Abstract

In this paper we present an ultra high speed and highly phase sensitive line-field FD-OCT system for quantitative phase mapping. The system works with a maximum speed of 512 000 A-scan/s (1000 fps) in real time mode. Along the parallel recorded direction excellent phase stability corresponding to a path length variation of only 510 pm was measured. We demonstrate how to exploit this phase accuracy for fast chemical analysis of glucose mixture processes. The system has particular potential for studying micro-fluidic processes.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. L. Rogers and V. I. Gelfand, “Membrane trafficking, organelle transport, and the cytoskeleton,” Curr. Opin. Cell Biol. 12(1), 57–62 (2000).
    [CrossRef] [PubMed]
  2. D. S. Coffey, J. P. Karr, R. G. Smith, and D. J. Tindall, “Molecular and cellular biology of prostate cancer,” Plenum, New York (1991).
  3. K. Strange, “Cellular and molecular physiology of cell volume regulation,” CRC Press, Boca Raton, Fla. (1993).
  4. T. Vo-Dinh, “Biomedical Photonics Handbook,” CRC Press, (2003).
  5. G. Popescu, in “Methods in Cell Biology,” P. J. Bhanu, ed.Elsevier, (2008).
    [PubMed]
  6. D. Fu, W. Choi, Y. Sung, Z. Yaqoob, R. R. Dasari, and M. Feld, “Quantitative dispersion microscopy,” Biomed. Opt. Express 1, 347–353 (2010). http://www.opticsinfobase.org/boe/abstract.cfm?URI=boe-1-2-347
    [CrossRef] [PubMed]
  7. Z. Wang, I. S. Chun, X. Li, Z. Y. Ong, E. Pop, L. Millet, M. Gillette, and G. Popescu, “Topography and refractometry of nanostructures using spatial light interference microscopy,” Opt. Lett. 35(2), 208–210 (2010).
    [CrossRef] [PubMed]
  8. K. Koyama, A. Iwasaki, M. Tanimoto, and I. Kudo, “Simple interferometric microscopy for in situ real-time two-dimensional observation of crystal growth,” Rev. Sci. Instrum. 67(7), 2584 (1996).
    [CrossRef]
  9. A. Barty, K. A. Nugent, D. Paganin, and A. Roberts, “Quantitative optical phase microscopy,” Opt. Lett. 23(11), 817–819 (1998).
    [CrossRef]
  10. C. K. Hitzenberger and A. F. Fercher, “Differential phase contrast in optical coherence tomography,” Opt. Lett. 24(9), 622–624 (1999).
    [CrossRef]
  11. C. Yang, A. Wax, I. Georgakoudi, E. B. Hanlon, K. Badizadegan, R. R. Dasari, and M. S. Feld, “Interferometric phase-dispersion microscopy,” Opt. Lett. 25(20), 1526–1528 (2000).
    [CrossRef]
  12. R. A. Leitgeb, C. K. Hitzenberger, and A. F. Fercher, “Performance of fourier domain vs. time domain optical coherence tomography,” Opt. Express 11(8), 889–894 (2003), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-8-889 .
    [CrossRef] [PubMed]
  13. M. A. Choma, M. V. Sarunic, C. Yang, and J. A. Izatt, “Sensitivity advantage of swept source and Fourier domain optical coherence tomography,” Opt. Express 11(18), 2183–2189 (2003), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-18-2183 .
    [CrossRef] [PubMed]
  14. J. F. de Boer, B. Cense, B. H. Park, M. C. Pierce, G. J. Tearney, and B. E. Bouma, “Improved signal-to-noise ratio in spectral-domain compared with time-domain optical coherence tomography,” Opt. Lett. 28(21), 2067–2069 (2003).
    [CrossRef] [PubMed]
  15. A. F. Fercher, C. K. Hitzenberger, G. Kamp, and S. Y. El-Zaiat, “Measurement of intraocular distances by backscattering spectral interferometry,” Opt. Commun. 117(1-2), 43–48 (1995).
    [CrossRef]
  16. C. Joo, T. Akkin, B. Cense, B. H. Park, and J. F. de Boer, “Spectral-domain optical coherence phase microscopy for quantitative phase-contrast imaging,” Opt. Lett. 30(16), 2131–2133 (2005).
    [CrossRef] [PubMed]
  17. M. A. Choma, A. K. Ellerbee, C. H. Yang, T. L. Creazzo, and J. A. Izatt, “Spectral-domain phase microscopy,” Opt. Lett. 30(10), 1162–1164 (2005).
    [CrossRef] [PubMed]
  18. M. Pircher, B. Baumann, E. Götzinger, H. Sattmann, and C. K. Hitzenberger, “Phase contrast coherence microscopy based on transverse scanning,” Opt. Lett. 34(12), 1750–1752 (2009).
    [CrossRef] [PubMed]
  19. S. M. Bagherzadeh, B. Grajciar, C. K. Hitzenberger, M. Pircher, and A. F. Fercher, “Dispersion-based optical coherence tomography OCT measurement of mixture concentrations,” Opt. Lett. 32(20), 2924–2926 (2007).
    [CrossRef] [PubMed]
  20. K. V. Larin, T. Akkin, R. O. Esenaliev, M. Motamedi, and T. E. Milner, “Phase-sensitive optical low-coherence reflectometry for the detection of analyte concentrations,” Appl. Opt. 43(17), 3408–3414 (2004).
    [CrossRef] [PubMed]
  21. M. V. Sarunic, S. Weinberg, and J. A. Izatt, “Full-field swept-source phase microscopy,” Opt. Lett. 31(10), 1462–1464 (2006).
    [CrossRef] [PubMed]
  22. B. Grajciar, M. Pircher, A. F. Fercher, and R. Leitgeb, “Parallel Fourier domain optical coherence tomography for in vivo measurement of the human eye,” Opt. Express 13(4), 1131–1137 (2005), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-13-4-1131 .
    [CrossRef] [PubMed]
  23. Y. Chen, S. W. Huang, A. D. Aguirre, and J. G. Fujimoto, “High-resolution line-scanning optical coherence microscopy,” Opt. Lett. 32(14), 1971–1973 (2007).
    [CrossRef] [PubMed]
  24. D. X. Hammer, R. D. Ferguson, T. E. Ustun, C. E. Bigelow, N. V. Iftimia, and R. H. Webb, “Line-scanning laser ophthalmoscope,” J. Biomed. Opt. 11(4), 041126 (2006).
    [CrossRef] [PubMed]
  25. R. Hooke, “Of a new property in the air,” Micrographia, Observation LVIII, 217–219, London (1665).
  26. D. Psaltis, S. R. Quake, and Ch. Yang, “Developing optofluidic technology through the fusion of microfluidics and optics,” Nature 442(7101), 381–386 (2006).
    [CrossRef] [PubMed]
  27. K. E. Herold, and A. Rasooly, Lab-on-a-chip technology (Vol. 1): Fabrication and microfluidics (Caister Academic Press, 2009).
  28. K. E. Herold, and A. Rasooly, Lab-on-a-chip technology (Vol. 2): Biomolecular separation and analysis (Caister Academic Press, 2009).

2010

2009

2007

2006

M. V. Sarunic, S. Weinberg, and J. A. Izatt, “Full-field swept-source phase microscopy,” Opt. Lett. 31(10), 1462–1464 (2006).
[CrossRef] [PubMed]

D. X. Hammer, R. D. Ferguson, T. E. Ustun, C. E. Bigelow, N. V. Iftimia, and R. H. Webb, “Line-scanning laser ophthalmoscope,” J. Biomed. Opt. 11(4), 041126 (2006).
[CrossRef] [PubMed]

D. Psaltis, S. R. Quake, and Ch. Yang, “Developing optofluidic technology through the fusion of microfluidics and optics,” Nature 442(7101), 381–386 (2006).
[CrossRef] [PubMed]

2005

2004

2003

2000

S. L. Rogers and V. I. Gelfand, “Membrane trafficking, organelle transport, and the cytoskeleton,” Curr. Opin. Cell Biol. 12(1), 57–62 (2000).
[CrossRef] [PubMed]

C. Yang, A. Wax, I. Georgakoudi, E. B. Hanlon, K. Badizadegan, R. R. Dasari, and M. S. Feld, “Interferometric phase-dispersion microscopy,” Opt. Lett. 25(20), 1526–1528 (2000).
[CrossRef]

1999

1998

1996

K. Koyama, A. Iwasaki, M. Tanimoto, and I. Kudo, “Simple interferometric microscopy for in situ real-time two-dimensional observation of crystal growth,” Rev. Sci. Instrum. 67(7), 2584 (1996).
[CrossRef]

1995

A. F. Fercher, C. K. Hitzenberger, G. Kamp, and S. Y. El-Zaiat, “Measurement of intraocular distances by backscattering spectral interferometry,” Opt. Commun. 117(1-2), 43–48 (1995).
[CrossRef]

Aguirre, A. D.

Akkin, T.

Badizadegan, K.

Bagherzadeh, S. M.

Barty, A.

Baumann, B.

Bigelow, C. E.

D. X. Hammer, R. D. Ferguson, T. E. Ustun, C. E. Bigelow, N. V. Iftimia, and R. H. Webb, “Line-scanning laser ophthalmoscope,” J. Biomed. Opt. 11(4), 041126 (2006).
[CrossRef] [PubMed]

Bouma, B. E.

Cense, B.

Chen, Y.

Choma, M. A.

Chun, I. S.

Creazzo, T. L.

Dasari, R. R.

de Boer, J. F.

Ellerbee, A. K.

El-Zaiat, S. Y.

A. F. Fercher, C. K. Hitzenberger, G. Kamp, and S. Y. El-Zaiat, “Measurement of intraocular distances by backscattering spectral interferometry,” Opt. Commun. 117(1-2), 43–48 (1995).
[CrossRef]

Esenaliev, R. O.

Feld, M. S.

Fercher, A. F.

Ferguson, R. D.

D. X. Hammer, R. D. Ferguson, T. E. Ustun, C. E. Bigelow, N. V. Iftimia, and R. H. Webb, “Line-scanning laser ophthalmoscope,” J. Biomed. Opt. 11(4), 041126 (2006).
[CrossRef] [PubMed]

Fujimoto, J. G.

Gelfand, V. I.

S. L. Rogers and V. I. Gelfand, “Membrane trafficking, organelle transport, and the cytoskeleton,” Curr. Opin. Cell Biol. 12(1), 57–62 (2000).
[CrossRef] [PubMed]

Georgakoudi, I.

Gillette, M.

Götzinger, E.

Grajciar, B.

Hammer, D. X.

D. X. Hammer, R. D. Ferguson, T. E. Ustun, C. E. Bigelow, N. V. Iftimia, and R. H. Webb, “Line-scanning laser ophthalmoscope,” J. Biomed. Opt. 11(4), 041126 (2006).
[CrossRef] [PubMed]

Hanlon, E. B.

Hitzenberger, C. K.

Huang, S. W.

Iftimia, N. V.

D. X. Hammer, R. D. Ferguson, T. E. Ustun, C. E. Bigelow, N. V. Iftimia, and R. H. Webb, “Line-scanning laser ophthalmoscope,” J. Biomed. Opt. 11(4), 041126 (2006).
[CrossRef] [PubMed]

Iwasaki, A.

K. Koyama, A. Iwasaki, M. Tanimoto, and I. Kudo, “Simple interferometric microscopy for in situ real-time two-dimensional observation of crystal growth,” Rev. Sci. Instrum. 67(7), 2584 (1996).
[CrossRef]

Izatt, J. A.

Joo, C.

Kamp, G.

A. F. Fercher, C. K. Hitzenberger, G. Kamp, and S. Y. El-Zaiat, “Measurement of intraocular distances by backscattering spectral interferometry,” Opt. Commun. 117(1-2), 43–48 (1995).
[CrossRef]

Koyama, K.

K. Koyama, A. Iwasaki, M. Tanimoto, and I. Kudo, “Simple interferometric microscopy for in situ real-time two-dimensional observation of crystal growth,” Rev. Sci. Instrum. 67(7), 2584 (1996).
[CrossRef]

Kudo, I.

K. Koyama, A. Iwasaki, M. Tanimoto, and I. Kudo, “Simple interferometric microscopy for in situ real-time two-dimensional observation of crystal growth,” Rev. Sci. Instrum. 67(7), 2584 (1996).
[CrossRef]

Larin, K. V.

Leitgeb, R.

Leitgeb, R. A.

Li, X.

Millet, L.

Milner, T. E.

Motamedi, M.

Nugent, K. A.

Ong, Z. Y.

Paganin, D.

Park, B. H.

Pierce, M. C.

Pircher, M.

Pop, E.

Popescu, G.

Psaltis, D.

D. Psaltis, S. R. Quake, and Ch. Yang, “Developing optofluidic technology through the fusion of microfluidics and optics,” Nature 442(7101), 381–386 (2006).
[CrossRef] [PubMed]

Quake, S. R.

D. Psaltis, S. R. Quake, and Ch. Yang, “Developing optofluidic technology through the fusion of microfluidics and optics,” Nature 442(7101), 381–386 (2006).
[CrossRef] [PubMed]

Roberts, A.

Rogers, S. L.

S. L. Rogers and V. I. Gelfand, “Membrane trafficking, organelle transport, and the cytoskeleton,” Curr. Opin. Cell Biol. 12(1), 57–62 (2000).
[CrossRef] [PubMed]

Sarunic, M. V.

Sattmann, H.

Tanimoto, M.

K. Koyama, A. Iwasaki, M. Tanimoto, and I. Kudo, “Simple interferometric microscopy for in situ real-time two-dimensional observation of crystal growth,” Rev. Sci. Instrum. 67(7), 2584 (1996).
[CrossRef]

Tearney, G. J.

Ustun, T. E.

D. X. Hammer, R. D. Ferguson, T. E. Ustun, C. E. Bigelow, N. V. Iftimia, and R. H. Webb, “Line-scanning laser ophthalmoscope,” J. Biomed. Opt. 11(4), 041126 (2006).
[CrossRef] [PubMed]

Wang, Z.

Wax, A.

Webb, R. H.

D. X. Hammer, R. D. Ferguson, T. E. Ustun, C. E. Bigelow, N. V. Iftimia, and R. H. Webb, “Line-scanning laser ophthalmoscope,” J. Biomed. Opt. 11(4), 041126 (2006).
[CrossRef] [PubMed]

Weinberg, S.

Yang, C.

Yang, C. H.

Yang, Ch.

D. Psaltis, S. R. Quake, and Ch. Yang, “Developing optofluidic technology through the fusion of microfluidics and optics,” Nature 442(7101), 381–386 (2006).
[CrossRef] [PubMed]

Appl. Opt.

Curr. Opin. Cell Biol.

S. L. Rogers and V. I. Gelfand, “Membrane trafficking, organelle transport, and the cytoskeleton,” Curr. Opin. Cell Biol. 12(1), 57–62 (2000).
[CrossRef] [PubMed]

J. Biomed. Opt.

D. X. Hammer, R. D. Ferguson, T. E. Ustun, C. E. Bigelow, N. V. Iftimia, and R. H. Webb, “Line-scanning laser ophthalmoscope,” J. Biomed. Opt. 11(4), 041126 (2006).
[CrossRef] [PubMed]

Nature

D. Psaltis, S. R. Quake, and Ch. Yang, “Developing optofluidic technology through the fusion of microfluidics and optics,” Nature 442(7101), 381–386 (2006).
[CrossRef] [PubMed]

Opt. Commun.

A. F. Fercher, C. K. Hitzenberger, G. Kamp, and S. Y. El-Zaiat, “Measurement of intraocular distances by backscattering spectral interferometry,” Opt. Commun. 117(1-2), 43–48 (1995).
[CrossRef]

Opt. Express

Opt. Lett.

J. F. de Boer, B. Cense, B. H. Park, M. C. Pierce, G. J. Tearney, and B. E. Bouma, “Improved signal-to-noise ratio in spectral-domain compared with time-domain optical coherence tomography,” Opt. Lett. 28(21), 2067–2069 (2003).
[CrossRef] [PubMed]

A. Barty, K. A. Nugent, D. Paganin, and A. Roberts, “Quantitative optical phase microscopy,” Opt. Lett. 23(11), 817–819 (1998).
[CrossRef]

C. K. Hitzenberger and A. F. Fercher, “Differential phase contrast in optical coherence tomography,” Opt. Lett. 24(9), 622–624 (1999).
[CrossRef]

C. Yang, A. Wax, I. Georgakoudi, E. B. Hanlon, K. Badizadegan, R. R. Dasari, and M. S. Feld, “Interferometric phase-dispersion microscopy,” Opt. Lett. 25(20), 1526–1528 (2000).
[CrossRef]

M. A. Choma, A. K. Ellerbee, C. H. Yang, T. L. Creazzo, and J. A. Izatt, “Spectral-domain phase microscopy,” Opt. Lett. 30(10), 1162–1164 (2005).
[CrossRef] [PubMed]

C. Joo, T. Akkin, B. Cense, B. H. Park, and J. F. de Boer, “Spectral-domain optical coherence phase microscopy for quantitative phase-contrast imaging,” Opt. Lett. 30(16), 2131–2133 (2005).
[CrossRef] [PubMed]

M. V. Sarunic, S. Weinberg, and J. A. Izatt, “Full-field swept-source phase microscopy,” Opt. Lett. 31(10), 1462–1464 (2006).
[CrossRef] [PubMed]

Y. Chen, S. W. Huang, A. D. Aguirre, and J. G. Fujimoto, “High-resolution line-scanning optical coherence microscopy,” Opt. Lett. 32(14), 1971–1973 (2007).
[CrossRef] [PubMed]

S. M. Bagherzadeh, B. Grajciar, C. K. Hitzenberger, M. Pircher, and A. F. Fercher, “Dispersion-based optical coherence tomography OCT measurement of mixture concentrations,” Opt. Lett. 32(20), 2924–2926 (2007).
[CrossRef] [PubMed]

M. Pircher, B. Baumann, E. Götzinger, H. Sattmann, and C. K. Hitzenberger, “Phase contrast coherence microscopy based on transverse scanning,” Opt. Lett. 34(12), 1750–1752 (2009).
[CrossRef] [PubMed]

Z. Wang, I. S. Chun, X. Li, Z. Y. Ong, E. Pop, L. Millet, M. Gillette, and G. Popescu, “Topography and refractometry of nanostructures using spatial light interference microscopy,” Opt. Lett. 35(2), 208–210 (2010).
[CrossRef] [PubMed]

Rev. Sci. Instrum.

K. Koyama, A. Iwasaki, M. Tanimoto, and I. Kudo, “Simple interferometric microscopy for in situ real-time two-dimensional observation of crystal growth,” Rev. Sci. Instrum. 67(7), 2584 (1996).
[CrossRef]

Other

R. Hooke, “Of a new property in the air,” Micrographia, Observation LVIII, 217–219, London (1665).

D. S. Coffey, J. P. Karr, R. G. Smith, and D. J. Tindall, “Molecular and cellular biology of prostate cancer,” Plenum, New York (1991).

K. Strange, “Cellular and molecular physiology of cell volume regulation,” CRC Press, Boca Raton, Fla. (1993).

T. Vo-Dinh, “Biomedical Photonics Handbook,” CRC Press, (2003).

G. Popescu, in “Methods in Cell Biology,” P. J. Bhanu, ed.Elsevier, (2008).
[PubMed]

D. Fu, W. Choi, Y. Sung, Z. Yaqoob, R. R. Dasari, and M. Feld, “Quantitative dispersion microscopy,” Biomed. Opt. Express 1, 347–353 (2010). http://www.opticsinfobase.org/boe/abstract.cfm?URI=boe-1-2-347
[CrossRef] [PubMed]

K. E. Herold, and A. Rasooly, Lab-on-a-chip technology (Vol. 1): Fabrication and microfluidics (Caister Academic Press, 2009).

K. E. Herold, and A. Rasooly, Lab-on-a-chip technology (Vol. 2): Biomolecular separation and analysis (Caister Academic Press, 2009).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Schematic of parallel FD-OCT system. SLD - superluminiscent diode; FBC - fiber collimator; CL1, CL2 - cylindrical lenses; L1, L2, L3 - achromats; BS1 - non-polarizing beam splitter ; RM1 - laser line reference mirror; NDF1 - filter; Sample - 10 mm cuvette; TG - transmission grating; L4 - imaging lens; Array camera: high speed CMOS camera.

Fig. 2
Fig. 2

Sensitivity decay across the imaged line (B-scan).

Fig. 3
Fig. 3

3D data gathering process of the en-face phase map across the RTT surface (cf. liquid injection Fig. 8). (a) Recording of the spectra, (b) FFT of 3D volume spectra from (a) and en-face plane at maximum of the intensity of the front reflex from the RTT target.

Fig. 4
Fig. 4

(a) The en-face intensity map of full field and (b) associated cross-section along the group 5 (red arrow in Fig. 4(a)), taken at maximum of the intensity of the front reflex from the RTT target.

Fig. 5
Fig. 5

(a) The en-face phase map of RTT (group 4, elements 2 and 3) and (b) associated phase map image after unwrapping and background subtraction, taken at maximum of the intensity of the front reflex from the RTT target.

Fig. 8
Fig. 8

Injection of liquid with glucose concentration of 10 mg/ml into distilled water placed in the cuvette (a) OCT intensity M-scan image of liquid injection, (b) phase map of M-scan image, (c) 3D phase map of M-scan image. The contour level interval represents the concentration of glucose aqueous solution 1 mg/ml/level.

Fig. 6
Fig. 6

Dependence of the phase shift on the different concentration of aqueous solution of glucose.

Fig. 7
Fig. 7

Scheme of the liquid injection experiment.

Fig. 9
Fig. 9

Injection of liquid with glucose concentration of 2 mg/ml into the water placed in the cuvette. (a) OCT intensity M-scan image of liquid injection, (b) phase map of M-scan image, (c) 3D phase map of M-scan image. The contour level interval represents the concentration of glucose aqueous solution 0.2 mg/ml/level.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

ϕ = ϕ x s c a t t e r i n g + ϕ j i t t e r + ϕ S a m p l e .
Δ ς λ 0 4 n π ( 1 S N R ) 1 2
Δ d opt = nΔ d geom + Δn d geom Doppler OCT (Bio)chemistry , Physiology
[ c G ] . n G =   ( n w λ 0 Δ Φ / ( 4 π ) ) / 2 d

Metrics