Abstract

Hollow metallic fibers (HMFs) are in general lossy primarily owing to the fact that the guided transverse-magnetic (TM) light sustains a relatively high propagation loss. In this paper, we propose a type of practical hollow-core metallic fiber (HMF) with longitudinally corrugated inner surface for transmitting infrared (IR) light. Simulation results show that the loss of the fundamental TM mode can be easily reduced by 50~100 times compared to a HMF without surface corrugation. In contrast to the traditional HMF with a dielectric coating, it is shown that the loss of the fundamental TM mode in the proposed HMF is relatively insensitive to the corrugation layer thickness or equivalently the operating frequency.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Y.-W. Shi, K. Ito, L. Ma, T. Yoshida, Y. Matsuura, and M. Miyagi, “Fabrication of a polymer-coated silver hollow optical fiber with high performance,” Appl. Opt. 45(26), 6736–6740 (2006).
    [CrossRef] [PubMed]
  2. N. Croitoru, A. Inberg, M. Ben-David, and I. Gannot, “Broad band and low loss mid-IR flexible hollow waveguides,” Opt. Express 12(7), 1341–1352 (2004), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-12-7-1341 .
    [CrossRef] [PubMed]
  3. R. George and J. A. Harrington, “Infrared transmissive, hollow plastic waveguides with inner Ag-Agl coatings,” Appl. Opt. 44(30), 6449–6455 (2005).
    [CrossRef] [PubMed]
  4. X.-L. Tang, Y.-W. Shi, Y. Matsuura, K. Iwai, and M. Miyagi, “Transmission characteristics of terahertz hollow fiber with an absorptive dielectric inner-coating film,” Opt. Lett. 34(14), 2231–2233 (2009).
    [CrossRef] [PubMed]
  5. M. Yan and N. A. Mortensen, “Hollow-core infrared fiber incorporating metal-wire metamaterial,” Opt. Express 17(17), 14851–14864 (2009), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-17-17-14851 .
    [CrossRef] [PubMed]
  6. P.-S. Kildal, “Artificially soft and hard surfaces in electromagnetics,” IEEE Trans. Antenn. Propag. 38(10), 1537–1544 (1990).
    [CrossRef]
  7. E. D. Palik, Handbook of Optical Constants of Solids (Academic Press, 1985).
  8. B. Bowden, J. A. Harrington, and O. Mitrofanov, “Low-loss modes in hollow metallic terahertz waveguides with dielectric coatings,” Appl. Phys. Lett. 93(18), 181104 (2008).
    [CrossRef]
  9. S. Quabis, R. Dorn, M. Eberler, O. Glöckl, and G. Leuchs, “Focusing light to a tighter spot,” Opt. Commun. 179(1-6), 1–7 (2000).
    [CrossRef]
  10. D. Lin, K. Xia, J. Li, R. Li, K.-I. Ueda, G. Li, and X. Li, “Efficient, high-power, and radially polarized fiber laser,” Opt. Lett. 35(13), 2290–2292 (2010).
    [CrossRef] [PubMed]

2010 (1)

2009 (2)

2008 (1)

B. Bowden, J. A. Harrington, and O. Mitrofanov, “Low-loss modes in hollow metallic terahertz waveguides with dielectric coatings,” Appl. Phys. Lett. 93(18), 181104 (2008).
[CrossRef]

2006 (1)

2005 (1)

2004 (1)

2000 (1)

S. Quabis, R. Dorn, M. Eberler, O. Glöckl, and G. Leuchs, “Focusing light to a tighter spot,” Opt. Commun. 179(1-6), 1–7 (2000).
[CrossRef]

1990 (1)

P.-S. Kildal, “Artificially soft and hard surfaces in electromagnetics,” IEEE Trans. Antenn. Propag. 38(10), 1537–1544 (1990).
[CrossRef]

Ben-David, M.

Bowden, B.

B. Bowden, J. A. Harrington, and O. Mitrofanov, “Low-loss modes in hollow metallic terahertz waveguides with dielectric coatings,” Appl. Phys. Lett. 93(18), 181104 (2008).
[CrossRef]

Croitoru, N.

Dorn, R.

S. Quabis, R. Dorn, M. Eberler, O. Glöckl, and G. Leuchs, “Focusing light to a tighter spot,” Opt. Commun. 179(1-6), 1–7 (2000).
[CrossRef]

Eberler, M.

S. Quabis, R. Dorn, M. Eberler, O. Glöckl, and G. Leuchs, “Focusing light to a tighter spot,” Opt. Commun. 179(1-6), 1–7 (2000).
[CrossRef]

Gannot, I.

George, R.

Glöckl, O.

S. Quabis, R. Dorn, M. Eberler, O. Glöckl, and G. Leuchs, “Focusing light to a tighter spot,” Opt. Commun. 179(1-6), 1–7 (2000).
[CrossRef]

Harrington, J. A.

B. Bowden, J. A. Harrington, and O. Mitrofanov, “Low-loss modes in hollow metallic terahertz waveguides with dielectric coatings,” Appl. Phys. Lett. 93(18), 181104 (2008).
[CrossRef]

R. George and J. A. Harrington, “Infrared transmissive, hollow plastic waveguides with inner Ag-Agl coatings,” Appl. Opt. 44(30), 6449–6455 (2005).
[CrossRef] [PubMed]

Inberg, A.

Ito, K.

Iwai, K.

Kildal, P.-S.

P.-S. Kildal, “Artificially soft and hard surfaces in electromagnetics,” IEEE Trans. Antenn. Propag. 38(10), 1537–1544 (1990).
[CrossRef]

Leuchs, G.

S. Quabis, R. Dorn, M. Eberler, O. Glöckl, and G. Leuchs, “Focusing light to a tighter spot,” Opt. Commun. 179(1-6), 1–7 (2000).
[CrossRef]

Li, G.

Li, J.

Li, R.

Li, X.

Lin, D.

Ma, L.

Matsuura, Y.

Mitrofanov, O.

B. Bowden, J. A. Harrington, and O. Mitrofanov, “Low-loss modes in hollow metallic terahertz waveguides with dielectric coatings,” Appl. Phys. Lett. 93(18), 181104 (2008).
[CrossRef]

Miyagi, M.

Mortensen, N. A.

Quabis, S.

S. Quabis, R. Dorn, M. Eberler, O. Glöckl, and G. Leuchs, “Focusing light to a tighter spot,” Opt. Commun. 179(1-6), 1–7 (2000).
[CrossRef]

Shi, Y.-W.

Tang, X.-L.

Ueda, K.-I.

Xia, K.

Yan, M.

Yoshida, T.

Appl. Opt. (2)

Appl. Phys. Lett. (1)

B. Bowden, J. A. Harrington, and O. Mitrofanov, “Low-loss modes in hollow metallic terahertz waveguides with dielectric coatings,” Appl. Phys. Lett. 93(18), 181104 (2008).
[CrossRef]

IEEE Trans. Antenn. Propag. (1)

P.-S. Kildal, “Artificially soft and hard surfaces in electromagnetics,” IEEE Trans. Antenn. Propag. 38(10), 1537–1544 (1990).
[CrossRef]

Opt. Commun. (1)

S. Quabis, R. Dorn, M. Eberler, O. Glöckl, and G. Leuchs, “Focusing light to a tighter spot,” Opt. Commun. 179(1-6), 1–7 (2000).
[CrossRef]

Opt. Express (2)

Opt. Lett. (2)

Other (1)

E. D. Palik, Handbook of Optical Constants of Solids (Academic Press, 1985).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

(a) The cross-section of a HMF with a corrugated inner surface. (b) The cross-section of a corrugated HMF with dielectric fillings. (c) The cross-section of a conventional HMF with a dielectric coating. The golden region is metal and the light blue regions represent some dielectric material.

Fig. 2
Fig. 2

(a) Propagation loss and (b) n eff of the TM01 mode as a function of the metal filling fraction at various corrugation periods. R = 350µm, D = 1 µm, n f = 2.5.

Fig. 3
Fig. 3

Propagation loss of the TM01 mode as a function of the refractive index of the filling material. R = 350µm, f m = 0.1, Λ = 2.16µm.

Fig. 4
Fig. 4

Propagation losses of the TM01 and TE01 modes as the coating thickness varies for both the conventional HMF and the corrugated HMF (R = 350µm, f m = 0.1, Λ = 2.16µm, and n f = 2.5).

Fig. 5
Fig. 5

Propagation loss of the TE01 and TM01 modes as a function of core diameter for both the proposed HMF and the traditional HMF. f m = 0.1, Λ = 2.16µm, D = 2.0µm, n f = 2.5.

Metrics