Abstract

We report a new method to create high purity longitudinally polarized field with extremely long depth of focus in the focal volume of a high numerical aperture (NA) objective lens. Through reversing the radiated field from an electric dipole array situated near the focus of the high-NA lens, the required incident field distribution in the pupil plane for the creation of an ultra-long optical needle field can be found. Numerical examples demonstrate that an optical needle field with a depth of focus up to 8λ is obtainable. Throughout the depth of focus, this engineered focal field maintains a diffraction limited transverse spot size (<0.43λ) with high longitudinal polarization purity. From the calculated pupil plane distribution, a simplified discrete complex pupil filter can be designed and significant improvements over the previously reported complex filters are clearly demonstrated.

© 2010 OSA

Full Article  |  PDF Article
OSA Recommended Articles
Experimental generation of complex optical fields for diffraction limited optical focus with purely transverse spin angular momentum

Jian Chen, Chenhao Wan, Lingjiang Kong, and Qiwen Zhan
Opt. Express 25(8) 8966-8974 (2017)

Sub-wavelength sized transversely polarized optical needle with exceptionally suppressed side-lobes

Zhongsheng Man, Changjun Min, Luping Du, Yuquan Zhang, Siwei Zhu, and Xiaocong Yuan
Opt. Express 24(2) 874-882 (2016)

References

  • View by:
  • |
  • |
  • |

  1. Q. Zhan, “Cylindrical vector beams: from mathematical concepts to applications,” Adv. Opt. Photon 1(1), 1–57 (2009).
    [Crossref]
  2. L. Cicchitelli, H. Hora, and R. Postle, “Longitudinal field components for laser beams in vacuum,” Phys. Rev. A 41(7), 3727–3732 (1990).
    [Crossref] [PubMed]
  3. R. D. Romea and W. D. Kimura, “Modeling of inverse Ĉerenkov laser acceleration with axicon laser-beam focusing,” Phys. Rev. D Part. Fields 42(5), 1807–1818 (1990).
    [Crossref] [PubMed]
  4. Z. Bouchal and M. Olivik, “Non-diffractive vector Bessel beams,” J. Mod. Opt. 42(8), 1555–1566 (1995).
    [Crossref]
  5. K. S. Youngworth and T. G. Brown, “Focusing of high numerical aperture cylindrical-vector beams,” Opt. Express 7(2), 77–87 (2000).
    [Crossref] [PubMed]
  6. Q. Zhan and J. R. Leger, “Focus shaping using cylindrical vector beams,” Opt. Express 10(7), 324–331 (2002).
    [PubMed]
  7. W. Chen and Q. Zhan, “Three-dimensional focus shaping with cylindrical vector beams,” Opt. Commun. 265(2), 411–417 (2006).
    [Crossref]
  8. H. Kang, B. H. Jia, and M. Gu, “Polarization characterization in the focal volume of high numerical aperture objectives,” Opt. Express 18(10), 10813–10821 (2010).
    [Crossref] [PubMed]
  9. I. Iglesias and B. Vohnsen, “Polarization structuring for focal volume shaping in high-resolution microscopy,” Opt. Commun. 271(1), 40–47 (2007).
    [Crossref]
  10. A. F. Abouraddy and K. C. Toussaint., “Three-dimensional polarization control in microscopy,” Phys. Rev. Lett. 96(15), 153901 (2006).
    [Crossref] [PubMed]
  11. W. Chen and Q. Zhan, “Diffraction limited focusing with controllable arbitrary three-dimensional polarization,” J. Opt. 12(4), 045707 (2010).
    [Crossref]
  12. H. F. Wang, L. P. Shi, B. Lukyanchuk, C. Sheppard, and C. T. Chong, “Creation of a needle of longitudinally polarized light in vacuum using binary optics,” Nat. Photonics 2(8), 501–505 (2008).
    [Crossref]
  13. E. Karimi, B. Piccirillo, L. Marrucci, and E. Santamato, “Improved focusing with hypergeometric-gaussian type-II optical modes,” Opt. Express 16(25), 21069–21075 (2008).
    [Crossref] [PubMed]
  14. K. Huang, P. Shi, X. L. Kang, X. Zhang, and Y. P. Li, “Design of DOE for generating a needle of a strong longitudinally polarized field,” Opt. Lett. 35(7), 965–967 (2010).
    [Crossref] [PubMed]
  15. K. Kitamura, K. Sakai, and S. Noda, “Sub-wavelength focal spot with long depth of focus generated by radially polarized, narrow-width annular beam,” Opt. Express 18(5), 4518–4525 (2010).
    [Crossref] [PubMed]
  16. S. Yang and Q. Zhan, “Third-harmonic generation microscopy with tightly focused radial polarization,” J. Opt. Soc. Am. A 10, 125103 (2008).
  17. L. Novotny, M. R. Beversluis, K. S. Youngworth, and T. G. Brown, “Longitudinal field modes probed by single molecules,” Phys. Rev. Lett. 86(23), 5251–5254 (2001).
    [Crossref] [PubMed]
  18. S. Takeuchi, R. Sugihara, and K. Shimoda, “Electron acceleration by longitudinal electric field of a Gaussian laser beam,” J. Phys. Soc. Jpn. 63(3), 1186–1193 (1994).
    [Crossref]
  19. M. E. J. Friese, T. A. Nieminen, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Optical alignment and spinning of laser-trapped microscopic particles,” Nature 394(6691), 348–350 (1998).
    [Crossref]
  20. P. Banzer, U. Peschel, S. Quabis, and G. Leuchs, “On the experimental investigation of the electric and magnetic response of a single nano-structure,” Opt. Express 18(10), 10905–10923 (2010).
    [Crossref] [PubMed]
  21. T. Čižmár and K. Dholakia, “Tunable Bessel light modes: engineering the axial propagation,” Opt. Express 17(18), 15558–15570 (2009).
    [Crossref] [PubMed]
  22. Y. S. Xu, J. Singh, C. J. R. Sheppard, and N. G. Chen, “Ultra long high resolution beam by multi-zone rotationally symmetrical complex pupil filter,” Opt. Express 15(10), 6409–6413 (2007).
    [Crossref] [PubMed]
  23. R. Dorn, S. Quabis, and G. Leuchs, “Sharper focus for a radially polarized light beam,” Phys. Rev. Lett. 91(23), 233901 (2003).
    [Crossref] [PubMed]
  24. A. Balanis, Antenna Theory: Analysis and Design, 3rd Edition, (Wiley-Interscience, 2005).
  25. M. R. Beversluis, L. Novotny, and S. J. Stranick, “Programmable vector point-spread function engineering,” Opt. Express 14(7), 2650–2656 (2006).
    [Crossref] [PubMed]
  26. X. L. Wang, J. Ding, W. J. Ni, C. S. Guo, and H. T. Wang, “Generation of arbitrary vector beams with a spatial light modulator and a common path interferometric arrangement,” Opt. Lett. 32(24), 3549–3551 (2007).
    [Crossref] [PubMed]

2010 (5)

2009 (2)

T. Čižmár and K. Dholakia, “Tunable Bessel light modes: engineering the axial propagation,” Opt. Express 17(18), 15558–15570 (2009).
[Crossref] [PubMed]

Q. Zhan, “Cylindrical vector beams: from mathematical concepts to applications,” Adv. Opt. Photon 1(1), 1–57 (2009).
[Crossref]

2008 (3)

S. Yang and Q. Zhan, “Third-harmonic generation microscopy with tightly focused radial polarization,” J. Opt. Soc. Am. A 10, 125103 (2008).

H. F. Wang, L. P. Shi, B. Lukyanchuk, C. Sheppard, and C. T. Chong, “Creation of a needle of longitudinally polarized light in vacuum using binary optics,” Nat. Photonics 2(8), 501–505 (2008).
[Crossref]

E. Karimi, B. Piccirillo, L. Marrucci, and E. Santamato, “Improved focusing with hypergeometric-gaussian type-II optical modes,” Opt. Express 16(25), 21069–21075 (2008).
[Crossref] [PubMed]

2007 (3)

2006 (3)

A. F. Abouraddy and K. C. Toussaint., “Three-dimensional polarization control in microscopy,” Phys. Rev. Lett. 96(15), 153901 (2006).
[Crossref] [PubMed]

W. Chen and Q. Zhan, “Three-dimensional focus shaping with cylindrical vector beams,” Opt. Commun. 265(2), 411–417 (2006).
[Crossref]

M. R. Beversluis, L. Novotny, and S. J. Stranick, “Programmable vector point-spread function engineering,” Opt. Express 14(7), 2650–2656 (2006).
[Crossref] [PubMed]

2003 (1)

R. Dorn, S. Quabis, and G. Leuchs, “Sharper focus for a radially polarized light beam,” Phys. Rev. Lett. 91(23), 233901 (2003).
[Crossref] [PubMed]

2002 (1)

2001 (1)

L. Novotny, M. R. Beversluis, K. S. Youngworth, and T. G. Brown, “Longitudinal field modes probed by single molecules,” Phys. Rev. Lett. 86(23), 5251–5254 (2001).
[Crossref] [PubMed]

2000 (1)

1998 (1)

M. E. J. Friese, T. A. Nieminen, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Optical alignment and spinning of laser-trapped microscopic particles,” Nature 394(6691), 348–350 (1998).
[Crossref]

1995 (1)

Z. Bouchal and M. Olivik, “Non-diffractive vector Bessel beams,” J. Mod. Opt. 42(8), 1555–1566 (1995).
[Crossref]

1994 (1)

S. Takeuchi, R. Sugihara, and K. Shimoda, “Electron acceleration by longitudinal electric field of a Gaussian laser beam,” J. Phys. Soc. Jpn. 63(3), 1186–1193 (1994).
[Crossref]

1990 (2)

L. Cicchitelli, H. Hora, and R. Postle, “Longitudinal field components for laser beams in vacuum,” Phys. Rev. A 41(7), 3727–3732 (1990).
[Crossref] [PubMed]

R. D. Romea and W. D. Kimura, “Modeling of inverse Ĉerenkov laser acceleration with axicon laser-beam focusing,” Phys. Rev. D Part. Fields 42(5), 1807–1818 (1990).
[Crossref] [PubMed]

Abouraddy, A. F.

A. F. Abouraddy and K. C. Toussaint., “Three-dimensional polarization control in microscopy,” Phys. Rev. Lett. 96(15), 153901 (2006).
[Crossref] [PubMed]

Banzer, P.

Beversluis, M. R.

M. R. Beversluis, L. Novotny, and S. J. Stranick, “Programmable vector point-spread function engineering,” Opt. Express 14(7), 2650–2656 (2006).
[Crossref] [PubMed]

L. Novotny, M. R. Beversluis, K. S. Youngworth, and T. G. Brown, “Longitudinal field modes probed by single molecules,” Phys. Rev. Lett. 86(23), 5251–5254 (2001).
[Crossref] [PubMed]

Bouchal, Z.

Z. Bouchal and M. Olivik, “Non-diffractive vector Bessel beams,” J. Mod. Opt. 42(8), 1555–1566 (1995).
[Crossref]

Brown, T. G.

L. Novotny, M. R. Beversluis, K. S. Youngworth, and T. G. Brown, “Longitudinal field modes probed by single molecules,” Phys. Rev. Lett. 86(23), 5251–5254 (2001).
[Crossref] [PubMed]

K. S. Youngworth and T. G. Brown, “Focusing of high numerical aperture cylindrical-vector beams,” Opt. Express 7(2), 77–87 (2000).
[Crossref] [PubMed]

Chen, N. G.

Chen, W.

W. Chen and Q. Zhan, “Diffraction limited focusing with controllable arbitrary three-dimensional polarization,” J. Opt. 12(4), 045707 (2010).
[Crossref]

W. Chen and Q. Zhan, “Three-dimensional focus shaping with cylindrical vector beams,” Opt. Commun. 265(2), 411–417 (2006).
[Crossref]

Chong, C. T.

H. F. Wang, L. P. Shi, B. Lukyanchuk, C. Sheppard, and C. T. Chong, “Creation of a needle of longitudinally polarized light in vacuum using binary optics,” Nat. Photonics 2(8), 501–505 (2008).
[Crossref]

Cicchitelli, L.

L. Cicchitelli, H. Hora, and R. Postle, “Longitudinal field components for laser beams in vacuum,” Phys. Rev. A 41(7), 3727–3732 (1990).
[Crossref] [PubMed]

Cižmár, T.

Dholakia, K.

Ding, J.

Dorn, R.

R. Dorn, S. Quabis, and G. Leuchs, “Sharper focus for a radially polarized light beam,” Phys. Rev. Lett. 91(23), 233901 (2003).
[Crossref] [PubMed]

Friese, M. E. J.

M. E. J. Friese, T. A. Nieminen, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Optical alignment and spinning of laser-trapped microscopic particles,” Nature 394(6691), 348–350 (1998).
[Crossref]

Gu, M.

Guo, C. S.

Heckenberg, N. R.

M. E. J. Friese, T. A. Nieminen, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Optical alignment and spinning of laser-trapped microscopic particles,” Nature 394(6691), 348–350 (1998).
[Crossref]

Hora, H.

L. Cicchitelli, H. Hora, and R. Postle, “Longitudinal field components for laser beams in vacuum,” Phys. Rev. A 41(7), 3727–3732 (1990).
[Crossref] [PubMed]

Huang, K.

Iglesias, I.

I. Iglesias and B. Vohnsen, “Polarization structuring for focal volume shaping in high-resolution microscopy,” Opt. Commun. 271(1), 40–47 (2007).
[Crossref]

Jia, B. H.

Kang, H.

Kang, X. L.

Karimi, E.

Kimura, W. D.

R. D. Romea and W. D. Kimura, “Modeling of inverse Ĉerenkov laser acceleration with axicon laser-beam focusing,” Phys. Rev. D Part. Fields 42(5), 1807–1818 (1990).
[Crossref] [PubMed]

Kitamura, K.

Leger, J. R.

Leuchs, G.

Li, Y. P.

Lukyanchuk, B.

H. F. Wang, L. P. Shi, B. Lukyanchuk, C. Sheppard, and C. T. Chong, “Creation of a needle of longitudinally polarized light in vacuum using binary optics,” Nat. Photonics 2(8), 501–505 (2008).
[Crossref]

Marrucci, L.

Ni, W. J.

Nieminen, T. A.

M. E. J. Friese, T. A. Nieminen, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Optical alignment and spinning of laser-trapped microscopic particles,” Nature 394(6691), 348–350 (1998).
[Crossref]

Noda, S.

Novotny, L.

M. R. Beversluis, L. Novotny, and S. J. Stranick, “Programmable vector point-spread function engineering,” Opt. Express 14(7), 2650–2656 (2006).
[Crossref] [PubMed]

L. Novotny, M. R. Beversluis, K. S. Youngworth, and T. G. Brown, “Longitudinal field modes probed by single molecules,” Phys. Rev. Lett. 86(23), 5251–5254 (2001).
[Crossref] [PubMed]

Olivik, M.

Z. Bouchal and M. Olivik, “Non-diffractive vector Bessel beams,” J. Mod. Opt. 42(8), 1555–1566 (1995).
[Crossref]

Peschel, U.

Piccirillo, B.

Postle, R.

L. Cicchitelli, H. Hora, and R. Postle, “Longitudinal field components for laser beams in vacuum,” Phys. Rev. A 41(7), 3727–3732 (1990).
[Crossref] [PubMed]

Quabis, S.

Romea, R. D.

R. D. Romea and W. D. Kimura, “Modeling of inverse Ĉerenkov laser acceleration with axicon laser-beam focusing,” Phys. Rev. D Part. Fields 42(5), 1807–1818 (1990).
[Crossref] [PubMed]

Rubinsztein-Dunlop, H.

M. E. J. Friese, T. A. Nieminen, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Optical alignment and spinning of laser-trapped microscopic particles,” Nature 394(6691), 348–350 (1998).
[Crossref]

Sakai, K.

Santamato, E.

Sheppard, C.

H. F. Wang, L. P. Shi, B. Lukyanchuk, C. Sheppard, and C. T. Chong, “Creation of a needle of longitudinally polarized light in vacuum using binary optics,” Nat. Photonics 2(8), 501–505 (2008).
[Crossref]

Sheppard, C. J. R.

Shi, L. P.

H. F. Wang, L. P. Shi, B. Lukyanchuk, C. Sheppard, and C. T. Chong, “Creation of a needle of longitudinally polarized light in vacuum using binary optics,” Nat. Photonics 2(8), 501–505 (2008).
[Crossref]

Shi, P.

Shimoda, K.

S. Takeuchi, R. Sugihara, and K. Shimoda, “Electron acceleration by longitudinal electric field of a Gaussian laser beam,” J. Phys. Soc. Jpn. 63(3), 1186–1193 (1994).
[Crossref]

Singh, J.

Stranick, S. J.

Sugihara, R.

S. Takeuchi, R. Sugihara, and K. Shimoda, “Electron acceleration by longitudinal electric field of a Gaussian laser beam,” J. Phys. Soc. Jpn. 63(3), 1186–1193 (1994).
[Crossref]

Takeuchi, S.

S. Takeuchi, R. Sugihara, and K. Shimoda, “Electron acceleration by longitudinal electric field of a Gaussian laser beam,” J. Phys. Soc. Jpn. 63(3), 1186–1193 (1994).
[Crossref]

Toussaint, K. C.

A. F. Abouraddy and K. C. Toussaint., “Three-dimensional polarization control in microscopy,” Phys. Rev. Lett. 96(15), 153901 (2006).
[Crossref] [PubMed]

Vohnsen, B.

I. Iglesias and B. Vohnsen, “Polarization structuring for focal volume shaping in high-resolution microscopy,” Opt. Commun. 271(1), 40–47 (2007).
[Crossref]

Wang, H. F.

H. F. Wang, L. P. Shi, B. Lukyanchuk, C. Sheppard, and C. T. Chong, “Creation of a needle of longitudinally polarized light in vacuum using binary optics,” Nat. Photonics 2(8), 501–505 (2008).
[Crossref]

Wang, H. T.

Wang, X. L.

Xu, Y. S.

Yang, S.

S. Yang and Q. Zhan, “Third-harmonic generation microscopy with tightly focused radial polarization,” J. Opt. Soc. Am. A 10, 125103 (2008).

Youngworth, K. S.

L. Novotny, M. R. Beversluis, K. S. Youngworth, and T. G. Brown, “Longitudinal field modes probed by single molecules,” Phys. Rev. Lett. 86(23), 5251–5254 (2001).
[Crossref] [PubMed]

K. S. Youngworth and T. G. Brown, “Focusing of high numerical aperture cylindrical-vector beams,” Opt. Express 7(2), 77–87 (2000).
[Crossref] [PubMed]

Zhan, Q.

W. Chen and Q. Zhan, “Diffraction limited focusing with controllable arbitrary three-dimensional polarization,” J. Opt. 12(4), 045707 (2010).
[Crossref]

Q. Zhan, “Cylindrical vector beams: from mathematical concepts to applications,” Adv. Opt. Photon 1(1), 1–57 (2009).
[Crossref]

S. Yang and Q. Zhan, “Third-harmonic generation microscopy with tightly focused radial polarization,” J. Opt. Soc. Am. A 10, 125103 (2008).

W. Chen and Q. Zhan, “Three-dimensional focus shaping with cylindrical vector beams,” Opt. Commun. 265(2), 411–417 (2006).
[Crossref]

Q. Zhan and J. R. Leger, “Focus shaping using cylindrical vector beams,” Opt. Express 10(7), 324–331 (2002).
[PubMed]

Zhang, X.

Adv. Opt. Photon (1)

Q. Zhan, “Cylindrical vector beams: from mathematical concepts to applications,” Adv. Opt. Photon 1(1), 1–57 (2009).
[Crossref]

J. Mod. Opt. (1)

Z. Bouchal and M. Olivik, “Non-diffractive vector Bessel beams,” J. Mod. Opt. 42(8), 1555–1566 (1995).
[Crossref]

J. Opt. (1)

W. Chen and Q. Zhan, “Diffraction limited focusing with controllable arbitrary three-dimensional polarization,” J. Opt. 12(4), 045707 (2010).
[Crossref]

J. Opt. Soc. Am. A (1)

S. Yang and Q. Zhan, “Third-harmonic generation microscopy with tightly focused radial polarization,” J. Opt. Soc. Am. A 10, 125103 (2008).

J. Phys. Soc. Jpn. (1)

S. Takeuchi, R. Sugihara, and K. Shimoda, “Electron acceleration by longitudinal electric field of a Gaussian laser beam,” J. Phys. Soc. Jpn. 63(3), 1186–1193 (1994).
[Crossref]

Nat. Photonics (1)

H. F. Wang, L. P. Shi, B. Lukyanchuk, C. Sheppard, and C. T. Chong, “Creation of a needle of longitudinally polarized light in vacuum using binary optics,” Nat. Photonics 2(8), 501–505 (2008).
[Crossref]

Nature (1)

M. E. J. Friese, T. A. Nieminen, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Optical alignment and spinning of laser-trapped microscopic particles,” Nature 394(6691), 348–350 (1998).
[Crossref]

Opt. Commun. (2)

W. Chen and Q. Zhan, “Three-dimensional focus shaping with cylindrical vector beams,” Opt. Commun. 265(2), 411–417 (2006).
[Crossref]

I. Iglesias and B. Vohnsen, “Polarization structuring for focal volume shaping in high-resolution microscopy,” Opt. Commun. 271(1), 40–47 (2007).
[Crossref]

Opt. Express (9)

H. Kang, B. H. Jia, and M. Gu, “Polarization characterization in the focal volume of high numerical aperture objectives,” Opt. Express 18(10), 10813–10821 (2010).
[Crossref] [PubMed]

K. S. Youngworth and T. G. Brown, “Focusing of high numerical aperture cylindrical-vector beams,” Opt. Express 7(2), 77–87 (2000).
[Crossref] [PubMed]

Q. Zhan and J. R. Leger, “Focus shaping using cylindrical vector beams,” Opt. Express 10(7), 324–331 (2002).
[PubMed]

P. Banzer, U. Peschel, S. Quabis, and G. Leuchs, “On the experimental investigation of the electric and magnetic response of a single nano-structure,” Opt. Express 18(10), 10905–10923 (2010).
[Crossref] [PubMed]

T. Čižmár and K. Dholakia, “Tunable Bessel light modes: engineering the axial propagation,” Opt. Express 17(18), 15558–15570 (2009).
[Crossref] [PubMed]

Y. S. Xu, J. Singh, C. J. R. Sheppard, and N. G. Chen, “Ultra long high resolution beam by multi-zone rotationally symmetrical complex pupil filter,” Opt. Express 15(10), 6409–6413 (2007).
[Crossref] [PubMed]

E. Karimi, B. Piccirillo, L. Marrucci, and E. Santamato, “Improved focusing with hypergeometric-gaussian type-II optical modes,” Opt. Express 16(25), 21069–21075 (2008).
[Crossref] [PubMed]

M. R. Beversluis, L. Novotny, and S. J. Stranick, “Programmable vector point-spread function engineering,” Opt. Express 14(7), 2650–2656 (2006).
[Crossref] [PubMed]

K. Kitamura, K. Sakai, and S. Noda, “Sub-wavelength focal spot with long depth of focus generated by radially polarized, narrow-width annular beam,” Opt. Express 18(5), 4518–4525 (2010).
[Crossref] [PubMed]

Opt. Lett. (2)

Phys. Rev. A (1)

L. Cicchitelli, H. Hora, and R. Postle, “Longitudinal field components for laser beams in vacuum,” Phys. Rev. A 41(7), 3727–3732 (1990).
[Crossref] [PubMed]

Phys. Rev. D Part. Fields (1)

R. D. Romea and W. D. Kimura, “Modeling of inverse Ĉerenkov laser acceleration with axicon laser-beam focusing,” Phys. Rev. D Part. Fields 42(5), 1807–1818 (1990).
[Crossref] [PubMed]

Phys. Rev. Lett. (3)

A. F. Abouraddy and K. C. Toussaint., “Three-dimensional polarization control in microscopy,” Phys. Rev. Lett. 96(15), 153901 (2006).
[Crossref] [PubMed]

R. Dorn, S. Quabis, and G. Leuchs, “Sharper focus for a radially polarized light beam,” Phys. Rev. Lett. 91(23), 233901 (2003).
[Crossref] [PubMed]

L. Novotny, M. R. Beversluis, K. S. Youngworth, and T. G. Brown, “Longitudinal field modes probed by single molecules,” Phys. Rev. Lett. 86(23), 5251–5254 (2001).
[Crossref] [PubMed]

Other (1)

A. Balanis, Antenna Theory: Analysis and Design, 3rd Edition, (Wiley-Interscience, 2005).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Schematic of the method of pupil plane field synthesis in order to achieve specific focal field characteristics through the reversing of the radiation pattern of a dipole array. (a) System layout with dipole array oscillating along optical axis in the focal volume and the coordinates used in the calculation; and (b) Far-field geometry and conceptual diagram of the dipole array with 2N dipole elements.

Fig. 2
Fig. 2

Total intensity distribution in the transverse rz plane and axial intensity distribution in the focal volume for the obtained optical needle field with extended DOF for (a) (c) N = 2; and (b) (d) N = 3. The corresponding required incident field in the pupil plane P i are illustrated for (e) N = 2 and (f) N = 3.

Fig. 3
Fig. 3

Structure and parameters of discrete complex pupil filter originating from Fig. 2(e).

Fig. 4
Fig. 4

Focal intensity distribution using the discrete complex pupil filter. (a) Total intensity distribution in the transverse rz plane; (b) Axial total intensity distribution; (c) Comparison of beam quality η in the main DOF for different filter designs; and (d) Transverse intensity distribution when z = 0,1λ, 2λ for the discrete complex pupil filter.

Tables (1)

Tables Icon

Table 1 Parameters of dipole array and obtained intensity distributions (NA = 0.95)

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

E 0 ( θ ) = E D A ( θ ) a θ = C sin θ A F N a θ ,
A F N = n = 1 N A n [ e j ( k d n cos θ + β n ) / 2 + e j ( k d n cos θ + β n ) / 2 ] ,
E i ( ρ i , θ ) = E D A ( θ ) ( cos φ x i + sin φ y i ) / cos θ ,
E ( r , ψ , z ) = i λ 0 θ max 0 2 π E D A ( θ ) ( cos θ cos φ i + cos θ sin φ j + sin θ k ) exp [ i k r sin θ cos ( φ ψ ) i k z cos θ ] sin θ d θ d φ ,

Metrics