Abstract

The use of low-energy femtosecond laser beam combined with chemical etching has been proven to be an efficient method to fabricate three-dimensional structures in fused silica. For high-volume application, this technology – like other serial processes – suffers from a moderate production rate. Here, we show that femtosecond laser can also be employed to fabricate silica molds and other patterned surfaces, including surfaces with high aspect ratio features (> 10). Through appropriate tailoring of silica’s surface property and subsequent creation of, for instance, simple elastomeric molding, new opportunities for the indirect 3D, multi-scale spatial characterization of deep laser-fabricated microstructures come along. We demonstrate that those moldings are characterized by a high fidelity (down to the nanometer scale) to the silica mold. These results further advance the applicability of femtosecond laser processing to glass.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. M. Davis, K. Miura, N. Sugimoto, and K. Hirao, “Writing waveguides in glass with a femtosecond laser,” Opt. Lett. 21(21), 1729–1731 (1996).
    [CrossRef] [PubMed]
  2. A. Marcinkevi Ius, S. Juodkazis, M. Watanabe, M. Miwa, S. Matsuo, H. Misawa, and J. Nishii, “Femtosecond laser-assisted three-dimensional microfabrication in silica,” Opt. Lett. 26(5), 277–279 (2001).
    [CrossRef]
  3. S. Nolte, M. Will, J. Burghoff, and A. Tuennermann, “Femtosecond waveguide writing: a new avenue to three-dimensional integrated optics,” Appl. Phys., A Mater. Sci. Process. 77(1), 109–111 (2003).
    [CrossRef]
  4. A. Szameit, D. Blömer, J. Burghoff, T. Schreiber, T. Pertsch, S. Nolte, A. Tünnermann, and F. Lederer, “Discrete nonlinear localization in femtosecond laser written waveguides in fused silica,” Opt. Express 13(26), 10552–10557 (2005), http://www.opticsinfobase.org/abstract.cfm?URI=oe-13-26-10552 .
    [CrossRef] [PubMed]
  5. C. Mauclair, G. Cheng, N. Huot, E. Audouard, A. Rosenfeld, I. V. Hertel, and R. Stoian, “Dynamic ultrafast laser spatial tailoring for parallel micromachining of photonic devices in transparent materials,” Opt. Express 17(5), 3531–3542 (2009), http://www.opticsinfobase.org/abstract.cfm?URI=oe-17-5-3531 .
    [CrossRef] [PubMed]
  6. Y. Shimotsuma, P. G. Kazansky, J. Qiu, and K. Hirao, “Self-organized nanogratings in glass irradiated by ultrashort light pulses,” Phys. Rev. Lett. 91(24), 247405 (2003).
    [CrossRef] [PubMed]
  7. E. Bricchi, J. D. Mills, P. G. Kazansky, B. G. Klappauf, and J. J. Baumberg, “Birefringent Fresnel zone plates in silica fabricated by femtosecond laser machining,” Opt. Lett. 27(24), 2200–2202 (2002), http://www.opticsinfobase.org/ol/abstract.cfm?URI=ol-27-24-2200 .
    [CrossRef]
  8. M. Beresna and P. G. Kazansky, “Polarization diffraction grating produced by femtosecond laser nanostructuring in glass,” Opt. Lett. 35(10), 1662–1664 (2010), http://www.opticsinfobase.org/ol/abstract.cfm?URI=ol-35-10-1662 .
    [CrossRef] [PubMed]
  9. Y. Bellouard, A. Said, M. Dugan, and P. Bado, “Fabrication of high-aspect ratio, micro-fluidic channels and tunnels using femtosecond laser pulses and chemical etching,” Opt. Express 12(10), 2120–2129 (2004), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-12-10-2120 .
    [CrossRef] [PubMed]
  10. Y. Bellouard, A. Said, M. Dugan, and P. Bado, “Monolithic three-dimensional integration of micro-fluidic channels and optical waveguides in fused silica,” Materials Research Society Symposium - Proceedings 782, 63–68 (2003).
  11. Y. Bellouard, A. Said, and P. Bado, “Integrating optics and micro-mechanics in a single substrate: a step toward monolithic integration in fused silica,” Opt. Express 13(17), 6635–6644 (2005), http://www.opticsinfobase.org/abstract.cfm?URI=oe-13-17-6635 .
    [CrossRef] [PubMed]
  12. G. Kamlage, T. Bauer, A. Ostendorf, and B. N. Chichkov, “Deep drilling of metals by femtosecond laser pulses,” Appl. Phys., A Mater. Sci. Process. 77, 307–310 (2003).
  13. Y. V. White, X. Li, Z. Sikorski, L. M. Davis, and W. Hofmeister, “Single-pulse ultrafast-laser machining of high aspect nano-holes at the surface of SiO2.,” Opt. Express 16(19), 14411–14420 (2008), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-16-19-14411 .
    [CrossRef] [PubMed]
  14. Z. Wang, K. Sugioka, Y. Hanada, and K. Midorikawa, “Optical waveguide fabrication and integration with a micro-mirror inside photosensitive glass by femtosecond laser direct writing,” Appl. Phys., A Mater. Sci. Process. 88(4), 699–704 (2007).
    [CrossRef]
  15. R. M. Vazquez, R. Osellame, D. Nolli, C. Dongre, H. van den Vlekkert, R. Ramponi, M. Pollnau, and G. Cerullo, “Integration of femtosecond laser written optical waveguides in a lab-on-chip,” Lab Chip 9(1), 91–96 (2009).
    [CrossRef] [PubMed]
  16. Y. Bellouard, E. Barthel, A. A. Said, M. Dugan, and P. Bado, “Scanning thermal microscopy and Raman analysis of bulk fused silica exposed to low-energy femtosecond laser pulses,” Opt. Express 16(24), 19520–19534 (2008), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-16-24-19520 .
    [CrossRef] [PubMed]
  17. S. Kiyama, S. Matsuo, S. Hashimoto, and Y. Morihira, “Examination of Etching Agent and Etching Mechanism on Femotosecond Laser Microfabrication of Channels Inside Vitreous Silica Substrates,” J. Phys. Chem. C 113(27), 11560–11566 (2009).
    [CrossRef]
  18. M. Déruelle, M. Tirrell, Y. Marciano, H. Hervet, and L. Léger, “Adhesion energy between polymer networks and solid surfaces modified by polymer attachment,” Faraday Discuss. 98, 55–66 (1994).
    [CrossRef]
  19. O. Guiselin, “Irreversible adsorption of a concentrated polymer solution,” Europhys. Lett. 17(3), 225–230 (1992).
    [CrossRef]
  20. A. Mata, A. J. Fleischman, and S. Roy, “Characterization of polydimethylsiloxane (PDMS) properties for biomedical micro/nanosystems,” Biomed. Microdevices 7(4), 281–293 (2005).
    [CrossRef]
  21. L. Léger, H. Raphaël, and H. Hervet, “Surface-anchored polymer chains: their role in adhesion and friction,” Adv. Polym. Sci. 138, 185–225 (1999).
    [CrossRef]
  22. F. Madani-Grasset, N. T. Pham, E. Glynos, and V. Koutsos, “Imaging thin and ultrathin organic films by scanning white light interferometry,” Mater. Sci. Eng. B 152(1-3), 125–131 (2008).
    [CrossRef]
  23. T. McWaid, T. Vorburger, J. F. Song, and D. Chandler-Horowitz, “The effects of thin films on interferometric step height measurements,” in: K. Creath, J.E. Grevenkamp (Eds), Interferometry: Surface Characterization and Testing (SPIE), 1776, 2–13 (1992).
  24. Y. Xia and G. M. Whitesides, “Extending microcontact printing as a microlithographic technique,” Langmuir 13(7), 2059–2067 (1997).
    [CrossRef]
  25. D. Y. Lee, D. H. Lee, H. S. Lim, J. T. Han, and K. Cho, “Chemical and geometrical criteria for the release of elastomeric 1D nanoarrays from porous nanotemplates,” Langmuir 26(5), 3252–3256 (2010).
    [CrossRef]
  26. E. D. Palick, “Handbook of optical constant of solids,” Academic Press Inc, (1985).
  27. F. Madani-Grasset, “Polydimethylsiloxane (PDMS) monolayers: morphology, nanostructure, adhesive and frictional properties,” PhD thesis, the University of Edinburgh, 161–166 (2005).
  28. M. J. Owen, “The surface activity of silicones: a short review,” Ind. Eng. Chem. Prod. Res. Dev. 19(1), 97–103 (1980).
    [CrossRef]
  29. A. E. Ismail, G. S. Grest, D. R. Heine, M. J. Stevens, and M. Tsige, “Interfacial structure and dynamics of siloxane systems: PDMS-vapor and PDMS-water,” Macromolecules 42(8), 3186–3194 (2009).
    [CrossRef]
  30. A. Falsafi, S. Mangipudi, and M. J. Owen, “Surface and interfacial properties,” in J.E. Mark (Ed), Physical properties of polymers handbook 2nd ed, Springer, New-York, USA, 1012–1018 (2007).
  31. E. Barthel, “Adhesive elastic contacts: JKR and more,” J. Phys. D Appl. Phys. 41(16), 163001 (2008).
    [CrossRef]
  32. Y. Bellouard, T. Colomb, C. Depeursinge, M. Dugan, A. A. Said, and P. Bado, “Nanoindentation and birefringence measurements on fused silica specimen exposed to low-energy femtosecond pulses,” Opt. Express 14(18), 8360–8366 (2006).
    [CrossRef] [PubMed]
  33. Y. Bellouard, V. K. Pahilwani, T. Rohrlack, A. Said, M. Dugan, and P. Bado, Towards a femtosecond laser micromachined opto-fluidic device for detection algae species, in Commercial and Biomedical Applications of Ultrafast Lasers IX, Proceedings of SPIE Vol. 7203 (SPIE, Bellingham, WA 2009); Editors: edited by Joseph Neev, Stefan Nolte, Alexander Heisterkamp, Rick P. Trebino, San Jose, United States, 720312, (2009)
  34. F. L. Galeener, “Planar rings in glasses,” Solid State Commun. 44(7), 1037–1040 (1982).
    [CrossRef]
  35. M. Tomozawa, Y. Lee, and Y. Peng, “Effect of uniaxial stresses on silica glass structure investigated by IR spectroscopy,” J. Non-Cryst. Solids 242(2-3), 104–109 (1998).
    [CrossRef]
  36. A. Agarwal and M. Tomozawa, “Correlation of silica glass properties with the infrared spectra,” J. Non-Cryst. Solids 209(1-2), 166–174 (1997).
    [CrossRef]
  37. K. Awazu and H. Kawazoe, “Strained Si–O–Si bonds in amorphous SiO[sub 2] materials: A family member of active centers in radio, photo, and chemical responses,” J. Appl. Phys. 94(10), 6243–6262 (2003).
    [CrossRef]
  38. J. W. Chan, T. Huser, S. Risbud, and D. M. Krol, “Structural changes in fused silica after exposure to focused femtosecond laser pulses,” Opt. Lett. 26(21), 1726–1728 (2001).
    [CrossRef]
  39. D. Krol, “Femtosecond laser modification of glass,” J. Non-Cryst. Solids 354(2-9), 416–424 (2008).
    [CrossRef]
  40. D. Rayner, A. Naumov, and P. Corkum, “Ultrashort pulse non-linear optical absorption in transparent media,” Opt. Express 13(9), 3208–3217 (2005), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-13-9-3208 .
    [CrossRef] [PubMed]

2010

M. Beresna and P. G. Kazansky, “Polarization diffraction grating produced by femtosecond laser nanostructuring in glass,” Opt. Lett. 35(10), 1662–1664 (2010), http://www.opticsinfobase.org/ol/abstract.cfm?URI=ol-35-10-1662 .
[CrossRef] [PubMed]

D. Y. Lee, D. H. Lee, H. S. Lim, J. T. Han, and K. Cho, “Chemical and geometrical criteria for the release of elastomeric 1D nanoarrays from porous nanotemplates,” Langmuir 26(5), 3252–3256 (2010).
[CrossRef]

2009

A. E. Ismail, G. S. Grest, D. R. Heine, M. J. Stevens, and M. Tsige, “Interfacial structure and dynamics of siloxane systems: PDMS-vapor and PDMS-water,” Macromolecules 42(8), 3186–3194 (2009).
[CrossRef]

C. Mauclair, G. Cheng, N. Huot, E. Audouard, A. Rosenfeld, I. V. Hertel, and R. Stoian, “Dynamic ultrafast laser spatial tailoring for parallel micromachining of photonic devices in transparent materials,” Opt. Express 17(5), 3531–3542 (2009), http://www.opticsinfobase.org/abstract.cfm?URI=oe-17-5-3531 .
[CrossRef] [PubMed]

R. M. Vazquez, R. Osellame, D. Nolli, C. Dongre, H. van den Vlekkert, R. Ramponi, M. Pollnau, and G. Cerullo, “Integration of femtosecond laser written optical waveguides in a lab-on-chip,” Lab Chip 9(1), 91–96 (2009).
[CrossRef] [PubMed]

S. Kiyama, S. Matsuo, S. Hashimoto, and Y. Morihira, “Examination of Etching Agent and Etching Mechanism on Femotosecond Laser Microfabrication of Channels Inside Vitreous Silica Substrates,” J. Phys. Chem. C 113(27), 11560–11566 (2009).
[CrossRef]

2008

2007

Z. Wang, K. Sugioka, Y. Hanada, and K. Midorikawa, “Optical waveguide fabrication and integration with a micro-mirror inside photosensitive glass by femtosecond laser direct writing,” Appl. Phys., A Mater. Sci. Process. 88(4), 699–704 (2007).
[CrossRef]

2006

2005

2004

2003

Y. Shimotsuma, P. G. Kazansky, J. Qiu, and K. Hirao, “Self-organized nanogratings in glass irradiated by ultrashort light pulses,” Phys. Rev. Lett. 91(24), 247405 (2003).
[CrossRef] [PubMed]

S. Nolte, M. Will, J. Burghoff, and A. Tuennermann, “Femtosecond waveguide writing: a new avenue to three-dimensional integrated optics,” Appl. Phys., A Mater. Sci. Process. 77(1), 109–111 (2003).
[CrossRef]

G. Kamlage, T. Bauer, A. Ostendorf, and B. N. Chichkov, “Deep drilling of metals by femtosecond laser pulses,” Appl. Phys., A Mater. Sci. Process. 77, 307–310 (2003).

K. Awazu and H. Kawazoe, “Strained Si–O–Si bonds in amorphous SiO[sub 2] materials: A family member of active centers in radio, photo, and chemical responses,” J. Appl. Phys. 94(10), 6243–6262 (2003).
[CrossRef]

2002

2001

1999

L. Léger, H. Raphaël, and H. Hervet, “Surface-anchored polymer chains: their role in adhesion and friction,” Adv. Polym. Sci. 138, 185–225 (1999).
[CrossRef]

1998

M. Tomozawa, Y. Lee, and Y. Peng, “Effect of uniaxial stresses on silica glass structure investigated by IR spectroscopy,” J. Non-Cryst. Solids 242(2-3), 104–109 (1998).
[CrossRef]

1997

A. Agarwal and M. Tomozawa, “Correlation of silica glass properties with the infrared spectra,” J. Non-Cryst. Solids 209(1-2), 166–174 (1997).
[CrossRef]

Y. Xia and G. M. Whitesides, “Extending microcontact printing as a microlithographic technique,” Langmuir 13(7), 2059–2067 (1997).
[CrossRef]

1996

1994

M. Déruelle, M. Tirrell, Y. Marciano, H. Hervet, and L. Léger, “Adhesion energy between polymer networks and solid surfaces modified by polymer attachment,” Faraday Discuss. 98, 55–66 (1994).
[CrossRef]

1992

O. Guiselin, “Irreversible adsorption of a concentrated polymer solution,” Europhys. Lett. 17(3), 225–230 (1992).
[CrossRef]

1982

F. L. Galeener, “Planar rings in glasses,” Solid State Commun. 44(7), 1037–1040 (1982).
[CrossRef]

1980

M. J. Owen, “The surface activity of silicones: a short review,” Ind. Eng. Chem. Prod. Res. Dev. 19(1), 97–103 (1980).
[CrossRef]

Agarwal, A.

A. Agarwal and M. Tomozawa, “Correlation of silica glass properties with the infrared spectra,” J. Non-Cryst. Solids 209(1-2), 166–174 (1997).
[CrossRef]

Audouard, E.

Awazu, K.

K. Awazu and H. Kawazoe, “Strained Si–O–Si bonds in amorphous SiO[sub 2] materials: A family member of active centers in radio, photo, and chemical responses,” J. Appl. Phys. 94(10), 6243–6262 (2003).
[CrossRef]

Bado, P.

Barthel, E.

Bauer, T.

G. Kamlage, T. Bauer, A. Ostendorf, and B. N. Chichkov, “Deep drilling of metals by femtosecond laser pulses,” Appl. Phys., A Mater. Sci. Process. 77, 307–310 (2003).

Baumberg, J. J.

Bellouard, Y.

Beresna, M.

Blömer, D.

Bricchi, E.

Burghoff, J.

Cerullo, G.

R. M. Vazquez, R. Osellame, D. Nolli, C. Dongre, H. van den Vlekkert, R. Ramponi, M. Pollnau, and G. Cerullo, “Integration of femtosecond laser written optical waveguides in a lab-on-chip,” Lab Chip 9(1), 91–96 (2009).
[CrossRef] [PubMed]

Chan, J. W.

Cheng, G.

Chichkov, B. N.

G. Kamlage, T. Bauer, A. Ostendorf, and B. N. Chichkov, “Deep drilling of metals by femtosecond laser pulses,” Appl. Phys., A Mater. Sci. Process. 77, 307–310 (2003).

Cho, K.

D. Y. Lee, D. H. Lee, H. S. Lim, J. T. Han, and K. Cho, “Chemical and geometrical criteria for the release of elastomeric 1D nanoarrays from porous nanotemplates,” Langmuir 26(5), 3252–3256 (2010).
[CrossRef]

Colomb, T.

Corkum, P.

Davis, K. M.

Davis, L. M.

Depeursinge, C.

Déruelle, M.

M. Déruelle, M. Tirrell, Y. Marciano, H. Hervet, and L. Léger, “Adhesion energy between polymer networks and solid surfaces modified by polymer attachment,” Faraday Discuss. 98, 55–66 (1994).
[CrossRef]

Dongre, C.

R. M. Vazquez, R. Osellame, D. Nolli, C. Dongre, H. van den Vlekkert, R. Ramponi, M. Pollnau, and G. Cerullo, “Integration of femtosecond laser written optical waveguides in a lab-on-chip,” Lab Chip 9(1), 91–96 (2009).
[CrossRef] [PubMed]

Dugan, M.

Fleischman, A. J.

A. Mata, A. J. Fleischman, and S. Roy, “Characterization of polydimethylsiloxane (PDMS) properties for biomedical micro/nanosystems,” Biomed. Microdevices 7(4), 281–293 (2005).
[CrossRef]

Galeener, F. L.

F. L. Galeener, “Planar rings in glasses,” Solid State Commun. 44(7), 1037–1040 (1982).
[CrossRef]

Glynos, E.

F. Madani-Grasset, N. T. Pham, E. Glynos, and V. Koutsos, “Imaging thin and ultrathin organic films by scanning white light interferometry,” Mater. Sci. Eng. B 152(1-3), 125–131 (2008).
[CrossRef]

Grest, G. S.

A. E. Ismail, G. S. Grest, D. R. Heine, M. J. Stevens, and M. Tsige, “Interfacial structure and dynamics of siloxane systems: PDMS-vapor and PDMS-water,” Macromolecules 42(8), 3186–3194 (2009).
[CrossRef]

Guiselin, O.

O. Guiselin, “Irreversible adsorption of a concentrated polymer solution,” Europhys. Lett. 17(3), 225–230 (1992).
[CrossRef]

Han, J. T.

D. Y. Lee, D. H. Lee, H. S. Lim, J. T. Han, and K. Cho, “Chemical and geometrical criteria for the release of elastomeric 1D nanoarrays from porous nanotemplates,” Langmuir 26(5), 3252–3256 (2010).
[CrossRef]

Hanada, Y.

Z. Wang, K. Sugioka, Y. Hanada, and K. Midorikawa, “Optical waveguide fabrication and integration with a micro-mirror inside photosensitive glass by femtosecond laser direct writing,” Appl. Phys., A Mater. Sci. Process. 88(4), 699–704 (2007).
[CrossRef]

Hashimoto, S.

S. Kiyama, S. Matsuo, S. Hashimoto, and Y. Morihira, “Examination of Etching Agent and Etching Mechanism on Femotosecond Laser Microfabrication of Channels Inside Vitreous Silica Substrates,” J. Phys. Chem. C 113(27), 11560–11566 (2009).
[CrossRef]

Heine, D. R.

A. E. Ismail, G. S. Grest, D. R. Heine, M. J. Stevens, and M. Tsige, “Interfacial structure and dynamics of siloxane systems: PDMS-vapor and PDMS-water,” Macromolecules 42(8), 3186–3194 (2009).
[CrossRef]

Hertel, I. V.

Hervet, H.

L. Léger, H. Raphaël, and H. Hervet, “Surface-anchored polymer chains: their role in adhesion and friction,” Adv. Polym. Sci. 138, 185–225 (1999).
[CrossRef]

M. Déruelle, M. Tirrell, Y. Marciano, H. Hervet, and L. Léger, “Adhesion energy between polymer networks and solid surfaces modified by polymer attachment,” Faraday Discuss. 98, 55–66 (1994).
[CrossRef]

Hirao, K.

Y. Shimotsuma, P. G. Kazansky, J. Qiu, and K. Hirao, “Self-organized nanogratings in glass irradiated by ultrashort light pulses,” Phys. Rev. Lett. 91(24), 247405 (2003).
[CrossRef] [PubMed]

K. M. Davis, K. Miura, N. Sugimoto, and K. Hirao, “Writing waveguides in glass with a femtosecond laser,” Opt. Lett. 21(21), 1729–1731 (1996).
[CrossRef] [PubMed]

Hofmeister, W.

Huot, N.

Huser, T.

Ismail, A. E.

A. E. Ismail, G. S. Grest, D. R. Heine, M. J. Stevens, and M. Tsige, “Interfacial structure and dynamics of siloxane systems: PDMS-vapor and PDMS-water,” Macromolecules 42(8), 3186–3194 (2009).
[CrossRef]

Juodkazis, S.

Kamlage, G.

G. Kamlage, T. Bauer, A. Ostendorf, and B. N. Chichkov, “Deep drilling of metals by femtosecond laser pulses,” Appl. Phys., A Mater. Sci. Process. 77, 307–310 (2003).

Kawazoe, H.

K. Awazu and H. Kawazoe, “Strained Si–O–Si bonds in amorphous SiO[sub 2] materials: A family member of active centers in radio, photo, and chemical responses,” J. Appl. Phys. 94(10), 6243–6262 (2003).
[CrossRef]

Kazansky, P. G.

Kiyama, S.

S. Kiyama, S. Matsuo, S. Hashimoto, and Y. Morihira, “Examination of Etching Agent and Etching Mechanism on Femotosecond Laser Microfabrication of Channels Inside Vitreous Silica Substrates,” J. Phys. Chem. C 113(27), 11560–11566 (2009).
[CrossRef]

Klappauf, B. G.

Koutsos, V.

F. Madani-Grasset, N. T. Pham, E. Glynos, and V. Koutsos, “Imaging thin and ultrathin organic films by scanning white light interferometry,” Mater. Sci. Eng. B 152(1-3), 125–131 (2008).
[CrossRef]

Krol, D.

D. Krol, “Femtosecond laser modification of glass,” J. Non-Cryst. Solids 354(2-9), 416–424 (2008).
[CrossRef]

Krol, D. M.

Lederer, F.

Lee, D. H.

D. Y. Lee, D. H. Lee, H. S. Lim, J. T. Han, and K. Cho, “Chemical and geometrical criteria for the release of elastomeric 1D nanoarrays from porous nanotemplates,” Langmuir 26(5), 3252–3256 (2010).
[CrossRef]

Lee, D. Y.

D. Y. Lee, D. H. Lee, H. S. Lim, J. T. Han, and K. Cho, “Chemical and geometrical criteria for the release of elastomeric 1D nanoarrays from porous nanotemplates,” Langmuir 26(5), 3252–3256 (2010).
[CrossRef]

Lee, Y.

M. Tomozawa, Y. Lee, and Y. Peng, “Effect of uniaxial stresses on silica glass structure investigated by IR spectroscopy,” J. Non-Cryst. Solids 242(2-3), 104–109 (1998).
[CrossRef]

Léger, L.

L. Léger, H. Raphaël, and H. Hervet, “Surface-anchored polymer chains: their role in adhesion and friction,” Adv. Polym. Sci. 138, 185–225 (1999).
[CrossRef]

M. Déruelle, M. Tirrell, Y. Marciano, H. Hervet, and L. Léger, “Adhesion energy between polymer networks and solid surfaces modified by polymer attachment,” Faraday Discuss. 98, 55–66 (1994).
[CrossRef]

Li, X.

Lim, H. S.

D. Y. Lee, D. H. Lee, H. S. Lim, J. T. Han, and K. Cho, “Chemical and geometrical criteria for the release of elastomeric 1D nanoarrays from porous nanotemplates,” Langmuir 26(5), 3252–3256 (2010).
[CrossRef]

Madani-Grasset, F.

F. Madani-Grasset, N. T. Pham, E. Glynos, and V. Koutsos, “Imaging thin and ultrathin organic films by scanning white light interferometry,” Mater. Sci. Eng. B 152(1-3), 125–131 (2008).
[CrossRef]

Marciano, Y.

M. Déruelle, M. Tirrell, Y. Marciano, H. Hervet, and L. Léger, “Adhesion energy between polymer networks and solid surfaces modified by polymer attachment,” Faraday Discuss. 98, 55–66 (1994).
[CrossRef]

Marcinkevi Ius, A.

Mata, A.

A. Mata, A. J. Fleischman, and S. Roy, “Characterization of polydimethylsiloxane (PDMS) properties for biomedical micro/nanosystems,” Biomed. Microdevices 7(4), 281–293 (2005).
[CrossRef]

Matsuo, S.

S. Kiyama, S. Matsuo, S. Hashimoto, and Y. Morihira, “Examination of Etching Agent and Etching Mechanism on Femotosecond Laser Microfabrication of Channels Inside Vitreous Silica Substrates,” J. Phys. Chem. C 113(27), 11560–11566 (2009).
[CrossRef]

A. Marcinkevi Ius, S. Juodkazis, M. Watanabe, M. Miwa, S. Matsuo, H. Misawa, and J. Nishii, “Femtosecond laser-assisted three-dimensional microfabrication in silica,” Opt. Lett. 26(5), 277–279 (2001).
[CrossRef]

Mauclair, C.

Midorikawa, K.

Z. Wang, K. Sugioka, Y. Hanada, and K. Midorikawa, “Optical waveguide fabrication and integration with a micro-mirror inside photosensitive glass by femtosecond laser direct writing,” Appl. Phys., A Mater. Sci. Process. 88(4), 699–704 (2007).
[CrossRef]

Mills, J. D.

Misawa, H.

Miura, K.

Miwa, M.

Morihira, Y.

S. Kiyama, S. Matsuo, S. Hashimoto, and Y. Morihira, “Examination of Etching Agent and Etching Mechanism on Femotosecond Laser Microfabrication of Channels Inside Vitreous Silica Substrates,” J. Phys. Chem. C 113(27), 11560–11566 (2009).
[CrossRef]

Naumov, A.

Nishii, J.

Nolli, D.

R. M. Vazquez, R. Osellame, D. Nolli, C. Dongre, H. van den Vlekkert, R. Ramponi, M. Pollnau, and G. Cerullo, “Integration of femtosecond laser written optical waveguides in a lab-on-chip,” Lab Chip 9(1), 91–96 (2009).
[CrossRef] [PubMed]

Nolte, S.

Osellame, R.

R. M. Vazquez, R. Osellame, D. Nolli, C. Dongre, H. van den Vlekkert, R. Ramponi, M. Pollnau, and G. Cerullo, “Integration of femtosecond laser written optical waveguides in a lab-on-chip,” Lab Chip 9(1), 91–96 (2009).
[CrossRef] [PubMed]

Ostendorf, A.

G. Kamlage, T. Bauer, A. Ostendorf, and B. N. Chichkov, “Deep drilling of metals by femtosecond laser pulses,” Appl. Phys., A Mater. Sci. Process. 77, 307–310 (2003).

Owen, M. J.

M. J. Owen, “The surface activity of silicones: a short review,” Ind. Eng. Chem. Prod. Res. Dev. 19(1), 97–103 (1980).
[CrossRef]

Peng, Y.

M. Tomozawa, Y. Lee, and Y. Peng, “Effect of uniaxial stresses on silica glass structure investigated by IR spectroscopy,” J. Non-Cryst. Solids 242(2-3), 104–109 (1998).
[CrossRef]

Pertsch, T.

Pham, N. T.

F. Madani-Grasset, N. T. Pham, E. Glynos, and V. Koutsos, “Imaging thin and ultrathin organic films by scanning white light interferometry,” Mater. Sci. Eng. B 152(1-3), 125–131 (2008).
[CrossRef]

Pollnau, M.

R. M. Vazquez, R. Osellame, D. Nolli, C. Dongre, H. van den Vlekkert, R. Ramponi, M. Pollnau, and G. Cerullo, “Integration of femtosecond laser written optical waveguides in a lab-on-chip,” Lab Chip 9(1), 91–96 (2009).
[CrossRef] [PubMed]

Qiu, J.

Y. Shimotsuma, P. G. Kazansky, J. Qiu, and K. Hirao, “Self-organized nanogratings in glass irradiated by ultrashort light pulses,” Phys. Rev. Lett. 91(24), 247405 (2003).
[CrossRef] [PubMed]

Ramponi, R.

R. M. Vazquez, R. Osellame, D. Nolli, C. Dongre, H. van den Vlekkert, R. Ramponi, M. Pollnau, and G. Cerullo, “Integration of femtosecond laser written optical waveguides in a lab-on-chip,” Lab Chip 9(1), 91–96 (2009).
[CrossRef] [PubMed]

Raphaël, H.

L. Léger, H. Raphaël, and H. Hervet, “Surface-anchored polymer chains: their role in adhesion and friction,” Adv. Polym. Sci. 138, 185–225 (1999).
[CrossRef]

Rayner, D.

Risbud, S.

Rosenfeld, A.

Roy, S.

A. Mata, A. J. Fleischman, and S. Roy, “Characterization of polydimethylsiloxane (PDMS) properties for biomedical micro/nanosystems,” Biomed. Microdevices 7(4), 281–293 (2005).
[CrossRef]

Said, A.

Said, A. A.

Schreiber, T.

Shimotsuma, Y.

Y. Shimotsuma, P. G. Kazansky, J. Qiu, and K. Hirao, “Self-organized nanogratings in glass irradiated by ultrashort light pulses,” Phys. Rev. Lett. 91(24), 247405 (2003).
[CrossRef] [PubMed]

Sikorski, Z.

Stevens, M. J.

A. E. Ismail, G. S. Grest, D. R. Heine, M. J. Stevens, and M. Tsige, “Interfacial structure and dynamics of siloxane systems: PDMS-vapor and PDMS-water,” Macromolecules 42(8), 3186–3194 (2009).
[CrossRef]

Stoian, R.

Sugimoto, N.

Sugioka, K.

Z. Wang, K. Sugioka, Y. Hanada, and K. Midorikawa, “Optical waveguide fabrication and integration with a micro-mirror inside photosensitive glass by femtosecond laser direct writing,” Appl. Phys., A Mater. Sci. Process. 88(4), 699–704 (2007).
[CrossRef]

Szameit, A.

Tirrell, M.

M. Déruelle, M. Tirrell, Y. Marciano, H. Hervet, and L. Léger, “Adhesion energy between polymer networks and solid surfaces modified by polymer attachment,” Faraday Discuss. 98, 55–66 (1994).
[CrossRef]

Tomozawa, M.

M. Tomozawa, Y. Lee, and Y. Peng, “Effect of uniaxial stresses on silica glass structure investigated by IR spectroscopy,” J. Non-Cryst. Solids 242(2-3), 104–109 (1998).
[CrossRef]

A. Agarwal and M. Tomozawa, “Correlation of silica glass properties with the infrared spectra,” J. Non-Cryst. Solids 209(1-2), 166–174 (1997).
[CrossRef]

Tsige, M.

A. E. Ismail, G. S. Grest, D. R. Heine, M. J. Stevens, and M. Tsige, “Interfacial structure and dynamics of siloxane systems: PDMS-vapor and PDMS-water,” Macromolecules 42(8), 3186–3194 (2009).
[CrossRef]

Tuennermann, A.

S. Nolte, M. Will, J. Burghoff, and A. Tuennermann, “Femtosecond waveguide writing: a new avenue to three-dimensional integrated optics,” Appl. Phys., A Mater. Sci. Process. 77(1), 109–111 (2003).
[CrossRef]

Tünnermann, A.

van den Vlekkert, H.

R. M. Vazquez, R. Osellame, D. Nolli, C. Dongre, H. van den Vlekkert, R. Ramponi, M. Pollnau, and G. Cerullo, “Integration of femtosecond laser written optical waveguides in a lab-on-chip,” Lab Chip 9(1), 91–96 (2009).
[CrossRef] [PubMed]

Vazquez, R. M.

R. M. Vazquez, R. Osellame, D. Nolli, C. Dongre, H. van den Vlekkert, R. Ramponi, M. Pollnau, and G. Cerullo, “Integration of femtosecond laser written optical waveguides in a lab-on-chip,” Lab Chip 9(1), 91–96 (2009).
[CrossRef] [PubMed]

Wang, Z.

Z. Wang, K. Sugioka, Y. Hanada, and K. Midorikawa, “Optical waveguide fabrication and integration with a micro-mirror inside photosensitive glass by femtosecond laser direct writing,” Appl. Phys., A Mater. Sci. Process. 88(4), 699–704 (2007).
[CrossRef]

Watanabe, M.

White, Y. V.

Whitesides, G. M.

Y. Xia and G. M. Whitesides, “Extending microcontact printing as a microlithographic technique,” Langmuir 13(7), 2059–2067 (1997).
[CrossRef]

Will, M.

S. Nolte, M. Will, J. Burghoff, and A. Tuennermann, “Femtosecond waveguide writing: a new avenue to three-dimensional integrated optics,” Appl. Phys., A Mater. Sci. Process. 77(1), 109–111 (2003).
[CrossRef]

Xia, Y.

Y. Xia and G. M. Whitesides, “Extending microcontact printing as a microlithographic technique,” Langmuir 13(7), 2059–2067 (1997).
[CrossRef]

Adv. Polym. Sci.

L. Léger, H. Raphaël, and H. Hervet, “Surface-anchored polymer chains: their role in adhesion and friction,” Adv. Polym. Sci. 138, 185–225 (1999).
[CrossRef]

Appl. Phys., A Mater. Sci. Process.

S. Nolte, M. Will, J. Burghoff, and A. Tuennermann, “Femtosecond waveguide writing: a new avenue to three-dimensional integrated optics,” Appl. Phys., A Mater. Sci. Process. 77(1), 109–111 (2003).
[CrossRef]

G. Kamlage, T. Bauer, A. Ostendorf, and B. N. Chichkov, “Deep drilling of metals by femtosecond laser pulses,” Appl. Phys., A Mater. Sci. Process. 77, 307–310 (2003).

Z. Wang, K. Sugioka, Y. Hanada, and K. Midorikawa, “Optical waveguide fabrication and integration with a micro-mirror inside photosensitive glass by femtosecond laser direct writing,” Appl. Phys., A Mater. Sci. Process. 88(4), 699–704 (2007).
[CrossRef]

Biomed. Microdevices

A. Mata, A. J. Fleischman, and S. Roy, “Characterization of polydimethylsiloxane (PDMS) properties for biomedical micro/nanosystems,” Biomed. Microdevices 7(4), 281–293 (2005).
[CrossRef]

Europhys. Lett.

O. Guiselin, “Irreversible adsorption of a concentrated polymer solution,” Europhys. Lett. 17(3), 225–230 (1992).
[CrossRef]

Faraday Discuss.

M. Déruelle, M. Tirrell, Y. Marciano, H. Hervet, and L. Léger, “Adhesion energy between polymer networks and solid surfaces modified by polymer attachment,” Faraday Discuss. 98, 55–66 (1994).
[CrossRef]

Ind. Eng. Chem. Prod. Res. Dev.

M. J. Owen, “The surface activity of silicones: a short review,” Ind. Eng. Chem. Prod. Res. Dev. 19(1), 97–103 (1980).
[CrossRef]

J. Appl. Phys.

K. Awazu and H. Kawazoe, “Strained Si–O–Si bonds in amorphous SiO[sub 2] materials: A family member of active centers in radio, photo, and chemical responses,” J. Appl. Phys. 94(10), 6243–6262 (2003).
[CrossRef]

J. Non-Cryst. Solids

D. Krol, “Femtosecond laser modification of glass,” J. Non-Cryst. Solids 354(2-9), 416–424 (2008).
[CrossRef]

M. Tomozawa, Y. Lee, and Y. Peng, “Effect of uniaxial stresses on silica glass structure investigated by IR spectroscopy,” J. Non-Cryst. Solids 242(2-3), 104–109 (1998).
[CrossRef]

A. Agarwal and M. Tomozawa, “Correlation of silica glass properties with the infrared spectra,” J. Non-Cryst. Solids 209(1-2), 166–174 (1997).
[CrossRef]

J. Phys. Chem. C

S. Kiyama, S. Matsuo, S. Hashimoto, and Y. Morihira, “Examination of Etching Agent and Etching Mechanism on Femotosecond Laser Microfabrication of Channels Inside Vitreous Silica Substrates,” J. Phys. Chem. C 113(27), 11560–11566 (2009).
[CrossRef]

J. Phys. D Appl. Phys.

E. Barthel, “Adhesive elastic contacts: JKR and more,” J. Phys. D Appl. Phys. 41(16), 163001 (2008).
[CrossRef]

Lab Chip

R. M. Vazquez, R. Osellame, D. Nolli, C. Dongre, H. van den Vlekkert, R. Ramponi, M. Pollnau, and G. Cerullo, “Integration of femtosecond laser written optical waveguides in a lab-on-chip,” Lab Chip 9(1), 91–96 (2009).
[CrossRef] [PubMed]

Langmuir

Y. Xia and G. M. Whitesides, “Extending microcontact printing as a microlithographic technique,” Langmuir 13(7), 2059–2067 (1997).
[CrossRef]

D. Y. Lee, D. H. Lee, H. S. Lim, J. T. Han, and K. Cho, “Chemical and geometrical criteria for the release of elastomeric 1D nanoarrays from porous nanotemplates,” Langmuir 26(5), 3252–3256 (2010).
[CrossRef]

Macromolecules

A. E. Ismail, G. S. Grest, D. R. Heine, M. J. Stevens, and M. Tsige, “Interfacial structure and dynamics of siloxane systems: PDMS-vapor and PDMS-water,” Macromolecules 42(8), 3186–3194 (2009).
[CrossRef]

Mater. Sci. Eng. B

F. Madani-Grasset, N. T. Pham, E. Glynos, and V. Koutsos, “Imaging thin and ultrathin organic films by scanning white light interferometry,” Mater. Sci. Eng. B 152(1-3), 125–131 (2008).
[CrossRef]

Opt. Express

Y. Bellouard, T. Colomb, C. Depeursinge, M. Dugan, A. A. Said, and P. Bado, “Nanoindentation and birefringence measurements on fused silica specimen exposed to low-energy femtosecond pulses,” Opt. Express 14(18), 8360–8366 (2006).
[CrossRef] [PubMed]

Y. Bellouard, E. Barthel, A. A. Said, M. Dugan, and P. Bado, “Scanning thermal microscopy and Raman analysis of bulk fused silica exposed to low-energy femtosecond laser pulses,” Opt. Express 16(24), 19520–19534 (2008), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-16-24-19520 .
[CrossRef] [PubMed]

Y. Bellouard, A. Said, and P. Bado, “Integrating optics and micro-mechanics in a single substrate: a step toward monolithic integration in fused silica,” Opt. Express 13(17), 6635–6644 (2005), http://www.opticsinfobase.org/abstract.cfm?URI=oe-13-17-6635 .
[CrossRef] [PubMed]

Y. V. White, X. Li, Z. Sikorski, L. M. Davis, and W. Hofmeister, “Single-pulse ultrafast-laser machining of high aspect nano-holes at the surface of SiO2.,” Opt. Express 16(19), 14411–14420 (2008), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-16-19-14411 .
[CrossRef] [PubMed]

Y. Bellouard, A. Said, M. Dugan, and P. Bado, “Fabrication of high-aspect ratio, micro-fluidic channels and tunnels using femtosecond laser pulses and chemical etching,” Opt. Express 12(10), 2120–2129 (2004), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-12-10-2120 .
[CrossRef] [PubMed]

A. Szameit, D. Blömer, J. Burghoff, T. Schreiber, T. Pertsch, S. Nolte, A. Tünnermann, and F. Lederer, “Discrete nonlinear localization in femtosecond laser written waveguides in fused silica,” Opt. Express 13(26), 10552–10557 (2005), http://www.opticsinfobase.org/abstract.cfm?URI=oe-13-26-10552 .
[CrossRef] [PubMed]

C. Mauclair, G. Cheng, N. Huot, E. Audouard, A. Rosenfeld, I. V. Hertel, and R. Stoian, “Dynamic ultrafast laser spatial tailoring for parallel micromachining of photonic devices in transparent materials,” Opt. Express 17(5), 3531–3542 (2009), http://www.opticsinfobase.org/abstract.cfm?URI=oe-17-5-3531 .
[CrossRef] [PubMed]

D. Rayner, A. Naumov, and P. Corkum, “Ultrashort pulse non-linear optical absorption in transparent media,” Opt. Express 13(9), 3208–3217 (2005), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-13-9-3208 .
[CrossRef] [PubMed]

Opt. Lett.

Phys. Rev. Lett.

Y. Shimotsuma, P. G. Kazansky, J. Qiu, and K. Hirao, “Self-organized nanogratings in glass irradiated by ultrashort light pulses,” Phys. Rev. Lett. 91(24), 247405 (2003).
[CrossRef] [PubMed]

Solid State Commun.

F. L. Galeener, “Planar rings in glasses,” Solid State Commun. 44(7), 1037–1040 (1982).
[CrossRef]

Other

Y. Bellouard, V. K. Pahilwani, T. Rohrlack, A. Said, M. Dugan, and P. Bado, Towards a femtosecond laser micromachined opto-fluidic device for detection algae species, in Commercial and Biomedical Applications of Ultrafast Lasers IX, Proceedings of SPIE Vol. 7203 (SPIE, Bellingham, WA 2009); Editors: edited by Joseph Neev, Stefan Nolte, Alexander Heisterkamp, Rick P. Trebino, San Jose, United States, 720312, (2009)

A. Falsafi, S. Mangipudi, and M. J. Owen, “Surface and interfacial properties,” in J.E. Mark (Ed), Physical properties of polymers handbook 2nd ed, Springer, New-York, USA, 1012–1018 (2007).

T. McWaid, T. Vorburger, J. F. Song, and D. Chandler-Horowitz, “The effects of thin films on interferometric step height measurements,” in: K. Creath, J.E. Grevenkamp (Eds), Interferometry: Surface Characterization and Testing (SPIE), 1776, 2–13 (1992).

E. D. Palick, “Handbook of optical constant of solids,” Academic Press Inc, (1985).

F. Madani-Grasset, “Polydimethylsiloxane (PDMS) monolayers: morphology, nanostructure, adhesive and frictional properties,” PhD thesis, the University of Edinburgh, 161–166 (2005).

Y. Bellouard, A. Said, M. Dugan, and P. Bado, “Monolithic three-dimensional integration of micro-fluidic channels and optical waveguides in fused silica,” Materials Research Society Symposium - Proceedings 782, 63–68 (2003).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

Overview of the femtosecond mold fabrication process and the fabrication of molded parts.

Fig. 2
Fig. 2

Schematic of the molecular structure of a polymer brush (left) and a pseudo-brush (right) in good-solvent conditions. H0 is the brush thickness. A pseudo-brush is made up of loops, tails and trains. Those are closest to the substrate (yellow rectangle). In bad-solvent conditions (such as in air), chains collapse onto the substrate. The fine structure can then be assumed to be dominated by trains with only some shorter loops. We represent the types of attachment at the atomic level, in both the chemisorption (left) and physisorption (right) cases for PDMS on silica. The latter case is less well understood. Although H-bonds are thought to be dominant, simple van der Waals (vdW) forces may play an important role too. Some limited chemisorption through condensation reactions cannot be ruled out either [18, 21].

Fig. 3
Fig. 3

PSI surface topographic maps of PDMS-coated silica (left) and a PDMS molding of the same sample (right). PDMS being liquid-like and very soft at room temperature, a scratch made with a sharp steel needle (top to bottom orientation) was sufficient to create an edge without affecting in the slightest the topography of the much harder silica substrate (lines oriented lengthwise). The molded scratch appears as a bank (right).

Fig. 4
Fig. 4

SEM images of an array of holes of various depths. Insets A and B are optical micrographs taken by looking through the substrate edge. We note a perfect match between the mold and the molding even for rather deep structures and complex shapes as is illustrated in inset B. (dirt is also visible on the PDMS molding, it is due to contamination while handling the specimen and is unrelated to the molding process per se.)

Fig. 5
Fig. 5

Moldings of holes of various depth (close-ups of pillars presented in Fig. 4). Two of the longest PDMS pillars collapsed one on another due to their poor mechanical properties and mutually attractive forces. Interesting features resulting from the laser processing are also revealed. We note the presence of oscillations on the pillar radius and oriented along the laser propagation axis. The periodicity is sub-micron for a similar roughness. Wrinkles (or ripples) can be seen on the ‘flat’ plane. They result from the stress induced by the metal-coating deposited on the PDMS molding for SEM observation (sample preparation artefact).

Fig. 6
Fig. 6

Molded part consisting of a microchannel and an inlet. Top views: overall snapshot of the structure, bottom views: details of the fluidic channel floor. Fine structure of nanometer size resulting from laser exposure is clearly visible. This example illustrates the use of a molding process to assess the surface quality of a deep structure such as a fluidic channel.

Fig. 7
Fig. 7

High resolution confocal scanning microscopy (CSM) 3D surface topography maps of PDMS moldings of silica samples after femtosecond laser machining. The data was inverted to reveal the ‘actual’ silica mold surface topography. Top: side wall of a microchannel made in a silica block, the lower part reaches down to the channel floor. Bottom: channel floor. It was rotated by 90° relative to its real orientation in order for the general profile to stand out better. The topography varies across the length and width of the areas presented here, showing regions of varied corrugation (1, 2, 3).

Fig. 8
Fig. 8

Stitched vertical (red) and bottom measured cross-section profile of the channel (black). The dotted lines represent the desired initial pattern. References to the regions of interest described in Fig. 6 and 7 as well as Table 1 are highlighted.

Fig. 9
Fig. 9

Left: Cross-sectional map of the simulated stress distribution in the channel after laser exposure. Considering the symmetry of the problem, only the left half of the structure is being calculated in order to reduce computing time. The positions of the laser-affected zones strictly follow the programmed pattern that was written into the glass. Right: Channel geometry and etching front progression hypothesis.

Fig. 10
Fig. 10

Stress distribution across the bottom-left corner of the channel’s laser pattern. The inset map shows the location where the stress profile is plotted. The oscillations visible in the laser exposed area correspond to the stress in between two laser-affected zones.

Tables (1)

Tables Icon

Table 1 Quantitative analysis of the corrugation of silica surfaces after exposure to fs-laser beam and HF etching through the surface metrology of their PDMS moldings. Iq is the rms roughness (height parameter only) of the ‘raw’, unprocessed map; Wq corresponds to the ‘waviness’, i.e. the surface topography after removal of a best-fit plane and applying a low pass filter in the spatial frequency domain (Fourier analysis): waves of length shorter than λlow = 11 μm were filtered out; Rq is the ‘roughness’, i.e. rapid variations in topography for waves of length shorter than λlow and longer than λhigh = 0.6 μm, anything shorter than that was considered to reflect unwanted noise in the data and thus filtered out; spacing is the average distance between characteristic features that are enhanced by Fourier analysis in the ‘roughness’ map (grain analysis).

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

σ N 1 2 Φ 0 7 8
h 0 a N σ
h 0 a N 1 2 Φ 0 7 8

Metrics