Abstract

Transmitted-light coherence-controlled holographic microscope (CCHM) based on an off-axis achromatic interferometer allows us to use light sources of arbitrary degree of temporal and spatial coherence. Besides the conventional DHM modes such as quantitative phase contrast imaging and numerical 3D holographic reconstruction it provides high quality (speckle-free) imaging, improved lateral resolution and optical sectioning by coherence gating. Optical setup parameters and their limits for a technical realization are derived and described in detail. To demonstrate the optical sectioning property of the microscope a model sample uncovered and then covered with a diffuser was observed using a low-coherence light source.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. A. Dunn, “Transmitted-light interference microscopy: a technique born before its time,” Proc. Royal Microscopical Soc.. 33, 189–196 (1998).
  2. F. Dubois, L. Joannes, and J. C. Legros, “Improved three-dimensional imaging with a digital holography microscope with a source of partial spatial coherence,” Appl. Opt. 38(34), 7085–7094 (1999).
    [CrossRef]
  3. F. Dubois, C. Yourassowsky, O. Monnom, J. C. Legros, O. Debeir, P. Van Ham, R. Kiss, and C. Decaestecker, “Digital holographic microscopy for the three-dimensional dynamic analysis of in vitro cancer cell migration,” J. Biomed. Opt. 11(5), 054032 (2006).
    [CrossRef] [PubMed]
  4. F. Dubois, N. Callens, C. Yourassowsky, M. Hoyos, P. Kurowski, and O. Monnom, “Digital holographic microscopy with reduced spatial coherence for three-dimensional particle flow analysis,” Appl. Opt. 45(5), 864–871 (2006).
    [CrossRef] [PubMed]
  5. F. Dubois, C. Yourassowsky, N. Callens, C. Minetti, and P. Queeckers, “Applications of digital holographic microscopes with partially spatial coherence sources,” J. Phys. Conference Series 139, 012027 (2008).
    [CrossRef]
  6. E. Cuche, F. Bevilacqua, and C. Depeursinge, “Digital holography for quantitative phase-contrast imaging,” Opt. Lett. 24(5), 291–293 (1999).
    [CrossRef]
  7. E. Cuche, P. Marquet, and C. Depeursinge, “Simultaneous amplitude-contrast and quantitative phase-contrast microscopy by numerical reconstruction of Fresnel off-axis holograms,” Appl. Opt. 38(34), 6994–7001 (1999).
    [CrossRef]
  8. T. Kreis, “Digital holographic interference-phase measurement using the Fourier-transform method,” J. Opt. Soc. Am. A 3(6), 847–855 (1986).
    [CrossRef]
  9. P. Massatsch, F. Charrière, E. Cuche, P. Marquet, and C. D. Depeursinge, “Time-domain optical coherence tomography with digital holographic microscopy,” Appl. Opt. 44(10), 1806–1812 (2005).
    [CrossRef] [PubMed]
  10. Y. Emery, E. Cuche, F. Marquet, N. Aspert, P. Marquet, J. Kühn, M. Botkine, T. Colomb, F. Montfort, F. Charrière, C. Depeursinge, P. Debergh, and R. Conde, “Digital Holographic Microscopy (DHM) for metrology and dynamic characterization of MEMS and MOEMS,” Proc. SPIE 6186, N1860 (2006).
  11. J. Kühn, F. Charrière, T. Colomb, E. Cuche, F. Montfort, Y. Emery, P. Marquet, and C. Depeursinge, “Axial sub-nanometer accuracy in digital holographic microscopy,” Meas. Sci. Technol. 19(7), 074007 (2008).
    [CrossRef]
  12. T. Ikeda, G. Popescu, R. R. Dasari, and M. S. Feld, “Hilbert phase microscopy for investigating fast dynamics in transparent systems,” Opt. Lett. 30(10), 1165–1167 (2005).
    [CrossRef] [PubMed]
  13. D. Carl, B. Kemper, G. Wernicke, and G. von Bally, “Parameter-optimized digital holographic microscope for high-resolution living-cell analysis,” Appl. Opt. 43(36), 6536–6544 (2004).
    [CrossRef]
  14. P. Marquet, B. Rappaz, P. J. Magistretti, E. Cuche, Y. Emery, T. Colomb, and C. Depeursinge, “Digital holographic microscopy: a noninvasive contrast imaging technique allowing quantitative visualization of living cells with subwavelength axial accuracy,” Opt. Lett. 30(5), 468–470 (2005).
    [CrossRef] [PubMed]
  15. B. Kemper, D. Carl, J. Schnekenburger, I. Bredebusch, M. Schäfer, W. Domschke, and G. von Bally, “Investigation of living pancreas tumor cells by digital holographic microscopy,” J. Biomed. Opt. 11(3), 34005 (2006).
    [CrossRef] [PubMed]
  16. E. N. Leith and J. Upatnieks, “Holography with Achromatic-Fringe Systems,” J. Opt. Soc. Am. 57(8), 975–980 (1967).
    [CrossRef]
  17. E. N. Leith and G. J. Swanson, “Achromatic interferometers for white light optical processing and holography,” Appl. Opt. 19(4), 638–644 (1980).
    [CrossRef] [PubMed]
  18. E. N. Leith and G. J. Swanson, “Recording of phase-amplitude images,” Appl. Opt. 20(17), 3081–3084 (1981).
    [CrossRef] [PubMed]
  19. E. N. Leith and B. J. Chang, “Space-invariant holography with quasi-coherent light,” Appl. Opt. 12(8), 1957–1963 (1973).
    [CrossRef] [PubMed]
  20. E. N. Leith, W. C. Chien, K. D. Mills, B. D. Athey, and D. S. Dilworth, “Optical sectioning by holographic coherence imaging: a generalized analysis,” J. Opt. Soc. Am. A 20(2), 380–387 (2003).
    [CrossRef]
  21. R. Chmelík and Z. Harna, “Parallel-mode confocal microscope,” Opt. Eng. 38(10), 1635–1639 (1999).
    [CrossRef]
  22. R. Chmelík, “Holographic confocal microscopy,” Proc. SPIE 4356, 118–123 (2000).
    [CrossRef]
  23. R. Chmelík and Z. Harna, “Surface profilometry by a parallel–mode confocal microscope,” Opt. Eng. 41(4), 744–745 (2002).
    [CrossRef]
  24. R. ChmelÍk, “Three-dimensional scalar imaging in high-aperture low-coherence interference and holographic microscopes,” J. Mod. Opt. 53(18), 2673–2689 (2006).
    [CrossRef]
  25. N. Pavillon, C. S. Seelamantula, J. Kühn, M. Unser, and C. Depeursinge, “Suppression of the zero-order term in off-axis digital holography through nonlinear filtering,” Appl. Opt. 48(34), H186–H195 (2009).
    [CrossRef] [PubMed]
  26. J. B. Pawley, Handbook of Biological Confocal Microscopy (Springer, New York, 2006), p. 65, chapter 4.
  27. M. Born, and E. Wolf, Principles of optics (Cambridge university press, Cambridge, 2002), chap. 9, p. 548.
  28. H. Uhlířová, Microscopy of time variable biologic objects (Brno University of Technology, Brno, 2010, Ph.D. thesis, Faculty of Mechanical Engineering, Supervisor: R. Chmelík), chap. 4.
  29. F. Dubois, M. L. Requena, C. Minetti, O. Monnom, and E. Istasse, “Partial spatial coherence effects in digital holographic microscopy with a laser source,” Appl. Opt. 43(5), 1131–1139 (2004).
    [CrossRef] [PubMed]
  30. E. N. Leith and J. A. Roth, “Noise performance of an achromatic coherent optical system,” Appl. Opt. 18(16), 2803–2811 (1979).
    [CrossRef] [PubMed]
  31. C. J. R. Sheppard, and M. Roy, “Low-Coherence Interference Microscopy,” in Optical Imaging and Microscopy, P. Török and F. J. Kao, eds., (Springer, Berlin, 2003), Chap. 11, 267–273.
  32. P. C. Sun and E. N. Leith, “Broad source image-plane holography as a confocal imaging process,” Appl. Opt. 33(4), 597–602 (1994).
    [CrossRef] [PubMed]
  33. H. J. Caulfield, “Holographic imaging through scatterers,” J. Opt. Soc. Am. 58(2), 150–152 (1968).
    [CrossRef]
  34. E. N. Leith, C. Chen, H. Chen, Y. Chen, J. Lopez, P. C. Sun, and D. Dilworth, “Imaging through scattering media using spatial incoherence techniques,” Opt. Lett. 16(23), 1820–1822 (1991).
    [CrossRef] [PubMed]
  35. E. N. Leith, C. Chen, H. Chen, Y. Chen, D. Dilworth, J. Lopez, J. Rudd, P. C. Sun, J. Valdmanis, and G. Vossler, “Imaging through scattering media with holography,” J. Opt. Soc. Am. A 9(7), 1148–1153 (1992).
    [CrossRef]
  36. G. Indebetouw and P. Klysubun, “Optical sectioning with low coherence spatio-temporal holography,” Opt. Commun. 172(1-6), 25–29 (1999).
    [CrossRef]
  37. G. Indebetouw and P. Klysubun, “Imaging through scattering media with depth resolution by use of low-coherence gating in spatiotemporal digital holography,” Opt. Lett. 25(4), 212–214 (2000).
    [CrossRef]
  38. G. Indebetouw and P. Klysubun, “Spatiotemporal digital microholography,” J. Opt. Soc. Am. A 18(2), 319–325 (2001).
    [CrossRef]
  39. M. Kempe, W. Rudolph, and E. Welsch, “Comparative study of confocal and heterodyne microscopy for imaging through scattering media,” J. Opt. Soc. Am. A 13(1), 46–52 (1996).
    [CrossRef]
  40. H. Janečková, P. Veselý, and R. Chmelík, “Proving tumour cells by acute nutritional/energy deprivation as a survival threat: a task for microscopy,” Anticancer Res. 29(6), 2339–2345 (2009).
    [PubMed]
  41. L. Lovicar, J. Komrska, and R. Chmelík, “Quantitative-phase-contrast imaging of two-level surface described as 2D linear filtering process,” Opt. Express 18(20), 20585–20594 (2010).
    [CrossRef] [PubMed]

2010 (1)

2009 (2)

H. Janečková, P. Veselý, and R. Chmelík, “Proving tumour cells by acute nutritional/energy deprivation as a survival threat: a task for microscopy,” Anticancer Res. 29(6), 2339–2345 (2009).
[PubMed]

N. Pavillon, C. S. Seelamantula, J. Kühn, M. Unser, and C. Depeursinge, “Suppression of the zero-order term in off-axis digital holography through nonlinear filtering,” Appl. Opt. 48(34), H186–H195 (2009).
[CrossRef] [PubMed]

2008 (2)

F. Dubois, C. Yourassowsky, N. Callens, C. Minetti, and P. Queeckers, “Applications of digital holographic microscopes with partially spatial coherence sources,” J. Phys. Conference Series 139, 012027 (2008).
[CrossRef]

J. Kühn, F. Charrière, T. Colomb, E. Cuche, F. Montfort, Y. Emery, P. Marquet, and C. Depeursinge, “Axial sub-nanometer accuracy in digital holographic microscopy,” Meas. Sci. Technol. 19(7), 074007 (2008).
[CrossRef]

2006 (5)

Y. Emery, E. Cuche, F. Marquet, N. Aspert, P. Marquet, J. Kühn, M. Botkine, T. Colomb, F. Montfort, F. Charrière, C. Depeursinge, P. Debergh, and R. Conde, “Digital Holographic Microscopy (DHM) for metrology and dynamic characterization of MEMS and MOEMS,” Proc. SPIE 6186, N1860 (2006).

B. Kemper, D. Carl, J. Schnekenburger, I. Bredebusch, M. Schäfer, W. Domschke, and G. von Bally, “Investigation of living pancreas tumor cells by digital holographic microscopy,” J. Biomed. Opt. 11(3), 34005 (2006).
[CrossRef] [PubMed]

F. Dubois, C. Yourassowsky, O. Monnom, J. C. Legros, O. Debeir, P. Van Ham, R. Kiss, and C. Decaestecker, “Digital holographic microscopy for the three-dimensional dynamic analysis of in vitro cancer cell migration,” J. Biomed. Opt. 11(5), 054032 (2006).
[CrossRef] [PubMed]

F. Dubois, N. Callens, C. Yourassowsky, M. Hoyos, P. Kurowski, and O. Monnom, “Digital holographic microscopy with reduced spatial coherence for three-dimensional particle flow analysis,” Appl. Opt. 45(5), 864–871 (2006).
[CrossRef] [PubMed]

R. ChmelÍk, “Three-dimensional scalar imaging in high-aperture low-coherence interference and holographic microscopes,” J. Mod. Opt. 53(18), 2673–2689 (2006).
[CrossRef]

2005 (3)

2004 (2)

2003 (1)

2002 (1)

R. Chmelík and Z. Harna, “Surface profilometry by a parallel–mode confocal microscope,” Opt. Eng. 41(4), 744–745 (2002).
[CrossRef]

2001 (1)

2000 (2)

1999 (5)

1998 (1)

G. A. Dunn, “Transmitted-light interference microscopy: a technique born before its time,” Proc. Royal Microscopical Soc.. 33, 189–196 (1998).

1996 (1)

1994 (1)

1992 (1)

1991 (1)

1986 (1)

1981 (1)

1980 (1)

1979 (1)

1973 (1)

1968 (1)

H. J. Caulfield, “Holographic imaging through scatterers,” J. Opt. Soc. Am. 58(2), 150–152 (1968).
[CrossRef]

1967 (1)

Aspert, N.

Y. Emery, E. Cuche, F. Marquet, N. Aspert, P. Marquet, J. Kühn, M. Botkine, T. Colomb, F. Montfort, F. Charrière, C. Depeursinge, P. Debergh, and R. Conde, “Digital Holographic Microscopy (DHM) for metrology and dynamic characterization of MEMS and MOEMS,” Proc. SPIE 6186, N1860 (2006).

Athey, B. D.

Bevilacqua, F.

Botkine, M.

Y. Emery, E. Cuche, F. Marquet, N. Aspert, P. Marquet, J. Kühn, M. Botkine, T. Colomb, F. Montfort, F. Charrière, C. Depeursinge, P. Debergh, and R. Conde, “Digital Holographic Microscopy (DHM) for metrology and dynamic characterization of MEMS and MOEMS,” Proc. SPIE 6186, N1860 (2006).

Bredebusch, I.

B. Kemper, D. Carl, J. Schnekenburger, I. Bredebusch, M. Schäfer, W. Domschke, and G. von Bally, “Investigation of living pancreas tumor cells by digital holographic microscopy,” J. Biomed. Opt. 11(3), 34005 (2006).
[CrossRef] [PubMed]

Callens, N.

F. Dubois, C. Yourassowsky, N. Callens, C. Minetti, and P. Queeckers, “Applications of digital holographic microscopes with partially spatial coherence sources,” J. Phys. Conference Series 139, 012027 (2008).
[CrossRef]

F. Dubois, N. Callens, C. Yourassowsky, M. Hoyos, P. Kurowski, and O. Monnom, “Digital holographic microscopy with reduced spatial coherence for three-dimensional particle flow analysis,” Appl. Opt. 45(5), 864–871 (2006).
[CrossRef] [PubMed]

Carl, D.

B. Kemper, D. Carl, J. Schnekenburger, I. Bredebusch, M. Schäfer, W. Domschke, and G. von Bally, “Investigation of living pancreas tumor cells by digital holographic microscopy,” J. Biomed. Opt. 11(3), 34005 (2006).
[CrossRef] [PubMed]

D. Carl, B. Kemper, G. Wernicke, and G. von Bally, “Parameter-optimized digital holographic microscope for high-resolution living-cell analysis,” Appl. Opt. 43(36), 6536–6544 (2004).
[CrossRef]

Caulfield, H. J.

H. J. Caulfield, “Holographic imaging through scatterers,” J. Opt. Soc. Am. 58(2), 150–152 (1968).
[CrossRef]

Chang, B. J.

Charrière, F.

J. Kühn, F. Charrière, T. Colomb, E. Cuche, F. Montfort, Y. Emery, P. Marquet, and C. Depeursinge, “Axial sub-nanometer accuracy in digital holographic microscopy,” Meas. Sci. Technol. 19(7), 074007 (2008).
[CrossRef]

Y. Emery, E. Cuche, F. Marquet, N. Aspert, P. Marquet, J. Kühn, M. Botkine, T. Colomb, F. Montfort, F. Charrière, C. Depeursinge, P. Debergh, and R. Conde, “Digital Holographic Microscopy (DHM) for metrology and dynamic characterization of MEMS and MOEMS,” Proc. SPIE 6186, N1860 (2006).

P. Massatsch, F. Charrière, E. Cuche, P. Marquet, and C. D. Depeursinge, “Time-domain optical coherence tomography with digital holographic microscopy,” Appl. Opt. 44(10), 1806–1812 (2005).
[CrossRef] [PubMed]

Chen, C.

Chen, H.

Chen, Y.

Chien, W. C.

Chmelík, R.

L. Lovicar, J. Komrska, and R. Chmelík, “Quantitative-phase-contrast imaging of two-level surface described as 2D linear filtering process,” Opt. Express 18(20), 20585–20594 (2010).
[CrossRef] [PubMed]

H. Janečková, P. Veselý, and R. Chmelík, “Proving tumour cells by acute nutritional/energy deprivation as a survival threat: a task for microscopy,” Anticancer Res. 29(6), 2339–2345 (2009).
[PubMed]

R. ChmelÍk, “Three-dimensional scalar imaging in high-aperture low-coherence interference and holographic microscopes,” J. Mod. Opt. 53(18), 2673–2689 (2006).
[CrossRef]

R. Chmelík and Z. Harna, “Surface profilometry by a parallel–mode confocal microscope,” Opt. Eng. 41(4), 744–745 (2002).
[CrossRef]

R. Chmelík, “Holographic confocal microscopy,” Proc. SPIE 4356, 118–123 (2000).
[CrossRef]

R. Chmelík and Z. Harna, “Parallel-mode confocal microscope,” Opt. Eng. 38(10), 1635–1639 (1999).
[CrossRef]

Colomb, T.

J. Kühn, F. Charrière, T. Colomb, E. Cuche, F. Montfort, Y. Emery, P. Marquet, and C. Depeursinge, “Axial sub-nanometer accuracy in digital holographic microscopy,” Meas. Sci. Technol. 19(7), 074007 (2008).
[CrossRef]

Y. Emery, E. Cuche, F. Marquet, N. Aspert, P. Marquet, J. Kühn, M. Botkine, T. Colomb, F. Montfort, F. Charrière, C. Depeursinge, P. Debergh, and R. Conde, “Digital Holographic Microscopy (DHM) for metrology and dynamic characterization of MEMS and MOEMS,” Proc. SPIE 6186, N1860 (2006).

P. Marquet, B. Rappaz, P. J. Magistretti, E. Cuche, Y. Emery, T. Colomb, and C. Depeursinge, “Digital holographic microscopy: a noninvasive contrast imaging technique allowing quantitative visualization of living cells with subwavelength axial accuracy,” Opt. Lett. 30(5), 468–470 (2005).
[CrossRef] [PubMed]

Conde, R.

Y. Emery, E. Cuche, F. Marquet, N. Aspert, P. Marquet, J. Kühn, M. Botkine, T. Colomb, F. Montfort, F. Charrière, C. Depeursinge, P. Debergh, and R. Conde, “Digital Holographic Microscopy (DHM) for metrology and dynamic characterization of MEMS and MOEMS,” Proc. SPIE 6186, N1860 (2006).

Cuche, E.

Dasari, R. R.

Debeir, O.

F. Dubois, C. Yourassowsky, O. Monnom, J. C. Legros, O. Debeir, P. Van Ham, R. Kiss, and C. Decaestecker, “Digital holographic microscopy for the three-dimensional dynamic analysis of in vitro cancer cell migration,” J. Biomed. Opt. 11(5), 054032 (2006).
[CrossRef] [PubMed]

Debergh, P.

Y. Emery, E. Cuche, F. Marquet, N. Aspert, P. Marquet, J. Kühn, M. Botkine, T. Colomb, F. Montfort, F. Charrière, C. Depeursinge, P. Debergh, and R. Conde, “Digital Holographic Microscopy (DHM) for metrology and dynamic characterization of MEMS and MOEMS,” Proc. SPIE 6186, N1860 (2006).

Decaestecker, C.

F. Dubois, C. Yourassowsky, O. Monnom, J. C. Legros, O. Debeir, P. Van Ham, R. Kiss, and C. Decaestecker, “Digital holographic microscopy for the three-dimensional dynamic analysis of in vitro cancer cell migration,” J. Biomed. Opt. 11(5), 054032 (2006).
[CrossRef] [PubMed]

Depeursinge, C.

Depeursinge, C. D.

Dilworth, D.

Dilworth, D. S.

Domschke, W.

B. Kemper, D. Carl, J. Schnekenburger, I. Bredebusch, M. Schäfer, W. Domschke, and G. von Bally, “Investigation of living pancreas tumor cells by digital holographic microscopy,” J. Biomed. Opt. 11(3), 34005 (2006).
[CrossRef] [PubMed]

Dubois, F.

F. Dubois, C. Yourassowsky, N. Callens, C. Minetti, and P. Queeckers, “Applications of digital holographic microscopes with partially spatial coherence sources,” J. Phys. Conference Series 139, 012027 (2008).
[CrossRef]

F. Dubois, N. Callens, C. Yourassowsky, M. Hoyos, P. Kurowski, and O. Monnom, “Digital holographic microscopy with reduced spatial coherence for three-dimensional particle flow analysis,” Appl. Opt. 45(5), 864–871 (2006).
[CrossRef] [PubMed]

F. Dubois, C. Yourassowsky, O. Monnom, J. C. Legros, O. Debeir, P. Van Ham, R. Kiss, and C. Decaestecker, “Digital holographic microscopy for the three-dimensional dynamic analysis of in vitro cancer cell migration,” J. Biomed. Opt. 11(5), 054032 (2006).
[CrossRef] [PubMed]

F. Dubois, M. L. Requena, C. Minetti, O. Monnom, and E. Istasse, “Partial spatial coherence effects in digital holographic microscopy with a laser source,” Appl. Opt. 43(5), 1131–1139 (2004).
[CrossRef] [PubMed]

F. Dubois, L. Joannes, and J. C. Legros, “Improved three-dimensional imaging with a digital holography microscope with a source of partial spatial coherence,” Appl. Opt. 38(34), 7085–7094 (1999).
[CrossRef]

Dunn, G. A.

G. A. Dunn, “Transmitted-light interference microscopy: a technique born before its time,” Proc. Royal Microscopical Soc.. 33, 189–196 (1998).

Emery, Y.

J. Kühn, F. Charrière, T. Colomb, E. Cuche, F. Montfort, Y. Emery, P. Marquet, and C. Depeursinge, “Axial sub-nanometer accuracy in digital holographic microscopy,” Meas. Sci. Technol. 19(7), 074007 (2008).
[CrossRef]

Y. Emery, E. Cuche, F. Marquet, N. Aspert, P. Marquet, J. Kühn, M. Botkine, T. Colomb, F. Montfort, F. Charrière, C. Depeursinge, P. Debergh, and R. Conde, “Digital Holographic Microscopy (DHM) for metrology and dynamic characterization of MEMS and MOEMS,” Proc. SPIE 6186, N1860 (2006).

P. Marquet, B. Rappaz, P. J. Magistretti, E. Cuche, Y. Emery, T. Colomb, and C. Depeursinge, “Digital holographic microscopy: a noninvasive contrast imaging technique allowing quantitative visualization of living cells with subwavelength axial accuracy,” Opt. Lett. 30(5), 468–470 (2005).
[CrossRef] [PubMed]

Feld, M. S.

Harna, Z.

R. Chmelík and Z. Harna, “Surface profilometry by a parallel–mode confocal microscope,” Opt. Eng. 41(4), 744–745 (2002).
[CrossRef]

R. Chmelík and Z. Harna, “Parallel-mode confocal microscope,” Opt. Eng. 38(10), 1635–1639 (1999).
[CrossRef]

Hoyos, M.

Ikeda, T.

Indebetouw, G.

Istasse, E.

Janecková, H.

H. Janečková, P. Veselý, and R. Chmelík, “Proving tumour cells by acute nutritional/energy deprivation as a survival threat: a task for microscopy,” Anticancer Res. 29(6), 2339–2345 (2009).
[PubMed]

Joannes, L.

Kempe, M.

Kemper, B.

B. Kemper, D. Carl, J. Schnekenburger, I. Bredebusch, M. Schäfer, W. Domschke, and G. von Bally, “Investigation of living pancreas tumor cells by digital holographic microscopy,” J. Biomed. Opt. 11(3), 34005 (2006).
[CrossRef] [PubMed]

D. Carl, B. Kemper, G. Wernicke, and G. von Bally, “Parameter-optimized digital holographic microscope for high-resolution living-cell analysis,” Appl. Opt. 43(36), 6536–6544 (2004).
[CrossRef]

Kiss, R.

F. Dubois, C. Yourassowsky, O. Monnom, J. C. Legros, O. Debeir, P. Van Ham, R. Kiss, and C. Decaestecker, “Digital holographic microscopy for the three-dimensional dynamic analysis of in vitro cancer cell migration,” J. Biomed. Opt. 11(5), 054032 (2006).
[CrossRef] [PubMed]

Klysubun, P.

Komrska, J.

Kreis, T.

Kühn, J.

N. Pavillon, C. S. Seelamantula, J. Kühn, M. Unser, and C. Depeursinge, “Suppression of the zero-order term in off-axis digital holography through nonlinear filtering,” Appl. Opt. 48(34), H186–H195 (2009).
[CrossRef] [PubMed]

J. Kühn, F. Charrière, T. Colomb, E. Cuche, F. Montfort, Y. Emery, P. Marquet, and C. Depeursinge, “Axial sub-nanometer accuracy in digital holographic microscopy,” Meas. Sci. Technol. 19(7), 074007 (2008).
[CrossRef]

Y. Emery, E. Cuche, F. Marquet, N. Aspert, P. Marquet, J. Kühn, M. Botkine, T. Colomb, F. Montfort, F. Charrière, C. Depeursinge, P. Debergh, and R. Conde, “Digital Holographic Microscopy (DHM) for metrology and dynamic characterization of MEMS and MOEMS,” Proc. SPIE 6186, N1860 (2006).

Kurowski, P.

Legros, J. C.

F. Dubois, C. Yourassowsky, O. Monnom, J. C. Legros, O. Debeir, P. Van Ham, R. Kiss, and C. Decaestecker, “Digital holographic microscopy for the three-dimensional dynamic analysis of in vitro cancer cell migration,” J. Biomed. Opt. 11(5), 054032 (2006).
[CrossRef] [PubMed]

F. Dubois, L. Joannes, and J. C. Legros, “Improved three-dimensional imaging with a digital holography microscope with a source of partial spatial coherence,” Appl. Opt. 38(34), 7085–7094 (1999).
[CrossRef]

Leith, E. N.

E. N. Leith, W. C. Chien, K. D. Mills, B. D. Athey, and D. S. Dilworth, “Optical sectioning by holographic coherence imaging: a generalized analysis,” J. Opt. Soc. Am. A 20(2), 380–387 (2003).
[CrossRef]

P. C. Sun and E. N. Leith, “Broad source image-plane holography as a confocal imaging process,” Appl. Opt. 33(4), 597–602 (1994).
[CrossRef] [PubMed]

E. N. Leith, C. Chen, H. Chen, Y. Chen, D. Dilworth, J. Lopez, J. Rudd, P. C. Sun, J. Valdmanis, and G. Vossler, “Imaging through scattering media with holography,” J. Opt. Soc. Am. A 9(7), 1148–1153 (1992).
[CrossRef]

E. N. Leith, C. Chen, H. Chen, Y. Chen, J. Lopez, P. C. Sun, and D. Dilworth, “Imaging through scattering media using spatial incoherence techniques,” Opt. Lett. 16(23), 1820–1822 (1991).
[CrossRef] [PubMed]

E. N. Leith and G. J. Swanson, “Recording of phase-amplitude images,” Appl. Opt. 20(17), 3081–3084 (1981).
[CrossRef] [PubMed]

E. N. Leith and G. J. Swanson, “Achromatic interferometers for white light optical processing and holography,” Appl. Opt. 19(4), 638–644 (1980).
[CrossRef] [PubMed]

E. N. Leith and J. A. Roth, “Noise performance of an achromatic coherent optical system,” Appl. Opt. 18(16), 2803–2811 (1979).
[CrossRef] [PubMed]

E. N. Leith and B. J. Chang, “Space-invariant holography with quasi-coherent light,” Appl. Opt. 12(8), 1957–1963 (1973).
[CrossRef] [PubMed]

E. N. Leith and J. Upatnieks, “Holography with Achromatic-Fringe Systems,” J. Opt. Soc. Am. 57(8), 975–980 (1967).
[CrossRef]

Lopez, J.

Lovicar, L.

Magistretti, P. J.

Marquet, F.

Y. Emery, E. Cuche, F. Marquet, N. Aspert, P. Marquet, J. Kühn, M. Botkine, T. Colomb, F. Montfort, F. Charrière, C. Depeursinge, P. Debergh, and R. Conde, “Digital Holographic Microscopy (DHM) for metrology and dynamic characterization of MEMS and MOEMS,” Proc. SPIE 6186, N1860 (2006).

Marquet, P.

Massatsch, P.

Mills, K. D.

Minetti, C.

F. Dubois, C. Yourassowsky, N. Callens, C. Minetti, and P. Queeckers, “Applications of digital holographic microscopes with partially spatial coherence sources,” J. Phys. Conference Series 139, 012027 (2008).
[CrossRef]

F. Dubois, M. L. Requena, C. Minetti, O. Monnom, and E. Istasse, “Partial spatial coherence effects in digital holographic microscopy with a laser source,” Appl. Opt. 43(5), 1131–1139 (2004).
[CrossRef] [PubMed]

Monnom, O.

Montfort, F.

J. Kühn, F. Charrière, T. Colomb, E. Cuche, F. Montfort, Y. Emery, P. Marquet, and C. Depeursinge, “Axial sub-nanometer accuracy in digital holographic microscopy,” Meas. Sci. Technol. 19(7), 074007 (2008).
[CrossRef]

Y. Emery, E. Cuche, F. Marquet, N. Aspert, P. Marquet, J. Kühn, M. Botkine, T. Colomb, F. Montfort, F. Charrière, C. Depeursinge, P. Debergh, and R. Conde, “Digital Holographic Microscopy (DHM) for metrology and dynamic characterization of MEMS and MOEMS,” Proc. SPIE 6186, N1860 (2006).

Pavillon, N.

Popescu, G.

Queeckers, P.

F. Dubois, C. Yourassowsky, N. Callens, C. Minetti, and P. Queeckers, “Applications of digital holographic microscopes with partially spatial coherence sources,” J. Phys. Conference Series 139, 012027 (2008).
[CrossRef]

Rappaz, B.

Requena, M. L.

Roth, J. A.

Rudd, J.

Rudolph, W.

Schäfer, M.

B. Kemper, D. Carl, J. Schnekenburger, I. Bredebusch, M. Schäfer, W. Domschke, and G. von Bally, “Investigation of living pancreas tumor cells by digital holographic microscopy,” J. Biomed. Opt. 11(3), 34005 (2006).
[CrossRef] [PubMed]

Schnekenburger, J.

B. Kemper, D. Carl, J. Schnekenburger, I. Bredebusch, M. Schäfer, W. Domschke, and G. von Bally, “Investigation of living pancreas tumor cells by digital holographic microscopy,” J. Biomed. Opt. 11(3), 34005 (2006).
[CrossRef] [PubMed]

Seelamantula, C. S.

Sun, P. C.

Swanson, G. J.

Unser, M.

Upatnieks, J.

Valdmanis, J.

Van Ham, P.

F. Dubois, C. Yourassowsky, O. Monnom, J. C. Legros, O. Debeir, P. Van Ham, R. Kiss, and C. Decaestecker, “Digital holographic microscopy for the three-dimensional dynamic analysis of in vitro cancer cell migration,” J. Biomed. Opt. 11(5), 054032 (2006).
[CrossRef] [PubMed]

Veselý, P.

H. Janečková, P. Veselý, and R. Chmelík, “Proving tumour cells by acute nutritional/energy deprivation as a survival threat: a task for microscopy,” Anticancer Res. 29(6), 2339–2345 (2009).
[PubMed]

von Bally, G.

B. Kemper, D. Carl, J. Schnekenburger, I. Bredebusch, M. Schäfer, W. Domschke, and G. von Bally, “Investigation of living pancreas tumor cells by digital holographic microscopy,” J. Biomed. Opt. 11(3), 34005 (2006).
[CrossRef] [PubMed]

D. Carl, B. Kemper, G. Wernicke, and G. von Bally, “Parameter-optimized digital holographic microscope for high-resolution living-cell analysis,” Appl. Opt. 43(36), 6536–6544 (2004).
[CrossRef]

Vossler, G.

Welsch, E.

Wernicke, G.

Yourassowsky, C.

F. Dubois, C. Yourassowsky, N. Callens, C. Minetti, and P. Queeckers, “Applications of digital holographic microscopes with partially spatial coherence sources,” J. Phys. Conference Series 139, 012027 (2008).
[CrossRef]

F. Dubois, C. Yourassowsky, O. Monnom, J. C. Legros, O. Debeir, P. Van Ham, R. Kiss, and C. Decaestecker, “Digital holographic microscopy for the three-dimensional dynamic analysis of in vitro cancer cell migration,” J. Biomed. Opt. 11(5), 054032 (2006).
[CrossRef] [PubMed]

F. Dubois, N. Callens, C. Yourassowsky, M. Hoyos, P. Kurowski, and O. Monnom, “Digital holographic microscopy with reduced spatial coherence for three-dimensional particle flow analysis,” Appl. Opt. 45(5), 864–871 (2006).
[CrossRef] [PubMed]

Anticancer Res. (1)

H. Janečková, P. Veselý, and R. Chmelík, “Proving tumour cells by acute nutritional/energy deprivation as a survival threat: a task for microscopy,” Anticancer Res. 29(6), 2339–2345 (2009).
[PubMed]

Appl. Opt. (12)

F. Dubois, L. Joannes, and J. C. Legros, “Improved three-dimensional imaging with a digital holography microscope with a source of partial spatial coherence,” Appl. Opt. 38(34), 7085–7094 (1999).
[CrossRef]

F. Dubois, N. Callens, C. Yourassowsky, M. Hoyos, P. Kurowski, and O. Monnom, “Digital holographic microscopy with reduced spatial coherence for three-dimensional particle flow analysis,” Appl. Opt. 45(5), 864–871 (2006).
[CrossRef] [PubMed]

E. Cuche, P. Marquet, and C. Depeursinge, “Simultaneous amplitude-contrast and quantitative phase-contrast microscopy by numerical reconstruction of Fresnel off-axis holograms,” Appl. Opt. 38(34), 6994–7001 (1999).
[CrossRef]

P. Massatsch, F. Charrière, E. Cuche, P. Marquet, and C. D. Depeursinge, “Time-domain optical coherence tomography with digital holographic microscopy,” Appl. Opt. 44(10), 1806–1812 (2005).
[CrossRef] [PubMed]

D. Carl, B. Kemper, G. Wernicke, and G. von Bally, “Parameter-optimized digital holographic microscope for high-resolution living-cell analysis,” Appl. Opt. 43(36), 6536–6544 (2004).
[CrossRef]

E. N. Leith and G. J. Swanson, “Achromatic interferometers for white light optical processing and holography,” Appl. Opt. 19(4), 638–644 (1980).
[CrossRef] [PubMed]

E. N. Leith and G. J. Swanson, “Recording of phase-amplitude images,” Appl. Opt. 20(17), 3081–3084 (1981).
[CrossRef] [PubMed]

E. N. Leith and B. J. Chang, “Space-invariant holography with quasi-coherent light,” Appl. Opt. 12(8), 1957–1963 (1973).
[CrossRef] [PubMed]

N. Pavillon, C. S. Seelamantula, J. Kühn, M. Unser, and C. Depeursinge, “Suppression of the zero-order term in off-axis digital holography through nonlinear filtering,” Appl. Opt. 48(34), H186–H195 (2009).
[CrossRef] [PubMed]

F. Dubois, M. L. Requena, C. Minetti, O. Monnom, and E. Istasse, “Partial spatial coherence effects in digital holographic microscopy with a laser source,” Appl. Opt. 43(5), 1131–1139 (2004).
[CrossRef] [PubMed]

E. N. Leith and J. A. Roth, “Noise performance of an achromatic coherent optical system,” Appl. Opt. 18(16), 2803–2811 (1979).
[CrossRef] [PubMed]

P. C. Sun and E. N. Leith, “Broad source image-plane holography as a confocal imaging process,” Appl. Opt. 33(4), 597–602 (1994).
[CrossRef] [PubMed]

J. Biomed. Opt. (2)

B. Kemper, D. Carl, J. Schnekenburger, I. Bredebusch, M. Schäfer, W. Domschke, and G. von Bally, “Investigation of living pancreas tumor cells by digital holographic microscopy,” J. Biomed. Opt. 11(3), 34005 (2006).
[CrossRef] [PubMed]

F. Dubois, C. Yourassowsky, O. Monnom, J. C. Legros, O. Debeir, P. Van Ham, R. Kiss, and C. Decaestecker, “Digital holographic microscopy for the three-dimensional dynamic analysis of in vitro cancer cell migration,” J. Biomed. Opt. 11(5), 054032 (2006).
[CrossRef] [PubMed]

J. Mod. Opt. (1)

R. ChmelÍk, “Three-dimensional scalar imaging in high-aperture low-coherence interference and holographic microscopes,” J. Mod. Opt. 53(18), 2673–2689 (2006).
[CrossRef]

J. Opt. Soc. Am. (2)

E. N. Leith and J. Upatnieks, “Holography with Achromatic-Fringe Systems,” J. Opt. Soc. Am. 57(8), 975–980 (1967).
[CrossRef]

H. J. Caulfield, “Holographic imaging through scatterers,” J. Opt. Soc. Am. 58(2), 150–152 (1968).
[CrossRef]

J. Opt. Soc. Am. A (5)

J. Phys. Conference Series (1)

F. Dubois, C. Yourassowsky, N. Callens, C. Minetti, and P. Queeckers, “Applications of digital holographic microscopes with partially spatial coherence sources,” J. Phys. Conference Series 139, 012027 (2008).
[CrossRef]

Meas. Sci. Technol. (1)

J. Kühn, F. Charrière, T. Colomb, E. Cuche, F. Montfort, Y. Emery, P. Marquet, and C. Depeursinge, “Axial sub-nanometer accuracy in digital holographic microscopy,” Meas. Sci. Technol. 19(7), 074007 (2008).
[CrossRef]

Opt. Commun. (1)

G. Indebetouw and P. Klysubun, “Optical sectioning with low coherence spatio-temporal holography,” Opt. Commun. 172(1-6), 25–29 (1999).
[CrossRef]

Opt. Eng. (2)

R. Chmelík and Z. Harna, “Surface profilometry by a parallel–mode confocal microscope,” Opt. Eng. 41(4), 744–745 (2002).
[CrossRef]

R. Chmelík and Z. Harna, “Parallel-mode confocal microscope,” Opt. Eng. 38(10), 1635–1639 (1999).
[CrossRef]

Opt. Express (1)

Opt. Lett. (5)

Proc. Royal Microscopical Soc.. (1)

G. A. Dunn, “Transmitted-light interference microscopy: a technique born before its time,” Proc. Royal Microscopical Soc.. 33, 189–196 (1998).

Proc. SPIE (2)

Y. Emery, E. Cuche, F. Marquet, N. Aspert, P. Marquet, J. Kühn, M. Botkine, T. Colomb, F. Montfort, F. Charrière, C. Depeursinge, P. Debergh, and R. Conde, “Digital Holographic Microscopy (DHM) for metrology and dynamic characterization of MEMS and MOEMS,” Proc. SPIE 6186, N1860 (2006).

R. Chmelík, “Holographic confocal microscopy,” Proc. SPIE 4356, 118–123 (2000).
[CrossRef]

Other (4)

J. B. Pawley, Handbook of Biological Confocal Microscopy (Springer, New York, 2006), p. 65, chapter 4.

M. Born, and E. Wolf, Principles of optics (Cambridge university press, Cambridge, 2002), chap. 9, p. 548.

H. Uhlířová, Microscopy of time variable biologic objects (Brno University of Technology, Brno, 2010, Ph.D. thesis, Faculty of Mechanical Engineering, Supervisor: R. Chmelík), chap. 4.

C. J. R. Sheppard, and M. Roy, “Low-Coherence Interference Microscopy,” in Optical Imaging and Microscopy, P. Török and F. J. Kao, eds., (Springer, Berlin, 2003), Chap. 11, 267–273.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Optical setup of the microscope: S.. light source, L.. relay lens, M.. mirrors, G.. diffraction grating, C.. microobjective lenses used as condensers, R.. reference plane, Sp.. specimen, O.. microobjective lenses, OP.. output plane, OL.. output lens, D.. detector.

Fig. 3
Fig. 3

Difference in spatial frequency of interference fringes for out-of-centre points (λ = λ 0): a) secondary images of the light source (the grey areas) in pupils of objectives (O) (the continuous circular outlines), central points A, A’, and the marginal points B, B’ and C, C’; b) interference structure formed by points A, A’ rotated by an angle α’ around point Q is identical with the structure formed by points B, B’; c) rotation introduces a difference in spatial frequency of interference fringes being a cross-section of the rotated interference structure with the output plane that cause a difference δ(x) in the fringe position.

Fig. 2
Fig. 2

Spectral transmissivity. Primary images of the light source (the grey areas) and their centres A, A’ in pupils of condensers (C) (the continuous circular outlines), d .. pupil diameter, p .. shift of the light source image due to dispersion: a) for λ = λ 0, b) for λ > λ 0. c) the effective area of the light source delimited by both the pupils’ edges (the continuous lenticular outline).

Fig. 4
Fig. 4

Optical sectioning by coherence gating in CCHM with low coherence illumination. Amplitude object (AO): Cu foil 0.02 mm thick with rectangular holes about 15 x 13 μm2 in size. Phase object (PO): Cellocate coverslip 170 μm thick, with etched relief “M” about 360 nm deep. Bright field image was acquired with the shutter closed in the reference arm.

Fig. 5
Fig. 5

Height profiles derived from CCHM phase cross-sections along the white lines shown in Fig. 4 (from the upper left to the lower right). The phase profile φ was unwrapped and the height profile h was calculated: h = φ/k(n-n 0), where k = 2π/λ 0, λ 0 = 650 nm, n ≈1.520 is the refractive index of Cellocate (n = 1.525 for λ = 546 nm) and n 0 ≈1 is the value for air.

Tables (1)

Tables Icon

Table 1 CCHM characteristics*

Equations (12)

Equations on this page are rendered with MathJax. Learn more.

sin ϑ = f G λ ,
f OP = 2 ( sin ϑ ) / λ = 2 f G ,
f G d / l λ 0 .
Δ d = d l f G λ 0
f OP 3 f OM ,
f OM = N A / m λ .
f G 3 N A / 2 m λ .
f D 2.3 ( f OP + f OM ) / m OL
m OL 2.3 ( 2 f G + 2 f G / 3 ) / f D 6.13 f G / f D .
N A OL f G λ 0 + N A / m .
p l f G Δ λ = l f G ( λ λ 0 ) .
Δ 0,5 λ 2 d / 5 l f G .

Metrics