Abstract

Silicon photonics has great potential for mid-wave-infrared applications. The dispersion of waveguide can be manipulated by waveguide dimension and cladding materials. Simulation shows that <3μm wide conversion can be achieved by tuning the pump wavelength.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. O. Boyraz and B. Jalali, “Demonstration of 11dB fiber-to-fiber gain in a silicon Raman amplifier,” IEICE Electron. Express 1(14), 429–434 (2004).
    [CrossRef]
  2. R. Claps, D. Dimitropoulos, V. Raghunathan, Y. Han, and B. Jalali, “Observation of stimulated Raman amplification in silicon waveguides,” Opt. Express 11(15), 1731–1739 (2003).
    [CrossRef] [PubMed]
  3. O. Boyraz and B. Jalali, “Demonstration of a silicon Raman laser,” Opt. Express 12(21), 5269–5273 (2004).
    [CrossRef] [PubMed]
  4. H. S. Rong, A. S. Liu, R. Jones, O. Cohen, D. Hak, R. Nicolaescu, A. Fang, and M. Paniccia, “An all-silicon Raman laser,” Nature 433(7023), 292–294 (2005).
    [CrossRef] [PubMed]
  5. X. Z. Sang, E. K. Tien, N. S. Yuksek, F. Qian, Q. Song, and O. Boyraz, “Dual-wavelength mode-locked fiber laser with an intracavity silicon waveguide,” IEEE Photon. Technol. Lett. 20(13), 1184–1186 (2008).
    [CrossRef]
  6. M. A. Foster, A. C. Turner, J. E. Sharping, B. S. Schmidt, M. Lipson, and A. L. Gaeta, “Broad-band optical parametric gain on a silicon photonic chip,” Nature 441(7096), 960–963 (2006).
    [CrossRef] [PubMed]
  7. M. A. Foster, A. C. Turner, R. Salem, M. Lipson, and A. L. Gaeta, “Broad-band continuous-wave parametric wavelength conversion in silicon nanowaveguides,” Opt. Express 15(20), 12949–12958 (2007).
    [CrossRef] [PubMed]
  8. Q. Lin, T. J. Johnson, R. Perahia, C. P. Michael, and O. J. Painter, “A proposal for highly tunable optical parametric oscillation in silicon micro-resonators,” Opt. Express 16(14), 10596–10610 (2008).
    [CrossRef] [PubMed]
  9. R. M. Osgood, N. C. Panoiu, J. I. Dadap, X. Liu, X. Chen, I. W. Hsieh, E. Dulkeith, W. M. Green, and Y. A. Vlasov, “Engineering nonlinearities in nanoscale optical systems: physics and applications in dispersion-engineered silicon nanophotonic wires,” Adv. Opt. Photon. 1, 162–235 (2009).
    [CrossRef]
  10. X. Zhang, S. Gao, and S. He, “Optimal Design of a Silicon-on-Insulator Nanowire Waveguide for Broadband Wavelength Conversion,” Progress in Electromagnetics Research-Pier 89, 183–198 (2009).
    [CrossRef]
  11. S. Gao, X. Zhang, Z. Li, and S. He, “Polarization-Independent Wavelength Conversion Using an Angled-Polarization Pump in a Silicon Nanowire Waveguide,” IEEE J. Sel. Top. Quantum Electron . 16,250–256.
  12. B. Jalali, V. Raghtmathan, R. Shori, S. Fathpour, D. Dimitropoulos, and O. Stafsudd, “Prospects for silicon mid-IR Raman lasers,” IEEE J. Sel. Top. Quantum Electron. 12(6), 1618–1627 (2006).
    [CrossRef]
  13. X. Liu, R. M. Osgood, Y. A. Vlasov, and M. J. GreenWilliam, “Mid-infrared optical parametric amplifier using silicon nanophotonic waveguides,” Nat Photon advance online publication(2010).
    [CrossRef]
  14. P. Werle, F. Slemr, K. Maurer, R. Kormann, R. Mucke, and B. Janker, “Near- and mid-infrared laser-optical sensors for gas analysis,” Opt. Lasers Eng. 37(2-3), 101–114 (2002).
    [CrossRef]
  15. F. Capasso, R. Paiella, R. Martini, R. Colombelli, C. Gmachl, T. L. Myers, M. S. Taubman, R. M. Williams, C. G. Bethea, K. Unterrainer, H. Y. Hwang, D. L. Sivco, A. Y. Cho, A. M. Sergent, H. C. Liu, and E. A. Whittaker, “Quantum cascade lasers: Ultrahigh-Speed operation, optical wireless communication, narrow linewidth, and far-infrared emission,” IEEE J. Quantum Electron. 38(6), 511–532 (2002).
    [CrossRef]
  16. S. D. Jackson and T. A. King, “High-power diode-cladding-pumped Tm-doped silica fiber laser,” Opt. Lett. 23(18), 1462–1464 (1998).
    [CrossRef]
  17. S. D. Jackson, “Single-transverse-mode 2.5-W holmium-doped fluoride fiber laser operating at 2.86 microm,” Opt. Lett. 29(4), 334–336 (2004).
    [CrossRef] [PubMed]
  18. R. Allen and L. Esterowitz, “Cw Diode Pumped 2.3-Mu-M Fiber Laser,” Appl. Phys. Lett. 55(8), 721–722 (1989).
    [CrossRef]
  19. S. Tokita, M. Murakami, S. Shimizu, M. Hashida, and S. Sakabe, “Liquid-cooled 24 W mid-infrared Er:ZBLAN fiber laser,” Opt. Lett. 34(20), 3062–3064 (2009).
    [CrossRef] [PubMed]
  20. V. Raghunathan, D. Borlaug, R. R. Rice, and B. Jalali, “Demonstration of a Mid-infrared silicon Raman amplifier,” Opt. Express 15(22), 14355–14362 (2007).
    [CrossRef] [PubMed]
  21. R. A. Soref, S. J. Emelett, and W. R. Buchwald, “Silicon waveguided components for the long-wave infrared region,” J. Opt. A, Pure Appl. Opt. 8(10), 840–848 (2006).
    [CrossRef]
  22. S. Zlatanovic, J. S. Park, S. Moro, J. M. C. Boggio, I. B. Divliansky, N. Alic, S. Mookherjea, and S. Radic, “Mid-infrared wavelength conversion in silicon waveguides using ultracompact telecom-band-derived pump source,” Nat Photon advance online publication(2010).
    [CrossRef]
  23. P. Klocek, Handbook of Infrared Optical Materials (M. Dekker, New York, 1991), p. 611.
  24. P. Yang, S. Stankovic, J. Crnjanski, E. Teo, D. Thomson, A. Bettiol, M. Breese, W. Headley, C. Giusca, G. Reed, and G. Mashanovich, “Silicon photonic waveguides for mid- and long-wave infrared region,” J. Mater. Sci. Mater. Electron. 20(S1), 159–163 (2009).
    [CrossRef]
  25. R. A. Soref, S. J. Emelett, and A. R. Buchwald, “Silicon waveguided components for the long-wave infrared region,” J. Opt. A, Pure Appl. Opt. 8(10), 840–848 (2006).
    [CrossRef]
  26. M. Dinu, “Dispersion of phonon-assisted nonresonant third-order nonlinearities,” IEEE J. Quantum Electron. 39(11), 1498–1503 (2003).
    [CrossRef]
  27. M. Dinu, F. Quochi, and H. Garcia, “Third-order nonlinearities in silicon at telecom wavelengths,” Appl. Phys. Lett. 82(18), 2954–2956 (2003).
    [CrossRef]
  28. H. Garcia and R. Kalyanaraman, “Phonon-assisted two-photon absorption in the presence of a dc-field: the nonlinear Franz–Keldysh effect in indirect gap semiconductors,” J. Phys. At. Mol. Opt. Phys. 39(12), 2737–2746 (2006).
    [CrossRef]
  29. S. Pearl, N. Rotenberg, and H. M. van Driel, “Three photon absorption in silicon for 2300–3300 nm,” Appl. Phys. Lett. 93(13), 131102 (2008).
    [CrossRef]
  30. G. Agrawal, Nonlinear Fiber Optics, Fourth Edition (Academic Press, 2006).
  31. R. Stolen and J. Bjorkholm, “Parametric amplification and frequency conversion in optical fibers,” IEEE J. Quantum Electron. 18(7), 1062–1072 (1982).
    [CrossRef]
  32. J. Hansryd, P. A. Andrekson, M. Westlund, L. Jie, and P. O. Hedekvist, “Fiber-based optical parametric amplifiers and their applications,” IEEE J. Sel. Top. Quant. Electron. 8(3), 506–520 (2002).
    [CrossRef]
  33. T. Andersen, K. Hilligsøe, C. Nielsen, J. Thøgersen, K. Hansen, S. Keiding, and J. Larsen, “Continuous-wave wavelength conversion in a photonic crystal fiber with two zero-dispersion wavelengths,” Opt. Express 12(17), 4113–4122 (2004).
    [CrossRef] [PubMed]
  34. J. P. Commin, D. G. Revin, S. Y. Zhang, A. B. Krysa, and J. W. Cockburn, “High performance, high temperature λ≈3.7,” Appl. Phys. Lett. 95(11), 111113 (2009).
    [CrossRef]
  35. A. D. Bristow, N. Rotenberg, and H. M. van Driel, “Two-photon absorption and Kerr coefficients of silicon for 850–2200 nm,” Appl. Phys. Lett. 90(19), 191104 (2007).
    [CrossRef]

2010

X. Liu, R. M. Osgood, Y. A. Vlasov, and M. J. GreenWilliam, “Mid-infrared optical parametric amplifier using silicon nanophotonic waveguides,” Nat Photon advance online publication(2010).
[CrossRef]

S. Zlatanovic, J. S. Park, S. Moro, J. M. C. Boggio, I. B. Divliansky, N. Alic, S. Mookherjea, and S. Radic, “Mid-infrared wavelength conversion in silicon waveguides using ultracompact telecom-band-derived pump source,” Nat Photon advance online publication(2010).
[CrossRef]

2009

P. Yang, S. Stankovic, J. Crnjanski, E. Teo, D. Thomson, A. Bettiol, M. Breese, W. Headley, C. Giusca, G. Reed, and G. Mashanovich, “Silicon photonic waveguides for mid- and long-wave infrared region,” J. Mater. Sci. Mater. Electron. 20(S1), 159–163 (2009).
[CrossRef]

X. Zhang, S. Gao, and S. He, “Optimal Design of a Silicon-on-Insulator Nanowire Waveguide for Broadband Wavelength Conversion,” Progress in Electromagnetics Research-Pier 89, 183–198 (2009).
[CrossRef]

J. P. Commin, D. G. Revin, S. Y. Zhang, A. B. Krysa, and J. W. Cockburn, “High performance, high temperature λ≈3.7,” Appl. Phys. Lett. 95(11), 111113 (2009).
[CrossRef]

R. M. Osgood, N. C. Panoiu, J. I. Dadap, X. Liu, X. Chen, I. W. Hsieh, E. Dulkeith, W. M. Green, and Y. A. Vlasov, “Engineering nonlinearities in nanoscale optical systems: physics and applications in dispersion-engineered silicon nanophotonic wires,” Adv. Opt. Photon. 1, 162–235 (2009).
[CrossRef]

S. Tokita, M. Murakami, S. Shimizu, M. Hashida, and S. Sakabe, “Liquid-cooled 24 W mid-infrared Er:ZBLAN fiber laser,” Opt. Lett. 34(20), 3062–3064 (2009).
[CrossRef] [PubMed]

2008

Q. Lin, T. J. Johnson, R. Perahia, C. P. Michael, and O. J. Painter, “A proposal for highly tunable optical parametric oscillation in silicon micro-resonators,” Opt. Express 16(14), 10596–10610 (2008).
[CrossRef] [PubMed]

X. Z. Sang, E. K. Tien, N. S. Yuksek, F. Qian, Q. Song, and O. Boyraz, “Dual-wavelength mode-locked fiber laser with an intracavity silicon waveguide,” IEEE Photon. Technol. Lett. 20(13), 1184–1186 (2008).
[CrossRef]

S. Pearl, N. Rotenberg, and H. M. van Driel, “Three photon absorption in silicon for 2300–3300 nm,” Appl. Phys. Lett. 93(13), 131102 (2008).
[CrossRef]

2007

2006

H. Garcia and R. Kalyanaraman, “Phonon-assisted two-photon absorption in the presence of a dc-field: the nonlinear Franz–Keldysh effect in indirect gap semiconductors,” J. Phys. At. Mol. Opt. Phys. 39(12), 2737–2746 (2006).
[CrossRef]

R. A. Soref, S. J. Emelett, and A. R. Buchwald, “Silicon waveguided components for the long-wave infrared region,” J. Opt. A, Pure Appl. Opt. 8(10), 840–848 (2006).
[CrossRef]

M. A. Foster, A. C. Turner, J. E. Sharping, B. S. Schmidt, M. Lipson, and A. L. Gaeta, “Broad-band optical parametric gain on a silicon photonic chip,” Nature 441(7096), 960–963 (2006).
[CrossRef] [PubMed]

B. Jalali, V. Raghtmathan, R. Shori, S. Fathpour, D. Dimitropoulos, and O. Stafsudd, “Prospects for silicon mid-IR Raman lasers,” IEEE J. Sel. Top. Quantum Electron. 12(6), 1618–1627 (2006).
[CrossRef]

R. A. Soref, S. J. Emelett, and W. R. Buchwald, “Silicon waveguided components for the long-wave infrared region,” J. Opt. A, Pure Appl. Opt. 8(10), 840–848 (2006).
[CrossRef]

2005

H. S. Rong, A. S. Liu, R. Jones, O. Cohen, D. Hak, R. Nicolaescu, A. Fang, and M. Paniccia, “An all-silicon Raman laser,” Nature 433(7023), 292–294 (2005).
[CrossRef] [PubMed]

2004

2003

R. Claps, D. Dimitropoulos, V. Raghunathan, Y. Han, and B. Jalali, “Observation of stimulated Raman amplification in silicon waveguides,” Opt. Express 11(15), 1731–1739 (2003).
[CrossRef] [PubMed]

M. Dinu, “Dispersion of phonon-assisted nonresonant third-order nonlinearities,” IEEE J. Quantum Electron. 39(11), 1498–1503 (2003).
[CrossRef]

M. Dinu, F. Quochi, and H. Garcia, “Third-order nonlinearities in silicon at telecom wavelengths,” Appl. Phys. Lett. 82(18), 2954–2956 (2003).
[CrossRef]

2002

J. Hansryd, P. A. Andrekson, M. Westlund, L. Jie, and P. O. Hedekvist, “Fiber-based optical parametric amplifiers and their applications,” IEEE J. Sel. Top. Quant. Electron. 8(3), 506–520 (2002).
[CrossRef]

P. Werle, F. Slemr, K. Maurer, R. Kormann, R. Mucke, and B. Janker, “Near- and mid-infrared laser-optical sensors for gas analysis,” Opt. Lasers Eng. 37(2-3), 101–114 (2002).
[CrossRef]

F. Capasso, R. Paiella, R. Martini, R. Colombelli, C. Gmachl, T. L. Myers, M. S. Taubman, R. M. Williams, C. G. Bethea, K. Unterrainer, H. Y. Hwang, D. L. Sivco, A. Y. Cho, A. M. Sergent, H. C. Liu, and E. A. Whittaker, “Quantum cascade lasers: Ultrahigh-Speed operation, optical wireless communication, narrow linewidth, and far-infrared emission,” IEEE J. Quantum Electron. 38(6), 511–532 (2002).
[CrossRef]

1998

1989

R. Allen and L. Esterowitz, “Cw Diode Pumped 2.3-Mu-M Fiber Laser,” Appl. Phys. Lett. 55(8), 721–722 (1989).
[CrossRef]

1982

R. Stolen and J. Bjorkholm, “Parametric amplification and frequency conversion in optical fibers,” IEEE J. Quantum Electron. 18(7), 1062–1072 (1982).
[CrossRef]

Alic, N.

S. Zlatanovic, J. S. Park, S. Moro, J. M. C. Boggio, I. B. Divliansky, N. Alic, S. Mookherjea, and S. Radic, “Mid-infrared wavelength conversion in silicon waveguides using ultracompact telecom-band-derived pump source,” Nat Photon advance online publication(2010).
[CrossRef]

Allen, R.

R. Allen and L. Esterowitz, “Cw Diode Pumped 2.3-Mu-M Fiber Laser,” Appl. Phys. Lett. 55(8), 721–722 (1989).
[CrossRef]

Andersen, T.

Andrekson, P. A.

J. Hansryd, P. A. Andrekson, M. Westlund, L. Jie, and P. O. Hedekvist, “Fiber-based optical parametric amplifiers and their applications,” IEEE J. Sel. Top. Quant. Electron. 8(3), 506–520 (2002).
[CrossRef]

Bethea, C. G.

F. Capasso, R. Paiella, R. Martini, R. Colombelli, C. Gmachl, T. L. Myers, M. S. Taubman, R. M. Williams, C. G. Bethea, K. Unterrainer, H. Y. Hwang, D. L. Sivco, A. Y. Cho, A. M. Sergent, H. C. Liu, and E. A. Whittaker, “Quantum cascade lasers: Ultrahigh-Speed operation, optical wireless communication, narrow linewidth, and far-infrared emission,” IEEE J. Quantum Electron. 38(6), 511–532 (2002).
[CrossRef]

Bettiol, A.

P. Yang, S. Stankovic, J. Crnjanski, E. Teo, D. Thomson, A. Bettiol, M. Breese, W. Headley, C. Giusca, G. Reed, and G. Mashanovich, “Silicon photonic waveguides for mid- and long-wave infrared region,” J. Mater. Sci. Mater. Electron. 20(S1), 159–163 (2009).
[CrossRef]

Bjorkholm, J.

R. Stolen and J. Bjorkholm, “Parametric amplification and frequency conversion in optical fibers,” IEEE J. Quantum Electron. 18(7), 1062–1072 (1982).
[CrossRef]

Boggio, J. M. C.

S. Zlatanovic, J. S. Park, S. Moro, J. M. C. Boggio, I. B. Divliansky, N. Alic, S. Mookherjea, and S. Radic, “Mid-infrared wavelength conversion in silicon waveguides using ultracompact telecom-band-derived pump source,” Nat Photon advance online publication(2010).
[CrossRef]

Borlaug, D.

Boyraz, O.

X. Z. Sang, E. K. Tien, N. S. Yuksek, F. Qian, Q. Song, and O. Boyraz, “Dual-wavelength mode-locked fiber laser with an intracavity silicon waveguide,” IEEE Photon. Technol. Lett. 20(13), 1184–1186 (2008).
[CrossRef]

O. Boyraz and B. Jalali, “Demonstration of a silicon Raman laser,” Opt. Express 12(21), 5269–5273 (2004).
[CrossRef] [PubMed]

O. Boyraz and B. Jalali, “Demonstration of 11dB fiber-to-fiber gain in a silicon Raman amplifier,” IEICE Electron. Express 1(14), 429–434 (2004).
[CrossRef]

Breese, M.

P. Yang, S. Stankovic, J. Crnjanski, E. Teo, D. Thomson, A. Bettiol, M. Breese, W. Headley, C. Giusca, G. Reed, and G. Mashanovich, “Silicon photonic waveguides for mid- and long-wave infrared region,” J. Mater. Sci. Mater. Electron. 20(S1), 159–163 (2009).
[CrossRef]

Bristow, A. D.

A. D. Bristow, N. Rotenberg, and H. M. van Driel, “Two-photon absorption and Kerr coefficients of silicon for 850–2200 nm,” Appl. Phys. Lett. 90(19), 191104 (2007).
[CrossRef]

Buchwald, A. R.

R. A. Soref, S. J. Emelett, and A. R. Buchwald, “Silicon waveguided components for the long-wave infrared region,” J. Opt. A, Pure Appl. Opt. 8(10), 840–848 (2006).
[CrossRef]

Buchwald, W. R.

R. A. Soref, S. J. Emelett, and W. R. Buchwald, “Silicon waveguided components for the long-wave infrared region,” J. Opt. A, Pure Appl. Opt. 8(10), 840–848 (2006).
[CrossRef]

Capasso, F.

F. Capasso, R. Paiella, R. Martini, R. Colombelli, C. Gmachl, T. L. Myers, M. S. Taubman, R. M. Williams, C. G. Bethea, K. Unterrainer, H. Y. Hwang, D. L. Sivco, A. Y. Cho, A. M. Sergent, H. C. Liu, and E. A. Whittaker, “Quantum cascade lasers: Ultrahigh-Speed operation, optical wireless communication, narrow linewidth, and far-infrared emission,” IEEE J. Quantum Electron. 38(6), 511–532 (2002).
[CrossRef]

Chen, X.

Cho, A. Y.

F. Capasso, R. Paiella, R. Martini, R. Colombelli, C. Gmachl, T. L. Myers, M. S. Taubman, R. M. Williams, C. G. Bethea, K. Unterrainer, H. Y. Hwang, D. L. Sivco, A. Y. Cho, A. M. Sergent, H. C. Liu, and E. A. Whittaker, “Quantum cascade lasers: Ultrahigh-Speed operation, optical wireless communication, narrow linewidth, and far-infrared emission,” IEEE J. Quantum Electron. 38(6), 511–532 (2002).
[CrossRef]

Claps, R.

Cockburn, J. W.

J. P. Commin, D. G. Revin, S. Y. Zhang, A. B. Krysa, and J. W. Cockburn, “High performance, high temperature λ≈3.7,” Appl. Phys. Lett. 95(11), 111113 (2009).
[CrossRef]

Cohen, O.

H. S. Rong, A. S. Liu, R. Jones, O. Cohen, D. Hak, R. Nicolaescu, A. Fang, and M. Paniccia, “An all-silicon Raman laser,” Nature 433(7023), 292–294 (2005).
[CrossRef] [PubMed]

Colombelli, R.

F. Capasso, R. Paiella, R. Martini, R. Colombelli, C. Gmachl, T. L. Myers, M. S. Taubman, R. M. Williams, C. G. Bethea, K. Unterrainer, H. Y. Hwang, D. L. Sivco, A. Y. Cho, A. M. Sergent, H. C. Liu, and E. A. Whittaker, “Quantum cascade lasers: Ultrahigh-Speed operation, optical wireless communication, narrow linewidth, and far-infrared emission,” IEEE J. Quantum Electron. 38(6), 511–532 (2002).
[CrossRef]

Commin, J. P.

J. P. Commin, D. G. Revin, S. Y. Zhang, A. B. Krysa, and J. W. Cockburn, “High performance, high temperature λ≈3.7,” Appl. Phys. Lett. 95(11), 111113 (2009).
[CrossRef]

Crnjanski, J.

P. Yang, S. Stankovic, J. Crnjanski, E. Teo, D. Thomson, A. Bettiol, M. Breese, W. Headley, C. Giusca, G. Reed, and G. Mashanovich, “Silicon photonic waveguides for mid- and long-wave infrared region,” J. Mater. Sci. Mater. Electron. 20(S1), 159–163 (2009).
[CrossRef]

Dadap, J. I.

Dimitropoulos, D.

B. Jalali, V. Raghtmathan, R. Shori, S. Fathpour, D. Dimitropoulos, and O. Stafsudd, “Prospects for silicon mid-IR Raman lasers,” IEEE J. Sel. Top. Quantum Electron. 12(6), 1618–1627 (2006).
[CrossRef]

R. Claps, D. Dimitropoulos, V. Raghunathan, Y. Han, and B. Jalali, “Observation of stimulated Raman amplification in silicon waveguides,” Opt. Express 11(15), 1731–1739 (2003).
[CrossRef] [PubMed]

Dinu, M.

M. Dinu, “Dispersion of phonon-assisted nonresonant third-order nonlinearities,” IEEE J. Quantum Electron. 39(11), 1498–1503 (2003).
[CrossRef]

M. Dinu, F. Quochi, and H. Garcia, “Third-order nonlinearities in silicon at telecom wavelengths,” Appl. Phys. Lett. 82(18), 2954–2956 (2003).
[CrossRef]

Divliansky, I. B.

S. Zlatanovic, J. S. Park, S. Moro, J. M. C. Boggio, I. B. Divliansky, N. Alic, S. Mookherjea, and S. Radic, “Mid-infrared wavelength conversion in silicon waveguides using ultracompact telecom-band-derived pump source,” Nat Photon advance online publication(2010).
[CrossRef]

Dulkeith, E.

Emelett, S. J.

R. A. Soref, S. J. Emelett, and W. R. Buchwald, “Silicon waveguided components for the long-wave infrared region,” J. Opt. A, Pure Appl. Opt. 8(10), 840–848 (2006).
[CrossRef]

R. A. Soref, S. J. Emelett, and A. R. Buchwald, “Silicon waveguided components for the long-wave infrared region,” J. Opt. A, Pure Appl. Opt. 8(10), 840–848 (2006).
[CrossRef]

Esterowitz, L.

R. Allen and L. Esterowitz, “Cw Diode Pumped 2.3-Mu-M Fiber Laser,” Appl. Phys. Lett. 55(8), 721–722 (1989).
[CrossRef]

Fang, A.

H. S. Rong, A. S. Liu, R. Jones, O. Cohen, D. Hak, R. Nicolaescu, A. Fang, and M. Paniccia, “An all-silicon Raman laser,” Nature 433(7023), 292–294 (2005).
[CrossRef] [PubMed]

Fathpour, S.

B. Jalali, V. Raghtmathan, R. Shori, S. Fathpour, D. Dimitropoulos, and O. Stafsudd, “Prospects for silicon mid-IR Raman lasers,” IEEE J. Sel. Top. Quantum Electron. 12(6), 1618–1627 (2006).
[CrossRef]

Foster, M. A.

M. A. Foster, A. C. Turner, R. Salem, M. Lipson, and A. L. Gaeta, “Broad-band continuous-wave parametric wavelength conversion in silicon nanowaveguides,” Opt. Express 15(20), 12949–12958 (2007).
[CrossRef] [PubMed]

M. A. Foster, A. C. Turner, J. E. Sharping, B. S. Schmidt, M. Lipson, and A. L. Gaeta, “Broad-band optical parametric gain on a silicon photonic chip,” Nature 441(7096), 960–963 (2006).
[CrossRef] [PubMed]

Gaeta, A. L.

M. A. Foster, A. C. Turner, R. Salem, M. Lipson, and A. L. Gaeta, “Broad-band continuous-wave parametric wavelength conversion in silicon nanowaveguides,” Opt. Express 15(20), 12949–12958 (2007).
[CrossRef] [PubMed]

M. A. Foster, A. C. Turner, J. E. Sharping, B. S. Schmidt, M. Lipson, and A. L. Gaeta, “Broad-band optical parametric gain on a silicon photonic chip,” Nature 441(7096), 960–963 (2006).
[CrossRef] [PubMed]

Gao, S.

X. Zhang, S. Gao, and S. He, “Optimal Design of a Silicon-on-Insulator Nanowire Waveguide for Broadband Wavelength Conversion,” Progress in Electromagnetics Research-Pier 89, 183–198 (2009).
[CrossRef]

S. Gao, X. Zhang, Z. Li, and S. He, “Polarization-Independent Wavelength Conversion Using an Angled-Polarization Pump in a Silicon Nanowire Waveguide,” IEEE J. Sel. Top. Quantum Electron . 16,250–256.

Garcia, H.

H. Garcia and R. Kalyanaraman, “Phonon-assisted two-photon absorption in the presence of a dc-field: the nonlinear Franz–Keldysh effect in indirect gap semiconductors,” J. Phys. At. Mol. Opt. Phys. 39(12), 2737–2746 (2006).
[CrossRef]

M. Dinu, F. Quochi, and H. Garcia, “Third-order nonlinearities in silicon at telecom wavelengths,” Appl. Phys. Lett. 82(18), 2954–2956 (2003).
[CrossRef]

Giusca, C.

P. Yang, S. Stankovic, J. Crnjanski, E. Teo, D. Thomson, A. Bettiol, M. Breese, W. Headley, C. Giusca, G. Reed, and G. Mashanovich, “Silicon photonic waveguides for mid- and long-wave infrared region,” J. Mater. Sci. Mater. Electron. 20(S1), 159–163 (2009).
[CrossRef]

Gmachl, C.

F. Capasso, R. Paiella, R. Martini, R. Colombelli, C. Gmachl, T. L. Myers, M. S. Taubman, R. M. Williams, C. G. Bethea, K. Unterrainer, H. Y. Hwang, D. L. Sivco, A. Y. Cho, A. M. Sergent, H. C. Liu, and E. A. Whittaker, “Quantum cascade lasers: Ultrahigh-Speed operation, optical wireless communication, narrow linewidth, and far-infrared emission,” IEEE J. Quantum Electron. 38(6), 511–532 (2002).
[CrossRef]

Green, W. M.

GreenWilliam, M. J.

X. Liu, R. M. Osgood, Y. A. Vlasov, and M. J. GreenWilliam, “Mid-infrared optical parametric amplifier using silicon nanophotonic waveguides,” Nat Photon advance online publication(2010).
[CrossRef]

Hak, D.

H. S. Rong, A. S. Liu, R. Jones, O. Cohen, D. Hak, R. Nicolaescu, A. Fang, and M. Paniccia, “An all-silicon Raman laser,” Nature 433(7023), 292–294 (2005).
[CrossRef] [PubMed]

Han, Y.

Hansen, K.

Hansryd, J.

J. Hansryd, P. A. Andrekson, M. Westlund, L. Jie, and P. O. Hedekvist, “Fiber-based optical parametric amplifiers and their applications,” IEEE J. Sel. Top. Quant. Electron. 8(3), 506–520 (2002).
[CrossRef]

Hashida, M.

He, S.

X. Zhang, S. Gao, and S. He, “Optimal Design of a Silicon-on-Insulator Nanowire Waveguide for Broadband Wavelength Conversion,” Progress in Electromagnetics Research-Pier 89, 183–198 (2009).
[CrossRef]

S. Gao, X. Zhang, Z. Li, and S. He, “Polarization-Independent Wavelength Conversion Using an Angled-Polarization Pump in a Silicon Nanowire Waveguide,” IEEE J. Sel. Top. Quantum Electron . 16,250–256.

Headley, W.

P. Yang, S. Stankovic, J. Crnjanski, E. Teo, D. Thomson, A. Bettiol, M. Breese, W. Headley, C. Giusca, G. Reed, and G. Mashanovich, “Silicon photonic waveguides for mid- and long-wave infrared region,” J. Mater. Sci. Mater. Electron. 20(S1), 159–163 (2009).
[CrossRef]

Hedekvist, P. O.

J. Hansryd, P. A. Andrekson, M. Westlund, L. Jie, and P. O. Hedekvist, “Fiber-based optical parametric amplifiers and their applications,” IEEE J. Sel. Top. Quant. Electron. 8(3), 506–520 (2002).
[CrossRef]

Hilligsøe, K.

Hsieh, I. W.

Hwang, H. Y.

F. Capasso, R. Paiella, R. Martini, R. Colombelli, C. Gmachl, T. L. Myers, M. S. Taubman, R. M. Williams, C. G. Bethea, K. Unterrainer, H. Y. Hwang, D. L. Sivco, A. Y. Cho, A. M. Sergent, H. C. Liu, and E. A. Whittaker, “Quantum cascade lasers: Ultrahigh-Speed operation, optical wireless communication, narrow linewidth, and far-infrared emission,” IEEE J. Quantum Electron. 38(6), 511–532 (2002).
[CrossRef]

Jackson, S. D.

Jalali, B.

Janker, B.

P. Werle, F. Slemr, K. Maurer, R. Kormann, R. Mucke, and B. Janker, “Near- and mid-infrared laser-optical sensors for gas analysis,” Opt. Lasers Eng. 37(2-3), 101–114 (2002).
[CrossRef]

Jie, L.

J. Hansryd, P. A. Andrekson, M. Westlund, L. Jie, and P. O. Hedekvist, “Fiber-based optical parametric amplifiers and their applications,” IEEE J. Sel. Top. Quant. Electron. 8(3), 506–520 (2002).
[CrossRef]

Johnson, T. J.

Jones, R.

H. S. Rong, A. S. Liu, R. Jones, O. Cohen, D. Hak, R. Nicolaescu, A. Fang, and M. Paniccia, “An all-silicon Raman laser,” Nature 433(7023), 292–294 (2005).
[CrossRef] [PubMed]

Kalyanaraman, R.

H. Garcia and R. Kalyanaraman, “Phonon-assisted two-photon absorption in the presence of a dc-field: the nonlinear Franz–Keldysh effect in indirect gap semiconductors,” J. Phys. At. Mol. Opt. Phys. 39(12), 2737–2746 (2006).
[CrossRef]

Keiding, S.

King, T. A.

Kormann, R.

P. Werle, F. Slemr, K. Maurer, R. Kormann, R. Mucke, and B. Janker, “Near- and mid-infrared laser-optical sensors for gas analysis,” Opt. Lasers Eng. 37(2-3), 101–114 (2002).
[CrossRef]

Krysa, A. B.

J. P. Commin, D. G. Revin, S. Y. Zhang, A. B. Krysa, and J. W. Cockburn, “High performance, high temperature λ≈3.7,” Appl. Phys. Lett. 95(11), 111113 (2009).
[CrossRef]

Larsen, J.

Li, Z.

S. Gao, X. Zhang, Z. Li, and S. He, “Polarization-Independent Wavelength Conversion Using an Angled-Polarization Pump in a Silicon Nanowire Waveguide,” IEEE J. Sel. Top. Quantum Electron . 16,250–256.

Lin, Q.

Lipson, M.

M. A. Foster, A. C. Turner, R. Salem, M. Lipson, and A. L. Gaeta, “Broad-band continuous-wave parametric wavelength conversion in silicon nanowaveguides,” Opt. Express 15(20), 12949–12958 (2007).
[CrossRef] [PubMed]

M. A. Foster, A. C. Turner, J. E. Sharping, B. S. Schmidt, M. Lipson, and A. L. Gaeta, “Broad-band optical parametric gain on a silicon photonic chip,” Nature 441(7096), 960–963 (2006).
[CrossRef] [PubMed]

Liu, A. S.

H. S. Rong, A. S. Liu, R. Jones, O. Cohen, D. Hak, R. Nicolaescu, A. Fang, and M. Paniccia, “An all-silicon Raman laser,” Nature 433(7023), 292–294 (2005).
[CrossRef] [PubMed]

Liu, H. C.

F. Capasso, R. Paiella, R. Martini, R. Colombelli, C. Gmachl, T. L. Myers, M. S. Taubman, R. M. Williams, C. G. Bethea, K. Unterrainer, H. Y. Hwang, D. L. Sivco, A. Y. Cho, A. M. Sergent, H. C. Liu, and E. A. Whittaker, “Quantum cascade lasers: Ultrahigh-Speed operation, optical wireless communication, narrow linewidth, and far-infrared emission,” IEEE J. Quantum Electron. 38(6), 511–532 (2002).
[CrossRef]

Liu, X.

Martini, R.

F. Capasso, R. Paiella, R. Martini, R. Colombelli, C. Gmachl, T. L. Myers, M. S. Taubman, R. M. Williams, C. G. Bethea, K. Unterrainer, H. Y. Hwang, D. L. Sivco, A. Y. Cho, A. M. Sergent, H. C. Liu, and E. A. Whittaker, “Quantum cascade lasers: Ultrahigh-Speed operation, optical wireless communication, narrow linewidth, and far-infrared emission,” IEEE J. Quantum Electron. 38(6), 511–532 (2002).
[CrossRef]

Mashanovich, G.

P. Yang, S. Stankovic, J. Crnjanski, E. Teo, D. Thomson, A. Bettiol, M. Breese, W. Headley, C. Giusca, G. Reed, and G. Mashanovich, “Silicon photonic waveguides for mid- and long-wave infrared region,” J. Mater. Sci. Mater. Electron. 20(S1), 159–163 (2009).
[CrossRef]

Maurer, K.

P. Werle, F. Slemr, K. Maurer, R. Kormann, R. Mucke, and B. Janker, “Near- and mid-infrared laser-optical sensors for gas analysis,” Opt. Lasers Eng. 37(2-3), 101–114 (2002).
[CrossRef]

Michael, C. P.

Mookherjea, S.

S. Zlatanovic, J. S. Park, S. Moro, J. M. C. Boggio, I. B. Divliansky, N. Alic, S. Mookherjea, and S. Radic, “Mid-infrared wavelength conversion in silicon waveguides using ultracompact telecom-band-derived pump source,” Nat Photon advance online publication(2010).
[CrossRef]

Moro, S.

S. Zlatanovic, J. S. Park, S. Moro, J. M. C. Boggio, I. B. Divliansky, N. Alic, S. Mookherjea, and S. Radic, “Mid-infrared wavelength conversion in silicon waveguides using ultracompact telecom-band-derived pump source,” Nat Photon advance online publication(2010).
[CrossRef]

Mucke, R.

P. Werle, F. Slemr, K. Maurer, R. Kormann, R. Mucke, and B. Janker, “Near- and mid-infrared laser-optical sensors for gas analysis,” Opt. Lasers Eng. 37(2-3), 101–114 (2002).
[CrossRef]

Murakami, M.

Myers, T. L.

F. Capasso, R. Paiella, R. Martini, R. Colombelli, C. Gmachl, T. L. Myers, M. S. Taubman, R. M. Williams, C. G. Bethea, K. Unterrainer, H. Y. Hwang, D. L. Sivco, A. Y. Cho, A. M. Sergent, H. C. Liu, and E. A. Whittaker, “Quantum cascade lasers: Ultrahigh-Speed operation, optical wireless communication, narrow linewidth, and far-infrared emission,” IEEE J. Quantum Electron. 38(6), 511–532 (2002).
[CrossRef]

Nicolaescu, R.

H. S. Rong, A. S. Liu, R. Jones, O. Cohen, D. Hak, R. Nicolaescu, A. Fang, and M. Paniccia, “An all-silicon Raman laser,” Nature 433(7023), 292–294 (2005).
[CrossRef] [PubMed]

Nielsen, C.

Osgood, R. M.

Paiella, R.

F. Capasso, R. Paiella, R. Martini, R. Colombelli, C. Gmachl, T. L. Myers, M. S. Taubman, R. M. Williams, C. G. Bethea, K. Unterrainer, H. Y. Hwang, D. L. Sivco, A. Y. Cho, A. M. Sergent, H. C. Liu, and E. A. Whittaker, “Quantum cascade lasers: Ultrahigh-Speed operation, optical wireless communication, narrow linewidth, and far-infrared emission,” IEEE J. Quantum Electron. 38(6), 511–532 (2002).
[CrossRef]

Painter, O. J.

Paniccia, M.

H. S. Rong, A. S. Liu, R. Jones, O. Cohen, D. Hak, R. Nicolaescu, A. Fang, and M. Paniccia, “An all-silicon Raman laser,” Nature 433(7023), 292–294 (2005).
[CrossRef] [PubMed]

Panoiu, N. C.

Park, J. S.

S. Zlatanovic, J. S. Park, S. Moro, J. M. C. Boggio, I. B. Divliansky, N. Alic, S. Mookherjea, and S. Radic, “Mid-infrared wavelength conversion in silicon waveguides using ultracompact telecom-band-derived pump source,” Nat Photon advance online publication(2010).
[CrossRef]

Pearl, S.

S. Pearl, N. Rotenberg, and H. M. van Driel, “Three photon absorption in silicon for 2300–3300 nm,” Appl. Phys. Lett. 93(13), 131102 (2008).
[CrossRef]

Perahia, R.

Qian, F.

X. Z. Sang, E. K. Tien, N. S. Yuksek, F. Qian, Q. Song, and O. Boyraz, “Dual-wavelength mode-locked fiber laser with an intracavity silicon waveguide,” IEEE Photon. Technol. Lett. 20(13), 1184–1186 (2008).
[CrossRef]

Quochi, F.

M. Dinu, F. Quochi, and H. Garcia, “Third-order nonlinearities in silicon at telecom wavelengths,” Appl. Phys. Lett. 82(18), 2954–2956 (2003).
[CrossRef]

Radic, S.

S. Zlatanovic, J. S. Park, S. Moro, J. M. C. Boggio, I. B. Divliansky, N. Alic, S. Mookherjea, and S. Radic, “Mid-infrared wavelength conversion in silicon waveguides using ultracompact telecom-band-derived pump source,” Nat Photon advance online publication(2010).
[CrossRef]

Raghtmathan, V.

B. Jalali, V. Raghtmathan, R. Shori, S. Fathpour, D. Dimitropoulos, and O. Stafsudd, “Prospects for silicon mid-IR Raman lasers,” IEEE J. Sel. Top. Quantum Electron. 12(6), 1618–1627 (2006).
[CrossRef]

Raghunathan, V.

Reed, G.

P. Yang, S. Stankovic, J. Crnjanski, E. Teo, D. Thomson, A. Bettiol, M. Breese, W. Headley, C. Giusca, G. Reed, and G. Mashanovich, “Silicon photonic waveguides for mid- and long-wave infrared region,” J. Mater. Sci. Mater. Electron. 20(S1), 159–163 (2009).
[CrossRef]

Revin, D. G.

J. P. Commin, D. G. Revin, S. Y. Zhang, A. B. Krysa, and J. W. Cockburn, “High performance, high temperature λ≈3.7,” Appl. Phys. Lett. 95(11), 111113 (2009).
[CrossRef]

Rice, R. R.

Rong, H. S.

H. S. Rong, A. S. Liu, R. Jones, O. Cohen, D. Hak, R. Nicolaescu, A. Fang, and M. Paniccia, “An all-silicon Raman laser,” Nature 433(7023), 292–294 (2005).
[CrossRef] [PubMed]

Rotenberg, N.

S. Pearl, N. Rotenberg, and H. M. van Driel, “Three photon absorption in silicon for 2300–3300 nm,” Appl. Phys. Lett. 93(13), 131102 (2008).
[CrossRef]

A. D. Bristow, N. Rotenberg, and H. M. van Driel, “Two-photon absorption and Kerr coefficients of silicon for 850–2200 nm,” Appl. Phys. Lett. 90(19), 191104 (2007).
[CrossRef]

Sakabe, S.

Salem, R.

Sang, X. Z.

X. Z. Sang, E. K. Tien, N. S. Yuksek, F. Qian, Q. Song, and O. Boyraz, “Dual-wavelength mode-locked fiber laser with an intracavity silicon waveguide,” IEEE Photon. Technol. Lett. 20(13), 1184–1186 (2008).
[CrossRef]

Schmidt, B. S.

M. A. Foster, A. C. Turner, J. E. Sharping, B. S. Schmidt, M. Lipson, and A. L. Gaeta, “Broad-band optical parametric gain on a silicon photonic chip,” Nature 441(7096), 960–963 (2006).
[CrossRef] [PubMed]

Sergent, A. M.

F. Capasso, R. Paiella, R. Martini, R. Colombelli, C. Gmachl, T. L. Myers, M. S. Taubman, R. M. Williams, C. G. Bethea, K. Unterrainer, H. Y. Hwang, D. L. Sivco, A. Y. Cho, A. M. Sergent, H. C. Liu, and E. A. Whittaker, “Quantum cascade lasers: Ultrahigh-Speed operation, optical wireless communication, narrow linewidth, and far-infrared emission,” IEEE J. Quantum Electron. 38(6), 511–532 (2002).
[CrossRef]

Sharping, J. E.

M. A. Foster, A. C. Turner, J. E. Sharping, B. S. Schmidt, M. Lipson, and A. L. Gaeta, “Broad-band optical parametric gain on a silicon photonic chip,” Nature 441(7096), 960–963 (2006).
[CrossRef] [PubMed]

Shimizu, S.

Shori, R.

B. Jalali, V. Raghtmathan, R. Shori, S. Fathpour, D. Dimitropoulos, and O. Stafsudd, “Prospects for silicon mid-IR Raman lasers,” IEEE J. Sel. Top. Quantum Electron. 12(6), 1618–1627 (2006).
[CrossRef]

Sivco, D. L.

F. Capasso, R. Paiella, R. Martini, R. Colombelli, C. Gmachl, T. L. Myers, M. S. Taubman, R. M. Williams, C. G. Bethea, K. Unterrainer, H. Y. Hwang, D. L. Sivco, A. Y. Cho, A. M. Sergent, H. C. Liu, and E. A. Whittaker, “Quantum cascade lasers: Ultrahigh-Speed operation, optical wireless communication, narrow linewidth, and far-infrared emission,” IEEE J. Quantum Electron. 38(6), 511–532 (2002).
[CrossRef]

Slemr, F.

P. Werle, F. Slemr, K. Maurer, R. Kormann, R. Mucke, and B. Janker, “Near- and mid-infrared laser-optical sensors for gas analysis,” Opt. Lasers Eng. 37(2-3), 101–114 (2002).
[CrossRef]

Song, Q.

X. Z. Sang, E. K. Tien, N. S. Yuksek, F. Qian, Q. Song, and O. Boyraz, “Dual-wavelength mode-locked fiber laser with an intracavity silicon waveguide,” IEEE Photon. Technol. Lett. 20(13), 1184–1186 (2008).
[CrossRef]

Soref, R. A.

R. A. Soref, S. J. Emelett, and A. R. Buchwald, “Silicon waveguided components for the long-wave infrared region,” J. Opt. A, Pure Appl. Opt. 8(10), 840–848 (2006).
[CrossRef]

R. A. Soref, S. J. Emelett, and W. R. Buchwald, “Silicon waveguided components for the long-wave infrared region,” J. Opt. A, Pure Appl. Opt. 8(10), 840–848 (2006).
[CrossRef]

Stafsudd, O.

B. Jalali, V. Raghtmathan, R. Shori, S. Fathpour, D. Dimitropoulos, and O. Stafsudd, “Prospects for silicon mid-IR Raman lasers,” IEEE J. Sel. Top. Quantum Electron. 12(6), 1618–1627 (2006).
[CrossRef]

Stankovic, S.

P. Yang, S. Stankovic, J. Crnjanski, E. Teo, D. Thomson, A. Bettiol, M. Breese, W. Headley, C. Giusca, G. Reed, and G. Mashanovich, “Silicon photonic waveguides for mid- and long-wave infrared region,” J. Mater. Sci. Mater. Electron. 20(S1), 159–163 (2009).
[CrossRef]

Stolen, R.

R. Stolen and J. Bjorkholm, “Parametric amplification and frequency conversion in optical fibers,” IEEE J. Quantum Electron. 18(7), 1062–1072 (1982).
[CrossRef]

Taubman, M. S.

F. Capasso, R. Paiella, R. Martini, R. Colombelli, C. Gmachl, T. L. Myers, M. S. Taubman, R. M. Williams, C. G. Bethea, K. Unterrainer, H. Y. Hwang, D. L. Sivco, A. Y. Cho, A. M. Sergent, H. C. Liu, and E. A. Whittaker, “Quantum cascade lasers: Ultrahigh-Speed operation, optical wireless communication, narrow linewidth, and far-infrared emission,” IEEE J. Quantum Electron. 38(6), 511–532 (2002).
[CrossRef]

Teo, E.

P. Yang, S. Stankovic, J. Crnjanski, E. Teo, D. Thomson, A. Bettiol, M. Breese, W. Headley, C. Giusca, G. Reed, and G. Mashanovich, “Silicon photonic waveguides for mid- and long-wave infrared region,” J. Mater. Sci. Mater. Electron. 20(S1), 159–163 (2009).
[CrossRef]

Thøgersen, J.

Thomson, D.

P. Yang, S. Stankovic, J. Crnjanski, E. Teo, D. Thomson, A. Bettiol, M. Breese, W. Headley, C. Giusca, G. Reed, and G. Mashanovich, “Silicon photonic waveguides for mid- and long-wave infrared region,” J. Mater. Sci. Mater. Electron. 20(S1), 159–163 (2009).
[CrossRef]

Tien, E. K.

X. Z. Sang, E. K. Tien, N. S. Yuksek, F. Qian, Q. Song, and O. Boyraz, “Dual-wavelength mode-locked fiber laser with an intracavity silicon waveguide,” IEEE Photon. Technol. Lett. 20(13), 1184–1186 (2008).
[CrossRef]

Tokita, S.

Turner, A. C.

M. A. Foster, A. C. Turner, R. Salem, M. Lipson, and A. L. Gaeta, “Broad-band continuous-wave parametric wavelength conversion in silicon nanowaveguides,” Opt. Express 15(20), 12949–12958 (2007).
[CrossRef] [PubMed]

M. A. Foster, A. C. Turner, J. E. Sharping, B. S. Schmidt, M. Lipson, and A. L. Gaeta, “Broad-band optical parametric gain on a silicon photonic chip,” Nature 441(7096), 960–963 (2006).
[CrossRef] [PubMed]

Unterrainer, K.

F. Capasso, R. Paiella, R. Martini, R. Colombelli, C. Gmachl, T. L. Myers, M. S. Taubman, R. M. Williams, C. G. Bethea, K. Unterrainer, H. Y. Hwang, D. L. Sivco, A. Y. Cho, A. M. Sergent, H. C. Liu, and E. A. Whittaker, “Quantum cascade lasers: Ultrahigh-Speed operation, optical wireless communication, narrow linewidth, and far-infrared emission,” IEEE J. Quantum Electron. 38(6), 511–532 (2002).
[CrossRef]

van Driel, H. M.

S. Pearl, N. Rotenberg, and H. M. van Driel, “Three photon absorption in silicon for 2300–3300 nm,” Appl. Phys. Lett. 93(13), 131102 (2008).
[CrossRef]

A. D. Bristow, N. Rotenberg, and H. M. van Driel, “Two-photon absorption and Kerr coefficients of silicon for 850–2200 nm,” Appl. Phys. Lett. 90(19), 191104 (2007).
[CrossRef]

Vlasov, Y. A.

Werle, P.

P. Werle, F. Slemr, K. Maurer, R. Kormann, R. Mucke, and B. Janker, “Near- and mid-infrared laser-optical sensors for gas analysis,” Opt. Lasers Eng. 37(2-3), 101–114 (2002).
[CrossRef]

Westlund, M.

J. Hansryd, P. A. Andrekson, M. Westlund, L. Jie, and P. O. Hedekvist, “Fiber-based optical parametric amplifiers and their applications,” IEEE J. Sel. Top. Quant. Electron. 8(3), 506–520 (2002).
[CrossRef]

Whittaker, E. A.

F. Capasso, R. Paiella, R. Martini, R. Colombelli, C. Gmachl, T. L. Myers, M. S. Taubman, R. M. Williams, C. G. Bethea, K. Unterrainer, H. Y. Hwang, D. L. Sivco, A. Y. Cho, A. M. Sergent, H. C. Liu, and E. A. Whittaker, “Quantum cascade lasers: Ultrahigh-Speed operation, optical wireless communication, narrow linewidth, and far-infrared emission,” IEEE J. Quantum Electron. 38(6), 511–532 (2002).
[CrossRef]

Williams, R. M.

F. Capasso, R. Paiella, R. Martini, R. Colombelli, C. Gmachl, T. L. Myers, M. S. Taubman, R. M. Williams, C. G. Bethea, K. Unterrainer, H. Y. Hwang, D. L. Sivco, A. Y. Cho, A. M. Sergent, H. C. Liu, and E. A. Whittaker, “Quantum cascade lasers: Ultrahigh-Speed operation, optical wireless communication, narrow linewidth, and far-infrared emission,” IEEE J. Quantum Electron. 38(6), 511–532 (2002).
[CrossRef]

Yang, P.

P. Yang, S. Stankovic, J. Crnjanski, E. Teo, D. Thomson, A. Bettiol, M. Breese, W. Headley, C. Giusca, G. Reed, and G. Mashanovich, “Silicon photonic waveguides for mid- and long-wave infrared region,” J. Mater. Sci. Mater. Electron. 20(S1), 159–163 (2009).
[CrossRef]

Yuksek, N. S.

X. Z. Sang, E. K. Tien, N. S. Yuksek, F. Qian, Q. Song, and O. Boyraz, “Dual-wavelength mode-locked fiber laser with an intracavity silicon waveguide,” IEEE Photon. Technol. Lett. 20(13), 1184–1186 (2008).
[CrossRef]

Zhang, S. Y.

J. P. Commin, D. G. Revin, S. Y. Zhang, A. B. Krysa, and J. W. Cockburn, “High performance, high temperature λ≈3.7,” Appl. Phys. Lett. 95(11), 111113 (2009).
[CrossRef]

Zhang, X.

X. Zhang, S. Gao, and S. He, “Optimal Design of a Silicon-on-Insulator Nanowire Waveguide for Broadband Wavelength Conversion,” Progress in Electromagnetics Research-Pier 89, 183–198 (2009).
[CrossRef]

S. Gao, X. Zhang, Z. Li, and S. He, “Polarization-Independent Wavelength Conversion Using an Angled-Polarization Pump in a Silicon Nanowire Waveguide,” IEEE J. Sel. Top. Quantum Electron . 16,250–256.

Zlatanovic, S.

S. Zlatanovic, J. S. Park, S. Moro, J. M. C. Boggio, I. B. Divliansky, N. Alic, S. Mookherjea, and S. Radic, “Mid-infrared wavelength conversion in silicon waveguides using ultracompact telecom-band-derived pump source,” Nat Photon advance online publication(2010).
[CrossRef]

Adv. Opt. Photon.

Appl. Phys. Lett.

R. Allen and L. Esterowitz, “Cw Diode Pumped 2.3-Mu-M Fiber Laser,” Appl. Phys. Lett. 55(8), 721–722 (1989).
[CrossRef]

M. Dinu, F. Quochi, and H. Garcia, “Third-order nonlinearities in silicon at telecom wavelengths,” Appl. Phys. Lett. 82(18), 2954–2956 (2003).
[CrossRef]

S. Pearl, N. Rotenberg, and H. M. van Driel, “Three photon absorption in silicon for 2300–3300 nm,” Appl. Phys. Lett. 93(13), 131102 (2008).
[CrossRef]

J. P. Commin, D. G. Revin, S. Y. Zhang, A. B. Krysa, and J. W. Cockburn, “High performance, high temperature λ≈3.7,” Appl. Phys. Lett. 95(11), 111113 (2009).
[CrossRef]

A. D. Bristow, N. Rotenberg, and H. M. van Driel, “Two-photon absorption and Kerr coefficients of silicon for 850–2200 nm,” Appl. Phys. Lett. 90(19), 191104 (2007).
[CrossRef]

IEEE J. Quantum Electron.

M. Dinu, “Dispersion of phonon-assisted nonresonant third-order nonlinearities,” IEEE J. Quantum Electron. 39(11), 1498–1503 (2003).
[CrossRef]

R. Stolen and J. Bjorkholm, “Parametric amplification and frequency conversion in optical fibers,” IEEE J. Quantum Electron. 18(7), 1062–1072 (1982).
[CrossRef]

F. Capasso, R. Paiella, R. Martini, R. Colombelli, C. Gmachl, T. L. Myers, M. S. Taubman, R. M. Williams, C. G. Bethea, K. Unterrainer, H. Y. Hwang, D. L. Sivco, A. Y. Cho, A. M. Sergent, H. C. Liu, and E. A. Whittaker, “Quantum cascade lasers: Ultrahigh-Speed operation, optical wireless communication, narrow linewidth, and far-infrared emission,” IEEE J. Quantum Electron. 38(6), 511–532 (2002).
[CrossRef]

IEEE J. Sel. Top. Quant. Electron.

J. Hansryd, P. A. Andrekson, M. Westlund, L. Jie, and P. O. Hedekvist, “Fiber-based optical parametric amplifiers and their applications,” IEEE J. Sel. Top. Quant. Electron. 8(3), 506–520 (2002).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron

S. Gao, X. Zhang, Z. Li, and S. He, “Polarization-Independent Wavelength Conversion Using an Angled-Polarization Pump in a Silicon Nanowire Waveguide,” IEEE J. Sel. Top. Quantum Electron . 16,250–256.

IEEE J. Sel. Top. Quantum Electron.

B. Jalali, V. Raghtmathan, R. Shori, S. Fathpour, D. Dimitropoulos, and O. Stafsudd, “Prospects for silicon mid-IR Raman lasers,” IEEE J. Sel. Top. Quantum Electron. 12(6), 1618–1627 (2006).
[CrossRef]

IEEE Photon. Technol. Lett.

X. Z. Sang, E. K. Tien, N. S. Yuksek, F. Qian, Q. Song, and O. Boyraz, “Dual-wavelength mode-locked fiber laser with an intracavity silicon waveguide,” IEEE Photon. Technol. Lett. 20(13), 1184–1186 (2008).
[CrossRef]

IEICE Electron. Express

O. Boyraz and B. Jalali, “Demonstration of 11dB fiber-to-fiber gain in a silicon Raman amplifier,” IEICE Electron. Express 1(14), 429–434 (2004).
[CrossRef]

J. Mater. Sci. Mater. Electron.

P. Yang, S. Stankovic, J. Crnjanski, E. Teo, D. Thomson, A. Bettiol, M. Breese, W. Headley, C. Giusca, G. Reed, and G. Mashanovich, “Silicon photonic waveguides for mid- and long-wave infrared region,” J. Mater. Sci. Mater. Electron. 20(S1), 159–163 (2009).
[CrossRef]

J. Opt. A, Pure Appl. Opt.

R. A. Soref, S. J. Emelett, and A. R. Buchwald, “Silicon waveguided components for the long-wave infrared region,” J. Opt. A, Pure Appl. Opt. 8(10), 840–848 (2006).
[CrossRef]

R. A. Soref, S. J. Emelett, and W. R. Buchwald, “Silicon waveguided components for the long-wave infrared region,” J. Opt. A, Pure Appl. Opt. 8(10), 840–848 (2006).
[CrossRef]

J. Phys. At. Mol. Opt. Phys.

H. Garcia and R. Kalyanaraman, “Phonon-assisted two-photon absorption in the presence of a dc-field: the nonlinear Franz–Keldysh effect in indirect gap semiconductors,” J. Phys. At. Mol. Opt. Phys. 39(12), 2737–2746 (2006).
[CrossRef]

Nat Photon advance

S. Zlatanovic, J. S. Park, S. Moro, J. M. C. Boggio, I. B. Divliansky, N. Alic, S. Mookherjea, and S. Radic, “Mid-infrared wavelength conversion in silicon waveguides using ultracompact telecom-band-derived pump source,” Nat Photon advance online publication(2010).
[CrossRef]

X. Liu, R. M. Osgood, Y. A. Vlasov, and M. J. GreenWilliam, “Mid-infrared optical parametric amplifier using silicon nanophotonic waveguides,” Nat Photon advance online publication(2010).
[CrossRef]

Nature

M. A. Foster, A. C. Turner, J. E. Sharping, B. S. Schmidt, M. Lipson, and A. L. Gaeta, “Broad-band optical parametric gain on a silicon photonic chip,” Nature 441(7096), 960–963 (2006).
[CrossRef] [PubMed]

H. S. Rong, A. S. Liu, R. Jones, O. Cohen, D. Hak, R. Nicolaescu, A. Fang, and M. Paniccia, “An all-silicon Raman laser,” Nature 433(7023), 292–294 (2005).
[CrossRef] [PubMed]

Opt. Express

Opt. Lasers Eng.

P. Werle, F. Slemr, K. Maurer, R. Kormann, R. Mucke, and B. Janker, “Near- and mid-infrared laser-optical sensors for gas analysis,” Opt. Lasers Eng. 37(2-3), 101–114 (2002).
[CrossRef]

Opt. Lett.

Progress in Electromagnetics Research-Pier

X. Zhang, S. Gao, and S. He, “Optimal Design of a Silicon-on-Insulator Nanowire Waveguide for Broadband Wavelength Conversion,” Progress in Electromagnetics Research-Pier 89, 183–198 (2009).
[CrossRef]

Other

G. Agrawal, Nonlinear Fiber Optics, Fourth Edition (Academic Press, 2006).

P. Klocek, Handbook of Infrared Optical Materials (M. Dekker, New York, 1991), p. 611.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

1dB/cm transmission spectrum of the materials for MWIR silicon devides.

Fig. 2
Fig. 2

Predicted n 2 dispersion as a function of relative photon energy.

Fig. 3
Fig. 3

Material dispersion of silicon, sapphire, and SiO2.

Fig. 4
Fig. 4

(a) The proposed waveguide structure and the mode profiles of the rib waveguide at (b) 2μm and (c) 5μm. (d) Waveguide size that can support 90% confinement in silicon region at MWIR wavelengths.

Fig. 5
Fig. 5

(a) The calculated dispersion of channel waveguide with air, sapphire and SiO2 as cladding materials. (b) Dispersion for rib/ridge waveguide with sapphire substrate and air and sapphire cladding. (c) Dispersion varies with the slab height of rib waveguide with sapphire substrate and air cladding.

Fig. 6
Fig. 6

Dispersions of the SOS rib waveguide with air cladding for (a) TE and (b) TM mode.

Fig. 7
Fig. 7

(a)The conversion efficiency for 3.757μm pump wavelength which shows a discrete parametric conversion from 6.2μm to 2.8μm. (b) Phase matching wavelengths (Δk=0) for various pump wavelengths.

Fig. 8
Fig. 8

(a) Conversion efficiency for 1GW/cm2, 0.1GW/cm2, and 0.01GW/cm2 pump intensity at 2.4μm. The maximum conversion efficiency is 0dB, −20dB, and −40dB, respectively. (b) Phase matching condition (Δk=0) for 1μm rib waveguide.

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

D = 2 π c λ 2 β 2 ( ω ) = λ c d 2 n e f f ( λ ) d λ 2
A p z = i ( γ p | A p | 2 + 2 γ p i | A i | 2 + 2 γ p s | A s | 2 ) A p + 2 γ F W M A i A s A p * exp ( i Δ k L i n e a r z )
A i z = i ( γ i | A i | 2 + 2 γ i s | A s | 2 + 2 γ i p | A p | 2 ) A i + γ F W M A p 2 A s * exp ( i Δ k L i n e a r z )
A s z = i ( γ s | A s | 2 + 2 γ s i | A i | 2 + 2 γ s p | A p | 2 ) A i + γ F W M A p 2 A i * exp ( i Δ k L i n e a r z )
g = [ ( γ F W M P p u m p ) 2 ( Δ k / 2 ) 2 ] 1 2
G = P s ( L ) P s ( 0 ) = 1 + [ γ F W M P p u m p g sin h ( g L ) ] 2
G c = G 1
Δ k = Δ k l i n e a r + Δ k n o n l i n e a r

Metrics