos, E. N. Bodunov, and B. Valeur, “Mathematical functions for the analysis of luminescence decays with underlying distributions 1. Kohlrausch decay function (stretched exponential),” Chem. Phys. 315(1-2), 171–182 (2005).
[CrossRef]

Bodunov, E. N.

M. N. Berberan-Santos, E. N. Bodunov, and B. Valeur, “Mathematical functions for the analysis of luminescence decays with underlying distributions 1. Kohlrausch decay function (stretched exponential),” Chem. Phys. 315(1-2), 171–182 (2005).
[CrossRef]

Campbell, S. A.

X. D. Pi, R. Gresback, R. W. Liptak, S. A. Campbell, and U. Kortshagen, “Doping efficiency, dopant location, and oxidation of Si nanocrystals,” Appl. Phys. Lett. 92(12), 123102 (2008).
[CrossRef]

Cho, E.-C.

X. J. Hao, E.-C. Cho, C. Flynn, Y. S. Shen, G. Conibeer, and M. A. Green, “Effects of boron doping on the structural and optical properties of silicon nanocrystals in a silicon dioxide matrix,” Nanotechnology 19(42), 424019 (2008).
[CrossRef] [PubMed]

E.-C. Cho, M. A. Green, G. Conibeer, D. Song, Y.-H. Cho, G. Scardera, S. Huang, S. Park, X. J. Hao, and Y. Huang, “Silicon quantum dots in a dielectric matrix for All-Silicon Tandem Solar Cells,” Adv. OptoElectron. 2007, 69578 (2007).

Cho, Y.-H.

E.-C. Cho, M. A. Green, G. Conibeer, D. Song, Y.-H. Cho, G. Scardera, S. Huang, S. Park, X. J. Hao, and Y. Huang, “Silicon quantum dots in a dielectric matrix for All-Silicon Tandem Solar Cells,” Adv. OptoElectron. 2007, 69578 (2007).

Conibeer, G.

X. J. Hao, E.-C. Cho, C. Flynn, Y. S. Shen, G. Conibeer, and M. A. Green, “Effects of boron doping on the structural and optical properties of silicon nanocrystals in a silicon dioxide matrix,” Nanotechnology 19(42), 424019 (2008).
[CrossRef] [PubMed]

E.-C. Cho, M. A. Green, G. Conibeer, D. Song, Y.-H. Cho, G. Scardera, S. Huang, S. Park, X. J. Hao, and Y. Huang, “Silicon quantum dots in a dielectric matrix for All-Silicon Tandem Solar Cells,” Adv. OptoElectron. 2007, 69578 (2007).

Delerue, C.

M. V. Wolkin, J. Jorne, P. M. Fauchet, G. Allan, and C. Delerue, “Electronic states and luminescence in porous silicon quantum dots: the role of oxygen,” Phys. Rev. Lett. 82(1), 197–200 (1999).
[CrossRef]

Fauchet, P. M.

M. V. Wolkin, J. Jorne, P. M. Fauchet, G. Allan, and C. Delerue, “Electronic states and luminescence in porous silicon quantum dots: the role of oxygen,” Phys. Rev. Lett. 82(1), 197–200 (1999).
[CrossRef]

Flynn, C.

X. J. Hao, E.-C. Cho, C. Flynn, Y. S. Shen, G. Conibeer, and M. A. Green, “Effects of boron doping on the structural and optical properties of silicon nanocrystals in a silicon dioxide matrix,” Nanotechnology 19(42), 424019 (2008).
[CrossRef] [PubMed]

Fujii, M.

M. Fujii, K. Toshikiyo, Y. Takase, Y. Yamaguchi, and S. Hayashi, “Below bulk-band-gap photoluminescence at room temperature from heavily P- and B-doped Si nanocrystal,” J. Appl. Phys. 94(3), 1990 (2003).
[CrossRef]

Gourbilleau, F.

A. Podhorodecki, J. Misiewicz, F. Gourbilleau, and R. Rizk, “Absorption mechanisms of Silicon Nanocrystals in cosputtered silicon-rich-silicon oxide films,” Electrochem. Solid-State Lett. 11(3), K31 (2008).
[CrossRef]

Green, M. A.

X. J. Hao, A. P. Podhorodecki, Y. S. Shen, G. Zatryb, J. Misiewicz, and M. A. Green, “Effects of Si-rich oxide layer stoichiometry on the structural and optical properties of Si QD/SiO2 multilayer films,” Nanotechnology 20(48), 485703 (2009).
[CrossRef] [PubMed]

X. J. Hao, E.-C. Cho, C. Flynn, Y. S. Shen, G. Conibeer, and M. A. Green, “Effects of boron doping on the structural and optical properties of silicon nanocrystals in a silicon dioxide matrix,” Nanotechnology 19(42), 424019 (2008).
[CrossRef] [PubMed]

E.-C. Cho, M. A. Green, G. Conibeer, D. Song, Y.-H. Cho, G. Scardera, S. Huang, S. Park, X. J. Hao, and Y. Huang, “Silicon quantum dots in a dielectric matrix for All-Silicon Tandem Solar Cells,” Adv. OptoElectron. 2007, 69578 (2007).

Gresback, R.

X. D. Pi, R. Gresback, R. W. Liptak, S. A. Campbell, and U. Kortshagen, “Doping efficiency, dopant location, and oxidation of Si nanocrystals,” Appl. Phys. Lett. 92(12), 123102 (2008).
[CrossRef]

Hao, X. J.

X. J. Hao, A. P. Podhorodecki, Y. S. Shen, G. Zatryb, J. Misiewicz, and M. A. Green, “Effects of Si-rich oxide layer stoichiometry on the structural and optical properties of Si QD/SiO2 multilayer films,” Nanotechnology 20(48), 485703 (2009).
[CrossRef] [PubMed]

X. J. Hao, E.-C. Cho, C. Flynn, Y. S. Shen, G. Conibeer, and M. A. Green, “Effects of boron doping on the structural and optical properties of silicon nanocrystals in a silicon dioxide matrix,” Nanotechnology 19(42), 424019 (2008).
[CrossRef] [PubMed]

E.-C. Cho, M. A. Green, G. Conibeer, D. Song, Y.-H. Cho, G. Scardera, S. Huang, S. Park, X. J. Hao, and Y. Huang, “Silicon quantum dots in a dielectric matrix for All-Silicon Tandem Solar Cells,” Adv. OptoElectron. 2007, 69578 (2007).

Hayashi, S.

M. Fujii, K. Toshikiyo, Y. Takase, Y. Yamaguchi, and S. Hayashi, “Below bulk-band-gap photoluminescence at room temperature from heavily P- and B-doped Si nanocrystal,” J. Appl. Phys. 94(3), 1990 (2003).
[CrossRef]

Huang, S.

E.-C. Cho, M. A. Green, G. Conibeer, D. Song, Y.-H. Cho, G. Scardera, S. Huang, S. Park, X. J. Hao, and Y. Huang, “Silicon quantum dots in a dielectric matrix for All-Silicon Tandem Solar Cells,” Adv. OptoElectron. 2007, 69578 (2007).

Huang, Y.

E.-C. Cho, M. A. Green, G. Conibeer, D. Song, Y.-H. Cho, G. Scardera, S. Huang, S. Park, X. J. Hao, and Y. Huang, “Silicon quantum dots in a dielectric matrix for All-Silicon Tandem Solar Cells,” Adv. OptoElectron. 2007, 69578 (2007).

Janczura, J.

J. Trzmiel, K. Weron, J. Janczura, and E. Placzek-Popko, “Properties of the relaxation time distribution underlying the Kohlrausch-Williams-Watts photoionization of the DX center In Cd1-xMnxTe mixed crystals,” J. Phys. Condens. Matter 21(34), 345801 (2009).
[CrossRef] [PubMed]

Jorne, J.

M. V. Wolkin, J. Jorne, P. M. Fauchet, G. Allan, and C. Delerue, “Electronic states and luminescence in porous silicon quantum dots: the role of oxygen,” Phys. Rev. Lett. 82(1), 197–200 (1999).
[CrossRef]

Kanemitsu, Y.

Y. Kanemitsu, “Slow decay dynamics of visible luminescence in porous silicon: Hopping of carriers confined on a shell region in nanometer-size Si crystallites,” Phys. Rev. B Condens. Matter 48(16), 12357–12360 (1993).
[CrossRef] [PubMed]

Kortshagen, U.

X. D. Pi, R. Gresback, R. W. Liptak, S. A. Campbell, and U. Kortshagen, “Doping efficiency, dopant location, and oxidation of Si nanocrystals,” Appl. Phys. Lett. 92(12), 123102 (2008).
[CrossRef]

Liptak, R. W.

X. D. Pi, R. Gresback, R. W. Liptak, S. A. Campbell, and U. Kortshagen, “Doping efficiency, dopant location, and oxidation of Si nanocrystals,” Appl. Phys. Lett. 92(12), 123102 (2008).
[CrossRef]

Lodahl, P.

A. F. van Driel, I. S. Nikolaev, P. Vergeer, P. Lodahl, D. Vanmaekelbergh, and W. L. Vos, “Statistical analysis of time-resolved emission from ensembles of semiconductor quantum dots: interpretation of exponential decay models,” Phys. Rev. B 75(3), 035329 (2007).
[CrossRef]

Misiewicz, J.

X. J. Hao, A. P. Podhorodecki, Y. S. Shen, G. Zatryb, J. Misiewicz, and M. A. Green, “Effects of Si-rich oxide layer stoichiometry on the structural and optical properties of Si QD/SiO2 multilayer films,” Nanotechnology 20(48), 485703 (2009).
[CrossRef] [PubMed]

A. Podhorodecki, J. Misiewicz, F. Gourbilleau, and R. Rizk, “Absorption mechanisms of Silicon Nanocrystals in cosputtered silicon-rich-silicon oxide films,” Electrochem. Solid-State Lett. 11(3), K31 (2008).
[CrossRef]

Nikolaev, I. S.

A. F. van Driel, I. S. Nikolaev, P. Vergeer, P. Lodahl, D. Vanmaekelbergh, and W. L. Vos, “Statistical analysis of time-resolved emission from ensembles of semiconductor quantum dots: interpretation of exponential decay models,” Phys. Rev. B 75(3), 035329 (2007).
[CrossRef]

Park, S.

E.-C. Cho, M. A. Green, G. Conibeer, D. Song, Y.-H. Cho, G. Scardera, S. Huang, S. Park, X. J. Hao, and Y. Huang, “Silicon quantum dots in a dielectric matrix for All-Silicon Tandem Solar Cells,” Adv. OptoElectron. 2007, 69578 (2007).

Pi, X. D.

X. D. Pi, R. Gresback, R. W. Liptak, S. A. Campbell, and U. Kortshagen, “Doping efficiency, dopant location, and oxidation of Si nanocrystals,” Appl. Phys. Lett. 92(12), 123102 (2008).
[CrossRef]

Placzek-Popko, E.

J. Trzmiel, K. Weron, J. Janczura, and E. Placzek-Popko, “Properties of the relaxation time distribution underlying the Kohlrausch-Williams-Watts photoionization of the DX center In Cd1-xMnxTe mixed crystals,” J. Phys. Condens. Matter 21(34), 345801 (2009).
[CrossRef] [PubMed]

Podhorodecki, A.

A. Podhorodecki, J. Misiewicz, F. Gourbilleau, and R. Rizk, “Absorption mechanisms of Silicon Nanocrystals in cosputtered silicon-rich-silicon oxide films,” Electrochem. Solid-State Lett. 11(3), K31 (2008).
[CrossRef]

Podhorodecki, A. P.

X. J. Hao, A. P. Podhorodecki, Y. S. Shen, G. Zatryb, J. Misiewicz, and M. A. Green, “Effects of Si-rich oxide layer stoichiometry on the structural and optical properties of Si QD/SiO2 multilayer films,” Nanotechnology 20(48), 485703 (2009).
[CrossRef] [PubMed]

Rizk, R.

A. Podhorodecki, J. Misiewicz, F. Gourbilleau, and R. Rizk, “Absorption mechanisms of Silicon Nanocrystals in cosputtered silicon-rich-silicon oxide films,” Electrochem. Solid-State Lett. 11(3), K31 (2008).
[CrossRef]

Scardera, G.

E.-C. Cho, M. A. Green, G. Conibeer, D. Song, Y.-H. Cho, G. Scardera, S. Huang, S. Park, X. J. Hao, and Y. Huang, “Silicon quantum dots in a dielectric matrix for All-Silicon Tandem Solar Cells,” Adv. OptoElectron. 2007, 69578 (2007).

Shen, Y. S.

X. J. Hao, A. P. Podhorodecki, Y. S. Shen, G. Zatryb, J. Misiewicz, and M. A. Green, “Effects of Si-rich oxide layer stoichiometry on the structural and optical properties of Si QD/SiO2 multilayer films,” Nanotechnology 20(48), 485703 (2009).
[CrossRef] [PubMed]

X. J. Hao, E.-C. Cho, C. Flynn, Y. S. Shen, G. Conibeer, and M. A. Green, “Effects of boron doping on the structural and optical properties of silicon nanocrystals in a silicon dioxide matrix,” Nanotechnology 19(42), 424019 (2008).
[CrossRef] [PubMed]

Song, D.

E.-C. Cho, M. A. Green, G. Conibeer, D. Song, Y.-H. Cho, G. Scardera, S. Huang, S. Park, X. J. Hao, and Y. Huang, “Silicon quantum dots in a dielectric matrix for All-Silicon Tandem Solar Cells,” Adv. OptoElectron. 2007, 69578 (2007).

Takase, Y.

M. Fujii, K. Toshikiyo, Y. Takase, Y. Yamaguchi, and S. Hayashi, “Below bulk-band-gap photoluminescence at room temperature from heavily P- and B-doped Si nanocrystal,” J. Appl. Phys. 94(3), 1990 (2003).
[CrossRef]

Toshikiyo, K.

M. Fujii, K. Toshikiyo, Y. Takase, Y. Yamaguchi, and S. Hayashi, “Below bulk-band-gap photoluminescence at room temperature from heavily P- and B-doped Si nanocrystal,” J. Appl. Phys. 94(3), 1990 (2003).
[CrossRef]

Trzmiel, J.

J. Trzmiel, K. Weron, J. Janczura, and E. Placzek-Popko, “Properties of the relaxation time distribution underlying the Kohlrausch-Williams-Watts photoionization of the DX center In Cd1-xMnxTe mixed crystals,” J. Phys. Condens. Matter 21(34), 345801 (2009).
[CrossRef] [PubMed]

Valeur, B.

M. N. Berberan-Santos, E. N. Bodunov, and B. Valeur, “Mathematical functions for the analysis of luminescence decays with underlying distributions 1. Kohlrausch decay function (stretched exponential),” Chem. Phys. 315(1-2), 171–182 (2005).
[CrossRef]

van Driel, A. F.

A. F. van Driel, I. S. Nikolaev, P. Vergeer, P. Lodahl, D. Vanmaekelbergh, and W. L. Vos, “Statistical analysis of time-resolved emission from ensembles of semiconductor quantum dots: interpretation of exponential decay models,” Phys. Rev. B 75(3), 035329 (2007).
[CrossRef]

Vanmaekelbergh, D.

A. F. van Driel, I. S. Nikolaev, P. Vergeer, P. Lodahl, D. Vanmaekelbergh, and W. L. Vos, “Statistical analysis of time-resolved emission from ensembles of semiconductor quantum dots: interpretation of exponential decay models,” Phys. Rev. B 75(3), 035329 (2007).
[CrossRef]

Vergeer, P.

A. F. van Driel, I. S. Nikolaev, P. Vergeer, P. Lodahl, D. Vanmaekelbergh, and W. L. Vos, “Statistical analysis of time-resolved emission from ensembles of semiconductor quantum dots: interpretation of exponential decay models,” Phys. Rev. B 75(3), 035329 (2007).
[CrossRef]

Vos, W. L.

A. F. van Driel, I. S. Nikolaev, P. Vergeer, P. Lodahl, D. Vanmaekelbergh, and W. L. Vos, “Statistical analysis of time-resolved emission from ensembles of semiconductor quantum dots: interpretation of exponential decay models,” Phys. Rev. B 75(3), 035329 (2007).
[CrossRef]

Weron, K.

J. Trzmiel, K. Weron, J. Janczura, and E. Placzek-Popko, “Properties of the relaxation time distribution underlying the Kohlrausch-Williams-Watts photoionization of the DX center In Cd1-xMnxTe mixed crystals,” J. Phys. Condens. Matter 21(34), 345801 (2009).
[CrossRef] [PubMed]

Wolkin, M. V.

M. V. Wolkin, J. Jorne, P. M. Fauchet, G. Allan, and C. Delerue, “Electronic states and luminescence in porous silicon quantum dots: the role of oxygen,” Phys. Rev. Lett. 82(1), 197–200 (1999).
[CrossRef]

Yamaguchi, Y.

M. Fujii, K. Toshikiyo, Y. Takase, Y. Yamaguchi, and S. Hayashi, “Below bulk-band-gap photoluminescence at room temperature from heavily P- and B-doped Si nanocrystal,” J. Appl. Phys. 94(3), 1990 (2003).
[CrossRef]

Zatryb, G.

X. J. Hao, A. P. Podhorodecki, Y. S. Shen, G. Zatryb, J. Misiewicz, and M. A. Green, “Effects of Si-rich oxide layer stoichiometry on the structural and optical properties of Si QD/SiO2 multilayer films,” Nanotechnology 20(48), 485703 (2009).
[CrossRef] [PubMed]

Adv. OptoElectron. (1)

E.-C. Cho, M. A. Green, G. Conibeer, D. Song, Y.-H. Cho, G. Scardera, S. Huang, S. Park, X. J. Hao, and Y. Huang, “Silicon quantum dots in a dielectric matrix for All-Silicon Tandem Solar Cells,” Adv. OptoElectron. 2007, 69578 (2007).

Appl. Phys. Lett. (1)

X. D. Pi, R. Gresback, R. W. Liptak, S. A. Campbell, and U. Kortshagen, “Doping efficiency, dopant location, and oxidation of Si nanocrystals,” Appl. Phys. Lett. 92(12), 123102 (2008).
[CrossRef]

Chem. Phys. (1)

M. N. Berberan-Santos, E. N. Bodunov, and B. Valeur, “Mathematical functions for the analysis of luminescence decays with underlying distributions 1. Kohlrausch decay function (stretched exponential),” Chem. Phys. 315(1-2), 171–182 (2005).
[CrossRef]

Electrochem. Solid-State Lett. (1)

A. Podhorodecki, J. Misiewicz, F. Gourbilleau, and R. Rizk, “Absorption mechanisms of Silicon Nanocrystals in cosputtered silicon-rich-silicon oxide films,” Electrochem. Solid-State Lett. 11(3), K31 (2008).
[CrossRef]

J. Appl. Phys. (1)

M. Fujii, K. Toshikiyo, Y. Takase, Y. Yamaguchi, and S. Hayashi, “Below bulk-band-gap photoluminescence at room temperature from heavily P- and B-doped Si nanocrystal,” J. Appl. Phys. 94(3), 1990 (2003).
[CrossRef]

J. Phys. Condens. Matter (1)

J. Trzmiel, K. Weron, J. Janczura, and E. Placzek-Popko, “Properties of the relaxation time distribution underlying the Kohlrausch-Williams-Watts photoionization of the DX center In Cd1-xMnxTe mixed crystals,” J. Phys. Condens. Matter 21(34), 345801 (2009).
[CrossRef] [PubMed]

Nanotechnology (2)

X. J. Hao, E.-C. Cho, C. Flynn, Y. S. Shen, G. Conibeer, and M. A. Green, “Effects of boron doping on the structural and optical properties of silicon nanocrystals in a silicon dioxide matrix,” Nanotechnology 19(42), 424019 (2008).
[CrossRef] [PubMed]

X. J. Hao, A. P. Podhorodecki, Y. S. Shen, G. Zatryb, J. Misiewicz, and M. A. Green, “Effects of Si-rich oxide layer stoichiometry on the structural and optical properties of Si QD/SiO2 multilayer films,” Nanotechnology 20(48), 485703 (2009).
[CrossRef] [PubMed]

Phys. Rev. B (1)

A. F. van Driel, I. S. Nikolaev, P. Vergeer, P. Lodahl, D. Vanmaekelbergh, and W. L. Vos, “Statistical analysis of time-resolved emission from ensembles of semiconductor quantum dots: interpretation of exponential decay models,” Phys. Rev. B 75(3), 035329 (2007).
[CrossRef]

Phys. Rev. B Condens. Matter (1)

Y. Kanemitsu, “Slow decay dynamics of visible luminescence in porous silicon: Hopping of carriers confined on a shell region in nanometer-size Si crystallites,” Phys. Rev. B Condens. Matter 48(16), 12357–12360 (1993).
[CrossRef] [PubMed]

Phys. Rev. Lett. (1)

M. V. Wolkin, J. Jorne, P. M. Fauchet, G. Allan, and C. Delerue, “Electronic states and luminescence in porous silicon quantum dots: the role of oxygen,” Phys. Rev. Lett. 82(1), 197–200 (1999).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Crossectional TEM image of multilayer containing Si-NCs with O/Si ratio of SRO around 1.0. Inset - in-plane image with lattice fringes corresponding to individual Si-NC.

Fig. 2
Fig. 2

PL (left axis), absorption (right axis) and PLE (inset) for multilayers containing Si-NCs deposited at different conditions.PLE signal shown in the inset was detected at 1.5 eV. Absorption was calculated from reflection and transmission measurements.

Fig. 3
Fig. 3

Photoluminescence decays for samples with (a) O/Si = 1 and (b) O/Si = 1.3. In both plots undoped and doped by boron samples are shown. The decay profiles were measured for emission band at 1.5 eV. Excitation wavelength was set to 350 nm.

Fig. 4
Fig. 4

Distributions of decay rates for undoped and doped samples with (a) O/Si = 1 and (b) O/Si = 1.3. In the pictures kmf is the most frequent rate and Δk is the distribution width at 1/e.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

P L ( t ) = 0 g ( k ) exp ( k t ) d k
g ( k ) = A exp [ ( ln k ln k m f γ ) ]

Metrics