Abstract

We study saturable absorption and the nonlinear contribution to the refractive index of metal-nanoparticle composites by using a modified self-consistent Maxwell-Garnett formalism for spherical nanoparticles and a generalization of the discrete-dipole formalism for particles of arbitrary shape and size. The results for fused silica doped with silver nanoparticles show that the saturation of loss of the composites is strongest near the surface plasmon resonance and the saturation intensity is in the range of 10 MW/cm2. The nonlinear refraction index decrease with increasing intensity and its sign depends on frequency and filling factor. The predictions show that metal-nanoparticle composites can be used for mode locking of lasers in a broad spectral range down to 400 nm, where attractive saturable absorbers are still missing.

© 2010 OSA

Full Article  |  PDF Article
Related Articles
Numerical study of surface plasmon enhanced nonlinear absorption and refraction

Dana C. Kohlgraf-Owens and Pieter G. Kik
Opt. Express 16(14) 10823-10834 (2008)

Structural control of nonlinear optical absorption and refraction in dense metal nanoparticle arrays

Dana C. Kohlgraf-Owens and Pieter G. Kik
Opt. Express 17(17) 15032-15042 (2009)

Toward the production of micropolarizers by irradiation of composite glasses with silver nanoparticles

Andrei Stalmashonak, Gerhard Seifert, Ahmet Akin Unal, Ulrich Skrzypczak, Alexander Podlipensky, Amin Abdolvand, and Heinrich Graener
Appl. Opt. 48(25) F37-F43 (2009)

References

  • View by:
  • |
  • |
  • |

  1. F. X. Kaertner, ed. Few-cycle laser pulse generation and its application, (Springer, Berlin, 2004).
  2. U. Keller, K. J. Weingarten, F. X. Kaertner, D. Kopf, B. Braun, I. D. Jung, R. Fluck, C. Hoenninger, N. Matuschek, and J. Aus der Au, “Semiconductor saturable absorber mirrors (SESAMs) for femtosecond to nanosecond pulse generation in solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 2, 435–453 (1996).
    [Crossref]
  3. Y.-C. Chen, N. R. Raravikar, L. S. Schadler, P. M. Ajayan, Y.-P. Zhao, T. M. Lu, G.-C. Wang, and X.-C. Zhang, “Ultrafast optical switching properties of single-wall carbon nanotube polymer composites at 1.55μm,” Appl. Phys. Lett. 81, 975–977 (2002).
    [Crossref]
  4. A. Schmidt, S. Rivier, G. Steinmeyer, J. H. Yim, W. B. Cho, S. Lee, F. Rotermund, M. C. Pujol, X. Mateos, M. Aguilo, F. Diaz, V. Petrov, and U. Griebner, “Passive mode locking of Yb:KLuW using a single-walled carbon nanotube saturable absorber,” Opt. Lett. 33, 729–731 (2008).
    [Crossref] [PubMed]
  5. H. Zhang, Q. Bao, D. Tang, L. Zhao, and K. Loh, “Large energy soliton erbium-doped fiber laser with a graphene-polymer composite mode locker,” Appl. Phys. Lett. 95, 141103 (2009).
    [Crossref]
  6. M. Pelton, J. Aizpurura, and G. Bryant, “Metal nanoparticle plasmonics,” Laser Photon. Rev. 2, 136–159 (2008).
    [Crossref]
  7. M. Kyong and M. Lee, “Nonlinear absorption and refractive index measurements of silver nanorods by the Z-scan technique,” Opt. Commun. 171, 145–148 (1999).
    [Crossref]
  8. K. Wundke, S. Poetting, J. Auxier, A. Schuelzgen, N. Peyghambarian, and N. F. Borrelli, “PbS quantum-dot-doped glasses for ultrashort-pulse generation,” Appl. Phys. Lett. 76, 10–12 (2000).
    [Crossref]
  9. R.A. Ganeev, A.I. Ryasnyanskii, A.L. Stepanov, and T. Usmanov, “Nonlinear absorption at visible light in silicate glasses doped with copper nanoparticles,” Quantum Electron. 33, 1081–1084 (2003).
    [Crossref]
  10. R. A. Ganeev, A. I. Ryasnyansky, A. L. Stepanov, and T. Usmanov, “Saturated absorption and nonlinear refraction of silicate glasses doped with silver nanoparticles at 532 nm,” Opt. Quantum Electron. 36, 949–960 (2004).
    [Crossref]
  11. H. I. Elim, J. Yang, J.-Y. Lee, J. Mi, and W. Ji, “Observation of saturable and reverse-saturable absorption at longitudinal surface plasmon resonance in gold nanorods,” Appl. Phys. Lett. 88, 083107 (2006).
    [Crossref]
  12. U. Gurudas, E. Brooks, D. M. Heiroth, T. Lippert, and A. Wokaun, “Saturable and reverse saturable absorption in silver nanodots at 532 nm using picosecond laser pulses,” J. Appl. Phys.104, 073107 (2008).
    [Crossref]
  13. J. T. Seo, Q. Yang, W.-J. Kim, J. Heo, S. M. Ma, J. Austin, W. S. Yun, S. S. Jung, S. W. Han, B. Tabibi, and Temple, “Optical nonlinearities of Au nanoparticles and Au/Ag coreshells,” Opt. Lett. 34, 307–309 (2009).
    [Crossref] [PubMed]
  14. R. Rangel-Rojo, J. McCarthy, H. T. Bookey, A. K. Kar, L. Rodriguez-Fernandez, J. C. Cheang-Wong, A. Crespo-Sosa, A. Lopez-Suarez, A. Olibier, V. Rodriguez-Iglesias, and H. G. Silva-Rereyra, “Anisotropy in the nonlinear absorption of elongated silver nanoparticles in silica, probed by femtosecond pulses,” Opt. Commun. 282, 1909–1912 (2009).
    [Crossref]
  15. R. Philip, G. R. Kumar, N. Sandhyarari, and T. Pradeep, “Picosecond optical nonlinearity in monolayer-protected gold, silver, and gold-silver alloy nanoclusters,” Phys. Rev. B 62, 13160 (2000).
    [Crossref]
  16. B. T. Draine and P. J. Flatau, “Discrete-dipole approximation for scattering calculations,” J. Opt. Soc. Am. A 11, 1491–1499 (1994).
    [Crossref]
  17. K.-H. Kim, A. Husakou, and J. Herrmann, “Linear and nonlinear optical characteristics of composites containing metal nanoparticles with different sizes and shapes,” Opt. Express 18, 7488–7496 (2010).
    [Crossref] [PubMed]
  18. J. E. Sipe and R. W. Boyd, “Nonlinear susceptibility of composite optical materials in Maxwell Garnett model,” Phys. Rev. A 46, 1614–1629 (1992).
    [Crossref] [PubMed]
  19. N. C. Kothari, “Effective-medium theory of a nonlinear composite medium using the T-matrix approach: Exact results for spherical grains,” Phys. Rev. A 41, 4486–4492 (1990).
    [Crossref] [PubMed]
  20. David W. Lynch and W. R. Hunter, “Comments on the optical constants of metals and an introduction to the data for several metals,” in Handbook of Optical Constants of Solids, E.D. Palik, ed. (Academic, Orlando, Fla., 1985).
  21. E. L. Falcao-Filho, C. B. de Araujo, Andre Galembeck, Marcela M. Oliveira, and Aldo J. G. Zarbin, “Nonlinear susceptibility of colloids consisting of silver nanoparticles in carbon disulfide,” J. Opt. Soc. Am. B 22, 2444–2449 (2005).
    [Crossref]
  22. D. D. Smith, G. Fischer, R. W. Boyd, and D. A. Gregory, “Cancelation of photoinduced absorption in metal nanoparticles composites through a counterintuitive consequence of local field effects,” J. Opt. Soc. Am. B 14, 1625–1631 (1997).
    [Crossref]
  23. J. Nocedal and S. J. Wright, Numerical Optimization, Second ed. (Springer, 2006).

2010 (1)

2009 (3)

J. T. Seo, Q. Yang, W.-J. Kim, J. Heo, S. M. Ma, J. Austin, W. S. Yun, S. S. Jung, S. W. Han, B. Tabibi, and Temple, “Optical nonlinearities of Au nanoparticles and Au/Ag coreshells,” Opt. Lett. 34, 307–309 (2009).
[Crossref] [PubMed]

R. Rangel-Rojo, J. McCarthy, H. T. Bookey, A. K. Kar, L. Rodriguez-Fernandez, J. C. Cheang-Wong, A. Crespo-Sosa, A. Lopez-Suarez, A. Olibier, V. Rodriguez-Iglesias, and H. G. Silva-Rereyra, “Anisotropy in the nonlinear absorption of elongated silver nanoparticles in silica, probed by femtosecond pulses,” Opt. Commun. 282, 1909–1912 (2009).
[Crossref]

H. Zhang, Q. Bao, D. Tang, L. Zhao, and K. Loh, “Large energy soliton erbium-doped fiber laser with a graphene-polymer composite mode locker,” Appl. Phys. Lett. 95, 141103 (2009).
[Crossref]

2008 (2)

2006 (1)

H. I. Elim, J. Yang, J.-Y. Lee, J. Mi, and W. Ji, “Observation of saturable and reverse-saturable absorption at longitudinal surface plasmon resonance in gold nanorods,” Appl. Phys. Lett. 88, 083107 (2006).
[Crossref]

2005 (1)

2004 (1)

R. A. Ganeev, A. I. Ryasnyansky, A. L. Stepanov, and T. Usmanov, “Saturated absorption and nonlinear refraction of silicate glasses doped with silver nanoparticles at 532 nm,” Opt. Quantum Electron. 36, 949–960 (2004).
[Crossref]

2003 (1)

R.A. Ganeev, A.I. Ryasnyanskii, A.L. Stepanov, and T. Usmanov, “Nonlinear absorption at visible light in silicate glasses doped with copper nanoparticles,” Quantum Electron. 33, 1081–1084 (2003).
[Crossref]

2002 (1)

Y.-C. Chen, N. R. Raravikar, L. S. Schadler, P. M. Ajayan, Y.-P. Zhao, T. M. Lu, G.-C. Wang, and X.-C. Zhang, “Ultrafast optical switching properties of single-wall carbon nanotube polymer composites at 1.55μm,” Appl. Phys. Lett. 81, 975–977 (2002).
[Crossref]

2000 (2)

K. Wundke, S. Poetting, J. Auxier, A. Schuelzgen, N. Peyghambarian, and N. F. Borrelli, “PbS quantum-dot-doped glasses for ultrashort-pulse generation,” Appl. Phys. Lett. 76, 10–12 (2000).
[Crossref]

R. Philip, G. R. Kumar, N. Sandhyarari, and T. Pradeep, “Picosecond optical nonlinearity in monolayer-protected gold, silver, and gold-silver alloy nanoclusters,” Phys. Rev. B 62, 13160 (2000).
[Crossref]

1999 (1)

M. Kyong and M. Lee, “Nonlinear absorption and refractive index measurements of silver nanorods by the Z-scan technique,” Opt. Commun. 171, 145–148 (1999).
[Crossref]

1997 (1)

1996 (1)

U. Keller, K. J. Weingarten, F. X. Kaertner, D. Kopf, B. Braun, I. D. Jung, R. Fluck, C. Hoenninger, N. Matuschek, and J. Aus der Au, “Semiconductor saturable absorber mirrors (SESAMs) for femtosecond to nanosecond pulse generation in solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 2, 435–453 (1996).
[Crossref]

1994 (1)

1992 (1)

J. E. Sipe and R. W. Boyd, “Nonlinear susceptibility of composite optical materials in Maxwell Garnett model,” Phys. Rev. A 46, 1614–1629 (1992).
[Crossref] [PubMed]

1990 (1)

N. C. Kothari, “Effective-medium theory of a nonlinear composite medium using the T-matrix approach: Exact results for spherical grains,” Phys. Rev. A 41, 4486–4492 (1990).
[Crossref] [PubMed]

Aguilo, M.

Aizpurura, J.

M. Pelton, J. Aizpurura, and G. Bryant, “Metal nanoparticle plasmonics,” Laser Photon. Rev. 2, 136–159 (2008).
[Crossref]

Ajayan, P. M.

Y.-C. Chen, N. R. Raravikar, L. S. Schadler, P. M. Ajayan, Y.-P. Zhao, T. M. Lu, G.-C. Wang, and X.-C. Zhang, “Ultrafast optical switching properties of single-wall carbon nanotube polymer composites at 1.55μm,” Appl. Phys. Lett. 81, 975–977 (2002).
[Crossref]

Aus der Au, J.

U. Keller, K. J. Weingarten, F. X. Kaertner, D. Kopf, B. Braun, I. D. Jung, R. Fluck, C. Hoenninger, N. Matuschek, and J. Aus der Au, “Semiconductor saturable absorber mirrors (SESAMs) for femtosecond to nanosecond pulse generation in solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 2, 435–453 (1996).
[Crossref]

Austin, J.

Auxier, J.

K. Wundke, S. Poetting, J. Auxier, A. Schuelzgen, N. Peyghambarian, and N. F. Borrelli, “PbS quantum-dot-doped glasses for ultrashort-pulse generation,” Appl. Phys. Lett. 76, 10–12 (2000).
[Crossref]

Bao, Q.

H. Zhang, Q. Bao, D. Tang, L. Zhao, and K. Loh, “Large energy soliton erbium-doped fiber laser with a graphene-polymer composite mode locker,” Appl. Phys. Lett. 95, 141103 (2009).
[Crossref]

Bookey, H. T.

R. Rangel-Rojo, J. McCarthy, H. T. Bookey, A. K. Kar, L. Rodriguez-Fernandez, J. C. Cheang-Wong, A. Crespo-Sosa, A. Lopez-Suarez, A. Olibier, V. Rodriguez-Iglesias, and H. G. Silva-Rereyra, “Anisotropy in the nonlinear absorption of elongated silver nanoparticles in silica, probed by femtosecond pulses,” Opt. Commun. 282, 1909–1912 (2009).
[Crossref]

Borrelli, N. F.

K. Wundke, S. Poetting, J. Auxier, A. Schuelzgen, N. Peyghambarian, and N. F. Borrelli, “PbS quantum-dot-doped glasses for ultrashort-pulse generation,” Appl. Phys. Lett. 76, 10–12 (2000).
[Crossref]

Boyd, R. W.

Braun, B.

U. Keller, K. J. Weingarten, F. X. Kaertner, D. Kopf, B. Braun, I. D. Jung, R. Fluck, C. Hoenninger, N. Matuschek, and J. Aus der Au, “Semiconductor saturable absorber mirrors (SESAMs) for femtosecond to nanosecond pulse generation in solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 2, 435–453 (1996).
[Crossref]

Brooks, E.

U. Gurudas, E. Brooks, D. M. Heiroth, T. Lippert, and A. Wokaun, “Saturable and reverse saturable absorption in silver nanodots at 532 nm using picosecond laser pulses,” J. Appl. Phys.104, 073107 (2008).
[Crossref]

Bryant, G.

M. Pelton, J. Aizpurura, and G. Bryant, “Metal nanoparticle plasmonics,” Laser Photon. Rev. 2, 136–159 (2008).
[Crossref]

Cheang-Wong, J. C.

R. Rangel-Rojo, J. McCarthy, H. T. Bookey, A. K. Kar, L. Rodriguez-Fernandez, J. C. Cheang-Wong, A. Crespo-Sosa, A. Lopez-Suarez, A. Olibier, V. Rodriguez-Iglesias, and H. G. Silva-Rereyra, “Anisotropy in the nonlinear absorption of elongated silver nanoparticles in silica, probed by femtosecond pulses,” Opt. Commun. 282, 1909–1912 (2009).
[Crossref]

Chen, Y.-C.

Y.-C. Chen, N. R. Raravikar, L. S. Schadler, P. M. Ajayan, Y.-P. Zhao, T. M. Lu, G.-C. Wang, and X.-C. Zhang, “Ultrafast optical switching properties of single-wall carbon nanotube polymer composites at 1.55μm,” Appl. Phys. Lett. 81, 975–977 (2002).
[Crossref]

Cho, W. B.

Crespo-Sosa, A.

R. Rangel-Rojo, J. McCarthy, H. T. Bookey, A. K. Kar, L. Rodriguez-Fernandez, J. C. Cheang-Wong, A. Crespo-Sosa, A. Lopez-Suarez, A. Olibier, V. Rodriguez-Iglesias, and H. G. Silva-Rereyra, “Anisotropy in the nonlinear absorption of elongated silver nanoparticles in silica, probed by femtosecond pulses,” Opt. Commun. 282, 1909–1912 (2009).
[Crossref]

de Araujo, C. B.

Diaz, F.

Draine, B. T.

Elim, H. I.

H. I. Elim, J. Yang, J.-Y. Lee, J. Mi, and W. Ji, “Observation of saturable and reverse-saturable absorption at longitudinal surface plasmon resonance in gold nanorods,” Appl. Phys. Lett. 88, 083107 (2006).
[Crossref]

Falcao-Filho, E. L.

Fischer, G.

Flatau, P. J.

Fluck, R.

U. Keller, K. J. Weingarten, F. X. Kaertner, D. Kopf, B. Braun, I. D. Jung, R. Fluck, C. Hoenninger, N. Matuschek, and J. Aus der Au, “Semiconductor saturable absorber mirrors (SESAMs) for femtosecond to nanosecond pulse generation in solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 2, 435–453 (1996).
[Crossref]

Galembeck, Andre

Ganeev, R. A.

R. A. Ganeev, A. I. Ryasnyansky, A. L. Stepanov, and T. Usmanov, “Saturated absorption and nonlinear refraction of silicate glasses doped with silver nanoparticles at 532 nm,” Opt. Quantum Electron. 36, 949–960 (2004).
[Crossref]

Ganeev, R.A.

R.A. Ganeev, A.I. Ryasnyanskii, A.L. Stepanov, and T. Usmanov, “Nonlinear absorption at visible light in silicate glasses doped with copper nanoparticles,” Quantum Electron. 33, 1081–1084 (2003).
[Crossref]

Gregory, D. A.

Griebner, U.

Gurudas, U.

U. Gurudas, E. Brooks, D. M. Heiroth, T. Lippert, and A. Wokaun, “Saturable and reverse saturable absorption in silver nanodots at 532 nm using picosecond laser pulses,” J. Appl. Phys.104, 073107 (2008).
[Crossref]

Han, S. W.

Heiroth, D. M.

U. Gurudas, E. Brooks, D. M. Heiroth, T. Lippert, and A. Wokaun, “Saturable and reverse saturable absorption in silver nanodots at 532 nm using picosecond laser pulses,” J. Appl. Phys.104, 073107 (2008).
[Crossref]

Heo, J.

Herrmann, J.

Hoenninger, C.

U. Keller, K. J. Weingarten, F. X. Kaertner, D. Kopf, B. Braun, I. D. Jung, R. Fluck, C. Hoenninger, N. Matuschek, and J. Aus der Au, “Semiconductor saturable absorber mirrors (SESAMs) for femtosecond to nanosecond pulse generation in solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 2, 435–453 (1996).
[Crossref]

Hunter, W. R.

David W. Lynch and W. R. Hunter, “Comments on the optical constants of metals and an introduction to the data for several metals,” in Handbook of Optical Constants of Solids, E.D. Palik, ed. (Academic, Orlando, Fla., 1985).

Husakou, A.

Ji, W.

H. I. Elim, J. Yang, J.-Y. Lee, J. Mi, and W. Ji, “Observation of saturable and reverse-saturable absorption at longitudinal surface plasmon resonance in gold nanorods,” Appl. Phys. Lett. 88, 083107 (2006).
[Crossref]

Jung, I. D.

U. Keller, K. J. Weingarten, F. X. Kaertner, D. Kopf, B. Braun, I. D. Jung, R. Fluck, C. Hoenninger, N. Matuschek, and J. Aus der Au, “Semiconductor saturable absorber mirrors (SESAMs) for femtosecond to nanosecond pulse generation in solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 2, 435–453 (1996).
[Crossref]

Jung, S. S.

Kaertner, F. X.

U. Keller, K. J. Weingarten, F. X. Kaertner, D. Kopf, B. Braun, I. D. Jung, R. Fluck, C. Hoenninger, N. Matuschek, and J. Aus der Au, “Semiconductor saturable absorber mirrors (SESAMs) for femtosecond to nanosecond pulse generation in solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 2, 435–453 (1996).
[Crossref]

Kar, A. K.

R. Rangel-Rojo, J. McCarthy, H. T. Bookey, A. K. Kar, L. Rodriguez-Fernandez, J. C. Cheang-Wong, A. Crespo-Sosa, A. Lopez-Suarez, A. Olibier, V. Rodriguez-Iglesias, and H. G. Silva-Rereyra, “Anisotropy in the nonlinear absorption of elongated silver nanoparticles in silica, probed by femtosecond pulses,” Opt. Commun. 282, 1909–1912 (2009).
[Crossref]

Keller, U.

U. Keller, K. J. Weingarten, F. X. Kaertner, D. Kopf, B. Braun, I. D. Jung, R. Fluck, C. Hoenninger, N. Matuschek, and J. Aus der Au, “Semiconductor saturable absorber mirrors (SESAMs) for femtosecond to nanosecond pulse generation in solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 2, 435–453 (1996).
[Crossref]

Kim, K.-H.

Kim, W.-J.

Kopf, D.

U. Keller, K. J. Weingarten, F. X. Kaertner, D. Kopf, B. Braun, I. D. Jung, R. Fluck, C. Hoenninger, N. Matuschek, and J. Aus der Au, “Semiconductor saturable absorber mirrors (SESAMs) for femtosecond to nanosecond pulse generation in solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 2, 435–453 (1996).
[Crossref]

Kothari, N. C.

N. C. Kothari, “Effective-medium theory of a nonlinear composite medium using the T-matrix approach: Exact results for spherical grains,” Phys. Rev. A 41, 4486–4492 (1990).
[Crossref] [PubMed]

Kumar, G. R.

R. Philip, G. R. Kumar, N. Sandhyarari, and T. Pradeep, “Picosecond optical nonlinearity in monolayer-protected gold, silver, and gold-silver alloy nanoclusters,” Phys. Rev. B 62, 13160 (2000).
[Crossref]

Kyong, M.

M. Kyong and M. Lee, “Nonlinear absorption and refractive index measurements of silver nanorods by the Z-scan technique,” Opt. Commun. 171, 145–148 (1999).
[Crossref]

Lee, J.-Y.

H. I. Elim, J. Yang, J.-Y. Lee, J. Mi, and W. Ji, “Observation of saturable and reverse-saturable absorption at longitudinal surface plasmon resonance in gold nanorods,” Appl. Phys. Lett. 88, 083107 (2006).
[Crossref]

Lee, M.

M. Kyong and M. Lee, “Nonlinear absorption and refractive index measurements of silver nanorods by the Z-scan technique,” Opt. Commun. 171, 145–148 (1999).
[Crossref]

Lee, S.

Lippert, T.

U. Gurudas, E. Brooks, D. M. Heiroth, T. Lippert, and A. Wokaun, “Saturable and reverse saturable absorption in silver nanodots at 532 nm using picosecond laser pulses,” J. Appl. Phys.104, 073107 (2008).
[Crossref]

Loh, K.

H. Zhang, Q. Bao, D. Tang, L. Zhao, and K. Loh, “Large energy soliton erbium-doped fiber laser with a graphene-polymer composite mode locker,” Appl. Phys. Lett. 95, 141103 (2009).
[Crossref]

Lopez-Suarez, A.

R. Rangel-Rojo, J. McCarthy, H. T. Bookey, A. K. Kar, L. Rodriguez-Fernandez, J. C. Cheang-Wong, A. Crespo-Sosa, A. Lopez-Suarez, A. Olibier, V. Rodriguez-Iglesias, and H. G. Silva-Rereyra, “Anisotropy in the nonlinear absorption of elongated silver nanoparticles in silica, probed by femtosecond pulses,” Opt. Commun. 282, 1909–1912 (2009).
[Crossref]

Lu, T. M.

Y.-C. Chen, N. R. Raravikar, L. S. Schadler, P. M. Ajayan, Y.-P. Zhao, T. M. Lu, G.-C. Wang, and X.-C. Zhang, “Ultrafast optical switching properties of single-wall carbon nanotube polymer composites at 1.55μm,” Appl. Phys. Lett. 81, 975–977 (2002).
[Crossref]

Lynch, David W.

David W. Lynch and W. R. Hunter, “Comments on the optical constants of metals and an introduction to the data for several metals,” in Handbook of Optical Constants of Solids, E.D. Palik, ed. (Academic, Orlando, Fla., 1985).

Ma, S. M.

Mateos, X.

Matuschek, N.

U. Keller, K. J. Weingarten, F. X. Kaertner, D. Kopf, B. Braun, I. D. Jung, R. Fluck, C. Hoenninger, N. Matuschek, and J. Aus der Au, “Semiconductor saturable absorber mirrors (SESAMs) for femtosecond to nanosecond pulse generation in solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 2, 435–453 (1996).
[Crossref]

McCarthy, J.

R. Rangel-Rojo, J. McCarthy, H. T. Bookey, A. K. Kar, L. Rodriguez-Fernandez, J. C. Cheang-Wong, A. Crespo-Sosa, A. Lopez-Suarez, A. Olibier, V. Rodriguez-Iglesias, and H. G. Silva-Rereyra, “Anisotropy in the nonlinear absorption of elongated silver nanoparticles in silica, probed by femtosecond pulses,” Opt. Commun. 282, 1909–1912 (2009).
[Crossref]

Mi, J.

H. I. Elim, J. Yang, J.-Y. Lee, J. Mi, and W. Ji, “Observation of saturable and reverse-saturable absorption at longitudinal surface plasmon resonance in gold nanorods,” Appl. Phys. Lett. 88, 083107 (2006).
[Crossref]

Nocedal, J.

J. Nocedal and S. J. Wright, Numerical Optimization, Second ed. (Springer, 2006).

Olibier, A.

R. Rangel-Rojo, J. McCarthy, H. T. Bookey, A. K. Kar, L. Rodriguez-Fernandez, J. C. Cheang-Wong, A. Crespo-Sosa, A. Lopez-Suarez, A. Olibier, V. Rodriguez-Iglesias, and H. G. Silva-Rereyra, “Anisotropy in the nonlinear absorption of elongated silver nanoparticles in silica, probed by femtosecond pulses,” Opt. Commun. 282, 1909–1912 (2009).
[Crossref]

Oliveira, Marcela M.

Pelton, M.

M. Pelton, J. Aizpurura, and G. Bryant, “Metal nanoparticle plasmonics,” Laser Photon. Rev. 2, 136–159 (2008).
[Crossref]

Petrov, V.

Peyghambarian, N.

K. Wundke, S. Poetting, J. Auxier, A. Schuelzgen, N. Peyghambarian, and N. F. Borrelli, “PbS quantum-dot-doped glasses for ultrashort-pulse generation,” Appl. Phys. Lett. 76, 10–12 (2000).
[Crossref]

Philip, R.

R. Philip, G. R. Kumar, N. Sandhyarari, and T. Pradeep, “Picosecond optical nonlinearity in monolayer-protected gold, silver, and gold-silver alloy nanoclusters,” Phys. Rev. B 62, 13160 (2000).
[Crossref]

Poetting, S.

K. Wundke, S. Poetting, J. Auxier, A. Schuelzgen, N. Peyghambarian, and N. F. Borrelli, “PbS quantum-dot-doped glasses for ultrashort-pulse generation,” Appl. Phys. Lett. 76, 10–12 (2000).
[Crossref]

Pradeep, T.

R. Philip, G. R. Kumar, N. Sandhyarari, and T. Pradeep, “Picosecond optical nonlinearity in monolayer-protected gold, silver, and gold-silver alloy nanoclusters,” Phys. Rev. B 62, 13160 (2000).
[Crossref]

Pujol, M. C.

Rangel-Rojo, R.

R. Rangel-Rojo, J. McCarthy, H. T. Bookey, A. K. Kar, L. Rodriguez-Fernandez, J. C. Cheang-Wong, A. Crespo-Sosa, A. Lopez-Suarez, A. Olibier, V. Rodriguez-Iglesias, and H. G. Silva-Rereyra, “Anisotropy in the nonlinear absorption of elongated silver nanoparticles in silica, probed by femtosecond pulses,” Opt. Commun. 282, 1909–1912 (2009).
[Crossref]

Raravikar, N. R.

Y.-C. Chen, N. R. Raravikar, L. S. Schadler, P. M. Ajayan, Y.-P. Zhao, T. M. Lu, G.-C. Wang, and X.-C. Zhang, “Ultrafast optical switching properties of single-wall carbon nanotube polymer composites at 1.55μm,” Appl. Phys. Lett. 81, 975–977 (2002).
[Crossref]

Rivier, S.

Rodriguez-Fernandez, L.

R. Rangel-Rojo, J. McCarthy, H. T. Bookey, A. K. Kar, L. Rodriguez-Fernandez, J. C. Cheang-Wong, A. Crespo-Sosa, A. Lopez-Suarez, A. Olibier, V. Rodriguez-Iglesias, and H. G. Silva-Rereyra, “Anisotropy in the nonlinear absorption of elongated silver nanoparticles in silica, probed by femtosecond pulses,” Opt. Commun. 282, 1909–1912 (2009).
[Crossref]

Rodriguez-Iglesias, V.

R. Rangel-Rojo, J. McCarthy, H. T. Bookey, A. K. Kar, L. Rodriguez-Fernandez, J. C. Cheang-Wong, A. Crespo-Sosa, A. Lopez-Suarez, A. Olibier, V. Rodriguez-Iglesias, and H. G. Silva-Rereyra, “Anisotropy in the nonlinear absorption of elongated silver nanoparticles in silica, probed by femtosecond pulses,” Opt. Commun. 282, 1909–1912 (2009).
[Crossref]

Rotermund, F.

Ryasnyanskii, A.I.

R.A. Ganeev, A.I. Ryasnyanskii, A.L. Stepanov, and T. Usmanov, “Nonlinear absorption at visible light in silicate glasses doped with copper nanoparticles,” Quantum Electron. 33, 1081–1084 (2003).
[Crossref]

Ryasnyansky, A. I.

R. A. Ganeev, A. I. Ryasnyansky, A. L. Stepanov, and T. Usmanov, “Saturated absorption and nonlinear refraction of silicate glasses doped with silver nanoparticles at 532 nm,” Opt. Quantum Electron. 36, 949–960 (2004).
[Crossref]

Sandhyarari, N.

R. Philip, G. R. Kumar, N. Sandhyarari, and T. Pradeep, “Picosecond optical nonlinearity in monolayer-protected gold, silver, and gold-silver alloy nanoclusters,” Phys. Rev. B 62, 13160 (2000).
[Crossref]

Schadler, L. S.

Y.-C. Chen, N. R. Raravikar, L. S. Schadler, P. M. Ajayan, Y.-P. Zhao, T. M. Lu, G.-C. Wang, and X.-C. Zhang, “Ultrafast optical switching properties of single-wall carbon nanotube polymer composites at 1.55μm,” Appl. Phys. Lett. 81, 975–977 (2002).
[Crossref]

Schmidt, A.

Schuelzgen, A.

K. Wundke, S. Poetting, J. Auxier, A. Schuelzgen, N. Peyghambarian, and N. F. Borrelli, “PbS quantum-dot-doped glasses for ultrashort-pulse generation,” Appl. Phys. Lett. 76, 10–12 (2000).
[Crossref]

Seo, J. T.

Silva-Rereyra, H. G.

R. Rangel-Rojo, J. McCarthy, H. T. Bookey, A. K. Kar, L. Rodriguez-Fernandez, J. C. Cheang-Wong, A. Crespo-Sosa, A. Lopez-Suarez, A. Olibier, V. Rodriguez-Iglesias, and H. G. Silva-Rereyra, “Anisotropy in the nonlinear absorption of elongated silver nanoparticles in silica, probed by femtosecond pulses,” Opt. Commun. 282, 1909–1912 (2009).
[Crossref]

Sipe, J. E.

J. E. Sipe and R. W. Boyd, “Nonlinear susceptibility of composite optical materials in Maxwell Garnett model,” Phys. Rev. A 46, 1614–1629 (1992).
[Crossref] [PubMed]

Smith, D. D.

Steinmeyer, G.

Stepanov, A. L.

R. A. Ganeev, A. I. Ryasnyansky, A. L. Stepanov, and T. Usmanov, “Saturated absorption and nonlinear refraction of silicate glasses doped with silver nanoparticles at 532 nm,” Opt. Quantum Electron. 36, 949–960 (2004).
[Crossref]

Stepanov, A.L.

R.A. Ganeev, A.I. Ryasnyanskii, A.L. Stepanov, and T. Usmanov, “Nonlinear absorption at visible light in silicate glasses doped with copper nanoparticles,” Quantum Electron. 33, 1081–1084 (2003).
[Crossref]

Tabibi, B.

Tang, D.

H. Zhang, Q. Bao, D. Tang, L. Zhao, and K. Loh, “Large energy soliton erbium-doped fiber laser with a graphene-polymer composite mode locker,” Appl. Phys. Lett. 95, 141103 (2009).
[Crossref]

Temple,

Usmanov, T.

R. A. Ganeev, A. I. Ryasnyansky, A. L. Stepanov, and T. Usmanov, “Saturated absorption and nonlinear refraction of silicate glasses doped with silver nanoparticles at 532 nm,” Opt. Quantum Electron. 36, 949–960 (2004).
[Crossref]

R.A. Ganeev, A.I. Ryasnyanskii, A.L. Stepanov, and T. Usmanov, “Nonlinear absorption at visible light in silicate glasses doped with copper nanoparticles,” Quantum Electron. 33, 1081–1084 (2003).
[Crossref]

Wang, G.-C.

Y.-C. Chen, N. R. Raravikar, L. S. Schadler, P. M. Ajayan, Y.-P. Zhao, T. M. Lu, G.-C. Wang, and X.-C. Zhang, “Ultrafast optical switching properties of single-wall carbon nanotube polymer composites at 1.55μm,” Appl. Phys. Lett. 81, 975–977 (2002).
[Crossref]

Weingarten, K. J.

U. Keller, K. J. Weingarten, F. X. Kaertner, D. Kopf, B. Braun, I. D. Jung, R. Fluck, C. Hoenninger, N. Matuschek, and J. Aus der Au, “Semiconductor saturable absorber mirrors (SESAMs) for femtosecond to nanosecond pulse generation in solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 2, 435–453 (1996).
[Crossref]

Wokaun, A.

U. Gurudas, E. Brooks, D. M. Heiroth, T. Lippert, and A. Wokaun, “Saturable and reverse saturable absorption in silver nanodots at 532 nm using picosecond laser pulses,” J. Appl. Phys.104, 073107 (2008).
[Crossref]

Wright, S. J.

J. Nocedal and S. J. Wright, Numerical Optimization, Second ed. (Springer, 2006).

Wundke, K.

K. Wundke, S. Poetting, J. Auxier, A. Schuelzgen, N. Peyghambarian, and N. F. Borrelli, “PbS quantum-dot-doped glasses for ultrashort-pulse generation,” Appl. Phys. Lett. 76, 10–12 (2000).
[Crossref]

Yang, J.

H. I. Elim, J. Yang, J.-Y. Lee, J. Mi, and W. Ji, “Observation of saturable and reverse-saturable absorption at longitudinal surface plasmon resonance in gold nanorods,” Appl. Phys. Lett. 88, 083107 (2006).
[Crossref]

Yang, Q.

Yim, J. H.

Yun, W. S.

Zarbin, Aldo J. G.

Zhang, H.

H. Zhang, Q. Bao, D. Tang, L. Zhao, and K. Loh, “Large energy soliton erbium-doped fiber laser with a graphene-polymer composite mode locker,” Appl. Phys. Lett. 95, 141103 (2009).
[Crossref]

Zhang, X.-C.

Y.-C. Chen, N. R. Raravikar, L. S. Schadler, P. M. Ajayan, Y.-P. Zhao, T. M. Lu, G.-C. Wang, and X.-C. Zhang, “Ultrafast optical switching properties of single-wall carbon nanotube polymer composites at 1.55μm,” Appl. Phys. Lett. 81, 975–977 (2002).
[Crossref]

Zhao, L.

H. Zhang, Q. Bao, D. Tang, L. Zhao, and K. Loh, “Large energy soliton erbium-doped fiber laser with a graphene-polymer composite mode locker,” Appl. Phys. Lett. 95, 141103 (2009).
[Crossref]

Zhao, Y.-P.

Y.-C. Chen, N. R. Raravikar, L. S. Schadler, P. M. Ajayan, Y.-P. Zhao, T. M. Lu, G.-C. Wang, and X.-C. Zhang, “Ultrafast optical switching properties of single-wall carbon nanotube polymer composites at 1.55μm,” Appl. Phys. Lett. 81, 975–977 (2002).
[Crossref]

Appl. Phys. Lett. (4)

Y.-C. Chen, N. R. Raravikar, L. S. Schadler, P. M. Ajayan, Y.-P. Zhao, T. M. Lu, G.-C. Wang, and X.-C. Zhang, “Ultrafast optical switching properties of single-wall carbon nanotube polymer composites at 1.55μm,” Appl. Phys. Lett. 81, 975–977 (2002).
[Crossref]

H. Zhang, Q. Bao, D. Tang, L. Zhao, and K. Loh, “Large energy soliton erbium-doped fiber laser with a graphene-polymer composite mode locker,” Appl. Phys. Lett. 95, 141103 (2009).
[Crossref]

K. Wundke, S. Poetting, J. Auxier, A. Schuelzgen, N. Peyghambarian, and N. F. Borrelli, “PbS quantum-dot-doped glasses for ultrashort-pulse generation,” Appl. Phys. Lett. 76, 10–12 (2000).
[Crossref]

H. I. Elim, J. Yang, J.-Y. Lee, J. Mi, and W. Ji, “Observation of saturable and reverse-saturable absorption at longitudinal surface plasmon resonance in gold nanorods,” Appl. Phys. Lett. 88, 083107 (2006).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

U. Keller, K. J. Weingarten, F. X. Kaertner, D. Kopf, B. Braun, I. D. Jung, R. Fluck, C. Hoenninger, N. Matuschek, and J. Aus der Au, “Semiconductor saturable absorber mirrors (SESAMs) for femtosecond to nanosecond pulse generation in solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 2, 435–453 (1996).
[Crossref]

J. Opt. Soc. Am. A (1)

J. Opt. Soc. Am. B (2)

Laser Photon. Rev. (1)

M. Pelton, J. Aizpurura, and G. Bryant, “Metal nanoparticle plasmonics,” Laser Photon. Rev. 2, 136–159 (2008).
[Crossref]

Opt. Commun. (2)

M. Kyong and M. Lee, “Nonlinear absorption and refractive index measurements of silver nanorods by the Z-scan technique,” Opt. Commun. 171, 145–148 (1999).
[Crossref]

R. Rangel-Rojo, J. McCarthy, H. T. Bookey, A. K. Kar, L. Rodriguez-Fernandez, J. C. Cheang-Wong, A. Crespo-Sosa, A. Lopez-Suarez, A. Olibier, V. Rodriguez-Iglesias, and H. G. Silva-Rereyra, “Anisotropy in the nonlinear absorption of elongated silver nanoparticles in silica, probed by femtosecond pulses,” Opt. Commun. 282, 1909–1912 (2009).
[Crossref]

Opt. Express (1)

Opt. Lett. (2)

Opt. Quantum Electron. (1)

R. A. Ganeev, A. I. Ryasnyansky, A. L. Stepanov, and T. Usmanov, “Saturated absorption and nonlinear refraction of silicate glasses doped with silver nanoparticles at 532 nm,” Opt. Quantum Electron. 36, 949–960 (2004).
[Crossref]

Phys. Rev. A (2)

J. E. Sipe and R. W. Boyd, “Nonlinear susceptibility of composite optical materials in Maxwell Garnett model,” Phys. Rev. A 46, 1614–1629 (1992).
[Crossref] [PubMed]

N. C. Kothari, “Effective-medium theory of a nonlinear composite medium using the T-matrix approach: Exact results for spherical grains,” Phys. Rev. A 41, 4486–4492 (1990).
[Crossref] [PubMed]

Phys. Rev. B (1)

R. Philip, G. R. Kumar, N. Sandhyarari, and T. Pradeep, “Picosecond optical nonlinearity in monolayer-protected gold, silver, and gold-silver alloy nanoclusters,” Phys. Rev. B 62, 13160 (2000).
[Crossref]

Quantum Electron. (1)

R.A. Ganeev, A.I. Ryasnyanskii, A.L. Stepanov, and T. Usmanov, “Nonlinear absorption at visible light in silicate glasses doped with copper nanoparticles,” Quantum Electron. 33, 1081–1084 (2003).
[Crossref]

Other (4)

F. X. Kaertner, ed. Few-cycle laser pulse generation and its application, (Springer, Berlin, 2004).

David W. Lynch and W. R. Hunter, “Comments on the optical constants of metals and an introduction to the data for several metals,” in Handbook of Optical Constants of Solids, E.D. Palik, ed. (Academic, Orlando, Fla., 1985).

U. Gurudas, E. Brooks, D. M. Heiroth, T. Lippert, and A. Wokaun, “Saturable and reverse saturable absorption in silver nanodots at 532 nm using picosecond laser pulses,” J. Appl. Phys.104, 073107 (2008).
[Crossref]

J. Nocedal and S. J. Wright, Numerical Optimization, Second ed. (Springer, 2006).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Intensity-dependent nonlinear refraction and absorption of silica glass doped with silver nanospheres with small diameter calculated by using the generalized Maxwell-Garnett approach. Total absorption coefficient (a) and its nonlinear change (d), nonlinear refractive index change (c), the nonlinear refractive index and the absorption saturation coefficient (e), as well as the saturation intensity and the enhancement factor (f) are presented depending on the wavelength. In (b), loss is depicted as a function of intensity for different filling factors (blue, green, red and cyan curves correspond to filling factor of 10−5, 10−4, 10−3 and 10−2 respectively.) In (a), (c) and (d), blue, green, red and cyan curves correspond to different intensities (I = 0, 3.33 MW/cm2, 106.67 MW/cm2, and 0.81 GW/cm2 respectively.

Fig. 2
Fig. 2

Nonlinearity and absorption saturation of silica glass doped with Ag nanospheres by using the discrete dipole formalism. Absorption coefficient (a) and its nonlinear change (d), nonlinear change of the refractive index (c), nonlinear refractive index and the absorption saturation coefficient (b), as well as the saturation intensity (h) are presented in dependence on wavelength. In (a), (c) and (d), blue, green, red, and cyan curves correspond to I = 0, I = 0.5 GW/cm2, I = 2 GW/cm2, and I = 4.5 GW/cm2 respectively. In (e), (f), and (g) total loss is shown for intensities I = 0 (e), I = 0.5 GW/cm2 (f), and I = 2 GW/cm2 (g). In (h), saturation intensity is shown for different Ag particle diameters (blue: 10 nm, red: 30 nm, and magenta: 50 nm).

Fig. 3
Fig. 3

Wavelegnth dependence of absorption coefficient (a) and of saturation intensity (b) of silica glass doped with Ag nanorods with the height of 48 nm and diameter of 30 nm. In (c) and (d), enhanced field distributions are shown for the intensity of incident light of 0 (c) and 100 MW/cm2 (d). In (a), blue, green, red, and cyan curves correspond to I = 0, I = 0.5 GW/cm2, I = 2 GW/cm2, and I = 4.5 GW/cm2 respectively. The polarization of incident light is parallel to the axis of nanorod.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

x = 3 ɛ h ɛ m 0 + 2 ɛ h + χ m ( 3 ) | x | 2 | E 0 | 2 .
ɛ eff ɛ h ɛ eff + 2 ɛ h = f ɛ m ɛ h ɛ m + 2 ɛ h ,
E j = E 0 j j k e i β r j k r j k 3 { β 2 r j k × r j k × P k + 1 i β r j k r j k 2 [ r j k 2 P k 3 r j k r j k P k ] } ,
x k = 3 ɛ h ɛ m 0 + 2 ɛ h + χ m ( 3 ) | x k | 2 | E k | 2 .

Metrics