Abstract

A laser-based technique for printing transparent and weakly absorbing liquids is developed. Its principle of operation relies in the tight focusing of short laser pulses inside the liquid and close to its free surface, in such a way that the laser radiation is absorbed in a tiny volume around the beam waist, with practically no absorption in any other location along the beam path. If the absorbed energy overcomes the optical breakdown threshold, a cavitation bubble is generated, and its expansion results in the propulsion of a small fraction of liquid which can be collected on a substrate, leading to the printing of a microdroplet for each laser pulse. The technique does not require the preparation of the liquid in thin film form, and its forward mode of operation imposes no restriction concerning the optical properties of the substrate. These characteristics make it well suited for printing a wide variety of materials of interest in diverse applications. We demonstrate that the film-free laser forward printing technique is capable of printing microdroplets with good resolution, reproducibility and control, and analyze the influence of the main process parameter, laser pulse energy. The mechanisms of liquid printing are also investigated: time-resolved imaging provides a clear picture of the dynamics of liquid transfer which allows understanding the main features observed in the printed droplets.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. L. Levene, R. D. Scott, and B. W. Siryj, “Material transfer recording,” Appl. Opt. 9(10), 2260–2265 (1970).
    [PubMed]
  2. J. Bohandy, B. F. Kim, and F. J. Adrian, “Metal-deposition from a supported metal-film using an excimer laser,” J. Appl. Phys. 60(4), 1538–1539 (1986).
  3. I. Zergioti, S. Mailis, N. A. Vainos, P. Papakonstantinou, C. Kalpouzos, C. P. Grigoropoulos, and C. Fotakis, “Microdeposition of metal and oxide structures using ultrashort laser pulses,” Appl. Phys., A Mater. Sci. Process. 66(5), 579–582 (1998).
  4. A. Piqué, D. B. Chrisey, R. C. Y. Auyeung, J. Fitz-Gerald, H. D. Wu, R. A. McGill, S. Lakeou, P. K. Wu, V. Nguyen, and M. Duignan, “A novel laser transfer process for direct writing of electronic and sensor materials,” Appl. Phys., A Mater. Sci. Process. 69(7), S279–S284 (1999).
  5. A. Piqué, D. B. Chrisey, J. M. Fitz-Gerald, R. A. McGill, R. C. Y. Auyeung, H. D. Wu, S. Lakeou, V. Nguyen, R. Chung, and M. Duignan, “Direct writing of electronic and sensor materials using a laser transfer technique,” J. Mater. Res. 15(9), 1872–1875 (2000).
  6. C. B. Arnold, P. Serra, and A. Piqué, “Laser direct-write techniques for printing of complex materials,” MRS Bull. 32, 23–31 (2007).
  7. L. Rapp, A.K. Diallo, A.P. Alloncle, C. Videlot-Ackermann, F. Fages, and P. Delaporte, “Pulsed-laser printing of organic thin-film transistors,” Appl. Phys. Lett. 95, 171109 (2009).
  8. H. Kim, R. C. Y. Auyeung, S. H. Lee, A. L. Huston, and A. Pique, “Laser forward transfer of silver electrodes for organic thin-film transistors,” Appl. Phys., A Mater. Sci. Process. 96(2), 441–445 (2009).
  9. C. Boutopoulos, V. Tsouti, D. Goustouridis, S. Chatzandroulis, and I. Zergioti, “Liquid phase direct laser printing of polymers for chemical sensing applications,” Appl. Phys. Lett. 93, 191109 (2008).
  10. M. Colina, P. Serra, J. M. Fernández-Pradas, L. Sevilla, and J. L. Morenza, “DNA deposition through laser induced forward transfer,” Biosens. Bioelectron. 20(8), 1638–1642 (2005).
    [PubMed]
  11. I. Zergioti, A. Karaiskou, D.G. Papazoglou, C. Fotakis, M. Kapsetaki, and D. Kafetzopoulos, “Femtosecond laser microprinting of biomaterials,” Appl. Phys. Lett. 86, 163902 (2005).
  12. V. Dinca, M. Farsari, D. Kafetzopoulos, A. Popescu, M. Dinescu, and C. Fotakis, “Patterning parameters for biomolecules microarrays constructed with nanosecond and femtosecond UV lasers,” Thin Solid Films 516(18), 6504–6511 (2008).
  13. M. Duocastella, J. M. Fernández-Pradas, J. Domínguez, P. Serra, and J. L. Morenza, “Printing biological solutions through laser-induced forward transfer,” Appl. Phys., A Mater. Sci. Process. 93(4), 941–945 (2008).
  14. B. Hopp, T. Smausz, N. Kresz, N. Barna, Z. Bor, L. Kolozsvári, D. B. Chrisey, A. Szabó, and A. Nógrádi, “Survival and proliferative ability of various living cell types after laser-induced forward transfer,” Tissue Eng. 11(11-12), 1817–1823 (2005).
  15. A. Doraiswamy, R. Narayan, T. Lippert, L. Urech, A. Wokaun, M. Nagel, B. Hopp, M. Dinescu, R. Modi, and R. Auyeung, “Excimer laser forward transfer of mammalian cells using a novel triazene absorbing layer,” Appl. Surf. Sci. 252(13), 4743–4747 (2006).
  16. B. R. Ringeisen, C. M. Othon, J. A. Barron, D. Young, and B. J. Spargo, “Jet-based methods to print living cells,” Biotechnol. J. 1(9), 930–948 (2006).
    [PubMed]
  17. M. Colina, M. Duocastella, J.M. Fernández-Pradas, P. Serra, and J.L. Morenza, “Laser-induced forward transfer of liquids: study of the droplet ejection process,” J. Appl. Phys. 99, 084909 (2006).
  18. N.T. Kattamis, P.E. Purnick, R. Weiss, and C.B. Arnold, “Thick film laser induced forward transfer for deposition of thermally and mechanically sensitive materials,” Appl. Phys. Lett. 91, 171120 (2007).
  19. N.T. Kattamis, N.D. McDaniel, S. Bernhard, and C.B. Arnold, “Laser direct write printing of sensitive and robust light emitting organic molecules,” Appl. Phys. Lett. 94, 103306 (2009).
  20. M. Duocastella, J. M. Fernández-Pradas, J. L. Morenza, D. Zafra, and P. Serra, ““Novel laser printing technique for miniaturized biosensors preparation,” Sens. Act,” Biol. Chem. 145, 596–600 (2010).
  21. A. Vogel, S. Busch, and U. Parlitz, “Shock wave emission and cavitation bubble generation by picosecond and nanosecond optical breakdown in water,” J. Acoust. Soc. Am. 100(1), 148–165 (1996).
  22. C. B. Schaffer, N. Nishimura, E. N. Glezer, A. M. T. Kim, and E. Mazur, “Dynamics of femtosecond laser-induced breakdown in water from femtoseconds to microseconds,” Opt. Express 10(3), 196–203 (2002).
    [PubMed]
  23. C. B. Schaffer, A. Brodeur, and E. Mazur, “Laser-induced breakdown and damage in bulk transparent materials induced by tightly focused femtosecond laser pulses,” Meas. Sci. Technol. 12(11), 1784–1794 (2001).
  24. C. L. Arnold, A. Heisterkamp, W. Ertmer, and H. Lubatschowski, “Computational model for nonlinear plasma formation in high NA micromachining of transparent materials and biological cells,” Opt. Express 15(16), 10303–10317 (2007).
    [PubMed]
  25. P. G. de Gennes, “Wetting - statics and dynamics,” Rev. Mod. Phys. 57(3), 827–863 (1985).
  26. J. A. Barron, H. D. Young, D. D. Dlott, M. M. Darfler, D. B. Krizman, and B. R. Ringeisen, “Printing of protein microarrays via a capillary-free fluid jetting mechanism,” Proteomics 5(16), 4138–4144 (2005).
    [PubMed]
  27. P. Serra, M. Colina, J. M. Fernández-Pradas, L. Sevilla, and J. L. Morenza, “Preparation of functional DNA microarrays through laser-induced forward transfer,” Appl. Phys. Lett. 85(9), 1639–1641 (2004).
  28. Y. Lin, Y. Huang, and D.B. Chrisey, “Droplet formation in matrix-assisted pulsed-laser evaporation direct writing of glycerol-water solution,” J. Appl. Phys. 105, 093111 (2009).
  29. E. N. Glezer, C. B. Schaffer, N. Nishimura, and E. Mazur, “Minimally disruptive laser-induced breakdown in water,” Opt. Lett. 22(23), 1817–1819 (1997).
  30. A. Vogel, N. Linz, S. Freidank, and G. Paltauf, “Femtosecond-laser-induced nanocavitation in water: implications for optical breakdown threshold and cell surgery,” Phys. Rev. Lett. 100, 038102 (2008).
    [PubMed]
  31. J. R. Blake and D. C. Gibson, “Growth and collapse of a vapor cavity near a free-surface,” J. Fluid Mech. 111(-1), 123–140 (1981).
  32. A. Pearson, E. Cox, J. R. Blake, and S. R. Otto, “Bubble interactions near a free surface,” Eng. Anal. Bound. Elem. 28(4), 295–313 (2004).
  33. M. Duocastella, J. M. Fernández-Pradas, P. Serra, and J. L. Morenza, “Jet formation in the laser forward transfer of liquids,” Appl. Phys., A Mater. Sci. Process. 93(2), 453–456 (2008).
  34. M. Duocastella, J.M. Fernández-Pradas, J.L. Morenza, and P. Serra, “Time-resolved imaging of the laser forward transfer of liquids,” J. Appl. Phys. 106, 084907 (2009).
  35. J. Eggers, “Nonlinear dynamics and breakup of free-surface flows,” Rev. Mod. Phys. 69(3), 865–930 (1997).
  36. B. W. Zeff, B. Kleber, J. Fineberg, and D. P. Lathrop, “Singularity dynamics in curvature collapse and jet eruption on a fluid surface,” Nature 403(6768), 401–404 (2000).
    [PubMed]
  37. L. Duchemin, S. Popinet, C. Josserand, and S. Zaleski, “Jet formation in bubbles bursting at a free surface,” Phys. Fluids 14(9), 3000–3008 (2002).
  38. A. M. Worthington and R. S. Cole, “Impact with a liquid surface studied by the aid of instantaneous photography,” Philos. Trans. R. Soc. Lond. A 25, 261–498 (1897).
  39. M. Rein, “Phenomena of liquid-drop impact on solid and liquid surfaces,” Fluid Dyn. Res. 12(2), 61–93 (1993).
  40. J. Shin and T. A. Mcmahon, “The tuning of a splash,” Phys. Fluids A 2(8), 1312–1317 (1990).
  41. A. Ogawa, K. Utsuno, M. Mutou, S. Kouzen, Y. Shimotake, and Y. Satou, “Morphological study of cavity and Worthington jet formations for newtonian and non-newtonian liquids,” Particul. Sci. Technol. 24(2), 181–225 (2006).
  42. M. Duocastella, J. M. Fernández-Pradas, J. L. Morenza, and P. Serra, “Sessile droplet formation in the laser-induced forward transfer of liquids: a time-resolved imaging study,” Thin Solid Films 518(18), 5321–5325 (2010).

2010 (2)

M. Duocastella, J. M. Fernández-Pradas, J. L. Morenza, D. Zafra, and P. Serra, ““Novel laser printing technique for miniaturized biosensors preparation,” Sens. Act,” Biol. Chem. 145, 596–600 (2010).

M. Duocastella, J. M. Fernández-Pradas, J. L. Morenza, and P. Serra, “Sessile droplet formation in the laser-induced forward transfer of liquids: a time-resolved imaging study,” Thin Solid Films 518(18), 5321–5325 (2010).

2009 (1)

H. Kim, R. C. Y. Auyeung, S. H. Lee, A. L. Huston, and A. Pique, “Laser forward transfer of silver electrodes for organic thin-film transistors,” Appl. Phys., A Mater. Sci. Process. 96(2), 441–445 (2009).

2008 (3)

V. Dinca, M. Farsari, D. Kafetzopoulos, A. Popescu, M. Dinescu, and C. Fotakis, “Patterning parameters for biomolecules microarrays constructed with nanosecond and femtosecond UV lasers,” Thin Solid Films 516(18), 6504–6511 (2008).

M. Duocastella, J. M. Fernández-Pradas, J. Domínguez, P. Serra, and J. L. Morenza, “Printing biological solutions through laser-induced forward transfer,” Appl. Phys., A Mater. Sci. Process. 93(4), 941–945 (2008).

M. Duocastella, J. M. Fernández-Pradas, P. Serra, and J. L. Morenza, “Jet formation in the laser forward transfer of liquids,” Appl. Phys., A Mater. Sci. Process. 93(2), 453–456 (2008).

2007 (2)

2006 (3)

A. Ogawa, K. Utsuno, M. Mutou, S. Kouzen, Y. Shimotake, and Y. Satou, “Morphological study of cavity and Worthington jet formations for newtonian and non-newtonian liquids,” Particul. Sci. Technol. 24(2), 181–225 (2006).

A. Doraiswamy, R. Narayan, T. Lippert, L. Urech, A. Wokaun, M. Nagel, B. Hopp, M. Dinescu, R. Modi, and R. Auyeung, “Excimer laser forward transfer of mammalian cells using a novel triazene absorbing layer,” Appl. Surf. Sci. 252(13), 4743–4747 (2006).

B. R. Ringeisen, C. M. Othon, J. A. Barron, D. Young, and B. J. Spargo, “Jet-based methods to print living cells,” Biotechnol. J. 1(9), 930–948 (2006).
[PubMed]

2005 (3)

B. Hopp, T. Smausz, N. Kresz, N. Barna, Z. Bor, L. Kolozsvári, D. B. Chrisey, A. Szabó, and A. Nógrádi, “Survival and proliferative ability of various living cell types after laser-induced forward transfer,” Tissue Eng. 11(11-12), 1817–1823 (2005).

M. Colina, P. Serra, J. M. Fernández-Pradas, L. Sevilla, and J. L. Morenza, “DNA deposition through laser induced forward transfer,” Biosens. Bioelectron. 20(8), 1638–1642 (2005).
[PubMed]

J. A. Barron, H. D. Young, D. D. Dlott, M. M. Darfler, D. B. Krizman, and B. R. Ringeisen, “Printing of protein microarrays via a capillary-free fluid jetting mechanism,” Proteomics 5(16), 4138–4144 (2005).
[PubMed]

2004 (2)

P. Serra, M. Colina, J. M. Fernández-Pradas, L. Sevilla, and J. L. Morenza, “Preparation of functional DNA microarrays through laser-induced forward transfer,” Appl. Phys. Lett. 85(9), 1639–1641 (2004).

A. Pearson, E. Cox, J. R. Blake, and S. R. Otto, “Bubble interactions near a free surface,” Eng. Anal. Bound. Elem. 28(4), 295–313 (2004).

2002 (2)

C. B. Schaffer, N. Nishimura, E. N. Glezer, A. M. T. Kim, and E. Mazur, “Dynamics of femtosecond laser-induced breakdown in water from femtoseconds to microseconds,” Opt. Express 10(3), 196–203 (2002).
[PubMed]

L. Duchemin, S. Popinet, C. Josserand, and S. Zaleski, “Jet formation in bubbles bursting at a free surface,” Phys. Fluids 14(9), 3000–3008 (2002).

2001 (1)

C. B. Schaffer, A. Brodeur, and E. Mazur, “Laser-induced breakdown and damage in bulk transparent materials induced by tightly focused femtosecond laser pulses,” Meas. Sci. Technol. 12(11), 1784–1794 (2001).

2000 (2)

B. W. Zeff, B. Kleber, J. Fineberg, and D. P. Lathrop, “Singularity dynamics in curvature collapse and jet eruption on a fluid surface,” Nature 403(6768), 401–404 (2000).
[PubMed]

A. Piqué, D. B. Chrisey, J. M. Fitz-Gerald, R. A. McGill, R. C. Y. Auyeung, H. D. Wu, S. Lakeou, V. Nguyen, R. Chung, and M. Duignan, “Direct writing of electronic and sensor materials using a laser transfer technique,” J. Mater. Res. 15(9), 1872–1875 (2000).

1999 (1)

A. Piqué, D. B. Chrisey, R. C. Y. Auyeung, J. Fitz-Gerald, H. D. Wu, R. A. McGill, S. Lakeou, P. K. Wu, V. Nguyen, and M. Duignan, “A novel laser transfer process for direct writing of electronic and sensor materials,” Appl. Phys., A Mater. Sci. Process. 69(7), S279–S284 (1999).

1998 (1)

I. Zergioti, S. Mailis, N. A. Vainos, P. Papakonstantinou, C. Kalpouzos, C. P. Grigoropoulos, and C. Fotakis, “Microdeposition of metal and oxide structures using ultrashort laser pulses,” Appl. Phys., A Mater. Sci. Process. 66(5), 579–582 (1998).

1997 (2)

J. Eggers, “Nonlinear dynamics and breakup of free-surface flows,” Rev. Mod. Phys. 69(3), 865–930 (1997).

E. N. Glezer, C. B. Schaffer, N. Nishimura, and E. Mazur, “Minimally disruptive laser-induced breakdown in water,” Opt. Lett. 22(23), 1817–1819 (1997).

1996 (1)

A. Vogel, S. Busch, and U. Parlitz, “Shock wave emission and cavitation bubble generation by picosecond and nanosecond optical breakdown in water,” J. Acoust. Soc. Am. 100(1), 148–165 (1996).

1993 (1)

M. Rein, “Phenomena of liquid-drop impact on solid and liquid surfaces,” Fluid Dyn. Res. 12(2), 61–93 (1993).

1990 (1)

J. Shin and T. A. Mcmahon, “The tuning of a splash,” Phys. Fluids A 2(8), 1312–1317 (1990).

1986 (1)

J. Bohandy, B. F. Kim, and F. J. Adrian, “Metal-deposition from a supported metal-film using an excimer laser,” J. Appl. Phys. 60(4), 1538–1539 (1986).

1985 (1)

P. G. de Gennes, “Wetting - statics and dynamics,” Rev. Mod. Phys. 57(3), 827–863 (1985).

1981 (1)

J. R. Blake and D. C. Gibson, “Growth and collapse of a vapor cavity near a free-surface,” J. Fluid Mech. 111(-1), 123–140 (1981).

1970 (1)

1897 (1)

A. M. Worthington and R. S. Cole, “Impact with a liquid surface studied by the aid of instantaneous photography,” Philos. Trans. R. Soc. Lond. A 25, 261–498 (1897).

Adrian, F. J.

J. Bohandy, B. F. Kim, and F. J. Adrian, “Metal-deposition from a supported metal-film using an excimer laser,” J. Appl. Phys. 60(4), 1538–1539 (1986).

Arnold, C. B.

C. B. Arnold, P. Serra, and A. Piqué, “Laser direct-write techniques for printing of complex materials,” MRS Bull. 32, 23–31 (2007).

Arnold, C. L.

Auyeung, R.

A. Doraiswamy, R. Narayan, T. Lippert, L. Urech, A. Wokaun, M. Nagel, B. Hopp, M. Dinescu, R. Modi, and R. Auyeung, “Excimer laser forward transfer of mammalian cells using a novel triazene absorbing layer,” Appl. Surf. Sci. 252(13), 4743–4747 (2006).

Auyeung, R. C. Y.

H. Kim, R. C. Y. Auyeung, S. H. Lee, A. L. Huston, and A. Pique, “Laser forward transfer of silver electrodes for organic thin-film transistors,” Appl. Phys., A Mater. Sci. Process. 96(2), 441–445 (2009).

A. Piqué, D. B. Chrisey, J. M. Fitz-Gerald, R. A. McGill, R. C. Y. Auyeung, H. D. Wu, S. Lakeou, V. Nguyen, R. Chung, and M. Duignan, “Direct writing of electronic and sensor materials using a laser transfer technique,” J. Mater. Res. 15(9), 1872–1875 (2000).

A. Piqué, D. B. Chrisey, R. C. Y. Auyeung, J. Fitz-Gerald, H. D. Wu, R. A. McGill, S. Lakeou, P. K. Wu, V. Nguyen, and M. Duignan, “A novel laser transfer process for direct writing of electronic and sensor materials,” Appl. Phys., A Mater. Sci. Process. 69(7), S279–S284 (1999).

Barna, N.

B. Hopp, T. Smausz, N. Kresz, N. Barna, Z. Bor, L. Kolozsvári, D. B. Chrisey, A. Szabó, and A. Nógrádi, “Survival and proliferative ability of various living cell types after laser-induced forward transfer,” Tissue Eng. 11(11-12), 1817–1823 (2005).

Barron, J. A.

B. R. Ringeisen, C. M. Othon, J. A. Barron, D. Young, and B. J. Spargo, “Jet-based methods to print living cells,” Biotechnol. J. 1(9), 930–948 (2006).
[PubMed]

J. A. Barron, H. D. Young, D. D. Dlott, M. M. Darfler, D. B. Krizman, and B. R. Ringeisen, “Printing of protein microarrays via a capillary-free fluid jetting mechanism,” Proteomics 5(16), 4138–4144 (2005).
[PubMed]

Blake, J. R.

A. Pearson, E. Cox, J. R. Blake, and S. R. Otto, “Bubble interactions near a free surface,” Eng. Anal. Bound. Elem. 28(4), 295–313 (2004).

J. R. Blake and D. C. Gibson, “Growth and collapse of a vapor cavity near a free-surface,” J. Fluid Mech. 111(-1), 123–140 (1981).

Bohandy, J.

J. Bohandy, B. F. Kim, and F. J. Adrian, “Metal-deposition from a supported metal-film using an excimer laser,” J. Appl. Phys. 60(4), 1538–1539 (1986).

Bor, Z.

B. Hopp, T. Smausz, N. Kresz, N. Barna, Z. Bor, L. Kolozsvári, D. B. Chrisey, A. Szabó, and A. Nógrádi, “Survival and proliferative ability of various living cell types after laser-induced forward transfer,” Tissue Eng. 11(11-12), 1817–1823 (2005).

Brodeur, A.

C. B. Schaffer, A. Brodeur, and E. Mazur, “Laser-induced breakdown and damage in bulk transparent materials induced by tightly focused femtosecond laser pulses,” Meas. Sci. Technol. 12(11), 1784–1794 (2001).

Busch, S.

A. Vogel, S. Busch, and U. Parlitz, “Shock wave emission and cavitation bubble generation by picosecond and nanosecond optical breakdown in water,” J. Acoust. Soc. Am. 100(1), 148–165 (1996).

Chrisey, D. B.

B. Hopp, T. Smausz, N. Kresz, N. Barna, Z. Bor, L. Kolozsvári, D. B. Chrisey, A. Szabó, and A. Nógrádi, “Survival and proliferative ability of various living cell types after laser-induced forward transfer,” Tissue Eng. 11(11-12), 1817–1823 (2005).

A. Piqué, D. B. Chrisey, J. M. Fitz-Gerald, R. A. McGill, R. C. Y. Auyeung, H. D. Wu, S. Lakeou, V. Nguyen, R. Chung, and M. Duignan, “Direct writing of electronic and sensor materials using a laser transfer technique,” J. Mater. Res. 15(9), 1872–1875 (2000).

A. Piqué, D. B. Chrisey, R. C. Y. Auyeung, J. Fitz-Gerald, H. D. Wu, R. A. McGill, S. Lakeou, P. K. Wu, V. Nguyen, and M. Duignan, “A novel laser transfer process for direct writing of electronic and sensor materials,” Appl. Phys., A Mater. Sci. Process. 69(7), S279–S284 (1999).

Chung, R.

A. Piqué, D. B. Chrisey, J. M. Fitz-Gerald, R. A. McGill, R. C. Y. Auyeung, H. D. Wu, S. Lakeou, V. Nguyen, R. Chung, and M. Duignan, “Direct writing of electronic and sensor materials using a laser transfer technique,” J. Mater. Res. 15(9), 1872–1875 (2000).

Cole, R. S.

A. M. Worthington and R. S. Cole, “Impact with a liquid surface studied by the aid of instantaneous photography,” Philos. Trans. R. Soc. Lond. A 25, 261–498 (1897).

Colina, M.

M. Colina, P. Serra, J. M. Fernández-Pradas, L. Sevilla, and J. L. Morenza, “DNA deposition through laser induced forward transfer,” Biosens. Bioelectron. 20(8), 1638–1642 (2005).
[PubMed]

P. Serra, M. Colina, J. M. Fernández-Pradas, L. Sevilla, and J. L. Morenza, “Preparation of functional DNA microarrays through laser-induced forward transfer,” Appl. Phys. Lett. 85(9), 1639–1641 (2004).

Cox, E.

A. Pearson, E. Cox, J. R. Blake, and S. R. Otto, “Bubble interactions near a free surface,” Eng. Anal. Bound. Elem. 28(4), 295–313 (2004).

Darfler, M. M.

J. A. Barron, H. D. Young, D. D. Dlott, M. M. Darfler, D. B. Krizman, and B. R. Ringeisen, “Printing of protein microarrays via a capillary-free fluid jetting mechanism,” Proteomics 5(16), 4138–4144 (2005).
[PubMed]

de Gennes, P. G.

P. G. de Gennes, “Wetting - statics and dynamics,” Rev. Mod. Phys. 57(3), 827–863 (1985).

Dinca, V.

V. Dinca, M. Farsari, D. Kafetzopoulos, A. Popescu, M. Dinescu, and C. Fotakis, “Patterning parameters for biomolecules microarrays constructed with nanosecond and femtosecond UV lasers,” Thin Solid Films 516(18), 6504–6511 (2008).

Dinescu, M.

V. Dinca, M. Farsari, D. Kafetzopoulos, A. Popescu, M. Dinescu, and C. Fotakis, “Patterning parameters for biomolecules microarrays constructed with nanosecond and femtosecond UV lasers,” Thin Solid Films 516(18), 6504–6511 (2008).

A. Doraiswamy, R. Narayan, T. Lippert, L. Urech, A. Wokaun, M. Nagel, B. Hopp, M. Dinescu, R. Modi, and R. Auyeung, “Excimer laser forward transfer of mammalian cells using a novel triazene absorbing layer,” Appl. Surf. Sci. 252(13), 4743–4747 (2006).

Dlott, D. D.

J. A. Barron, H. D. Young, D. D. Dlott, M. M. Darfler, D. B. Krizman, and B. R. Ringeisen, “Printing of protein microarrays via a capillary-free fluid jetting mechanism,” Proteomics 5(16), 4138–4144 (2005).
[PubMed]

Domínguez, J.

M. Duocastella, J. M. Fernández-Pradas, J. Domínguez, P. Serra, and J. L. Morenza, “Printing biological solutions through laser-induced forward transfer,” Appl. Phys., A Mater. Sci. Process. 93(4), 941–945 (2008).

Doraiswamy, A.

A. Doraiswamy, R. Narayan, T. Lippert, L. Urech, A. Wokaun, M. Nagel, B. Hopp, M. Dinescu, R. Modi, and R. Auyeung, “Excimer laser forward transfer of mammalian cells using a novel triazene absorbing layer,” Appl. Surf. Sci. 252(13), 4743–4747 (2006).

Duchemin, L.

L. Duchemin, S. Popinet, C. Josserand, and S. Zaleski, “Jet formation in bubbles bursting at a free surface,” Phys. Fluids 14(9), 3000–3008 (2002).

Duignan, M.

A. Piqué, D. B. Chrisey, J. M. Fitz-Gerald, R. A. McGill, R. C. Y. Auyeung, H. D. Wu, S. Lakeou, V. Nguyen, R. Chung, and M. Duignan, “Direct writing of electronic and sensor materials using a laser transfer technique,” J. Mater. Res. 15(9), 1872–1875 (2000).

A. Piqué, D. B. Chrisey, R. C. Y. Auyeung, J. Fitz-Gerald, H. D. Wu, R. A. McGill, S. Lakeou, P. K. Wu, V. Nguyen, and M. Duignan, “A novel laser transfer process for direct writing of electronic and sensor materials,” Appl. Phys., A Mater. Sci. Process. 69(7), S279–S284 (1999).

Duocastella, M.

M. Duocastella, J. M. Fernández-Pradas, J. L. Morenza, and P. Serra, “Sessile droplet formation in the laser-induced forward transfer of liquids: a time-resolved imaging study,” Thin Solid Films 518(18), 5321–5325 (2010).

M. Duocastella, J. M. Fernández-Pradas, J. L. Morenza, D. Zafra, and P. Serra, ““Novel laser printing technique for miniaturized biosensors preparation,” Sens. Act,” Biol. Chem. 145, 596–600 (2010).

M. Duocastella, J. M. Fernández-Pradas, P. Serra, and J. L. Morenza, “Jet formation in the laser forward transfer of liquids,” Appl. Phys., A Mater. Sci. Process. 93(2), 453–456 (2008).

M. Duocastella, J. M. Fernández-Pradas, J. Domínguez, P. Serra, and J. L. Morenza, “Printing biological solutions through laser-induced forward transfer,” Appl. Phys., A Mater. Sci. Process. 93(4), 941–945 (2008).

Eggers, J.

J. Eggers, “Nonlinear dynamics and breakup of free-surface flows,” Rev. Mod. Phys. 69(3), 865–930 (1997).

Ertmer, W.

Farsari, M.

V. Dinca, M. Farsari, D. Kafetzopoulos, A. Popescu, M. Dinescu, and C. Fotakis, “Patterning parameters for biomolecules microarrays constructed with nanosecond and femtosecond UV lasers,” Thin Solid Films 516(18), 6504–6511 (2008).

Fernández-Pradas, J. M.

M. Duocastella, J. M. Fernández-Pradas, J. L. Morenza, D. Zafra, and P. Serra, ““Novel laser printing technique for miniaturized biosensors preparation,” Sens. Act,” Biol. Chem. 145, 596–600 (2010).

M. Duocastella, J. M. Fernández-Pradas, J. L. Morenza, and P. Serra, “Sessile droplet formation in the laser-induced forward transfer of liquids: a time-resolved imaging study,” Thin Solid Films 518(18), 5321–5325 (2010).

M. Duocastella, J. M. Fernández-Pradas, J. Domínguez, P. Serra, and J. L. Morenza, “Printing biological solutions through laser-induced forward transfer,” Appl. Phys., A Mater. Sci. Process. 93(4), 941–945 (2008).

M. Duocastella, J. M. Fernández-Pradas, P. Serra, and J. L. Morenza, “Jet formation in the laser forward transfer of liquids,” Appl. Phys., A Mater. Sci. Process. 93(2), 453–456 (2008).

M. Colina, P. Serra, J. M. Fernández-Pradas, L. Sevilla, and J. L. Morenza, “DNA deposition through laser induced forward transfer,” Biosens. Bioelectron. 20(8), 1638–1642 (2005).
[PubMed]

P. Serra, M. Colina, J. M. Fernández-Pradas, L. Sevilla, and J. L. Morenza, “Preparation of functional DNA microarrays through laser-induced forward transfer,” Appl. Phys. Lett. 85(9), 1639–1641 (2004).

Fineberg, J.

B. W. Zeff, B. Kleber, J. Fineberg, and D. P. Lathrop, “Singularity dynamics in curvature collapse and jet eruption on a fluid surface,” Nature 403(6768), 401–404 (2000).
[PubMed]

Fitz-Gerald, J.

A. Piqué, D. B. Chrisey, R. C. Y. Auyeung, J. Fitz-Gerald, H. D. Wu, R. A. McGill, S. Lakeou, P. K. Wu, V. Nguyen, and M. Duignan, “A novel laser transfer process for direct writing of electronic and sensor materials,” Appl. Phys., A Mater. Sci. Process. 69(7), S279–S284 (1999).

Fitz-Gerald, J. M.

A. Piqué, D. B. Chrisey, J. M. Fitz-Gerald, R. A. McGill, R. C. Y. Auyeung, H. D. Wu, S. Lakeou, V. Nguyen, R. Chung, and M. Duignan, “Direct writing of electronic and sensor materials using a laser transfer technique,” J. Mater. Res. 15(9), 1872–1875 (2000).

Fotakis, C.

V. Dinca, M. Farsari, D. Kafetzopoulos, A. Popescu, M. Dinescu, and C. Fotakis, “Patterning parameters for biomolecules microarrays constructed with nanosecond and femtosecond UV lasers,” Thin Solid Films 516(18), 6504–6511 (2008).

I. Zergioti, S. Mailis, N. A. Vainos, P. Papakonstantinou, C. Kalpouzos, C. P. Grigoropoulos, and C. Fotakis, “Microdeposition of metal and oxide structures using ultrashort laser pulses,” Appl. Phys., A Mater. Sci. Process. 66(5), 579–582 (1998).

Gibson, D. C.

J. R. Blake and D. C. Gibson, “Growth and collapse of a vapor cavity near a free-surface,” J. Fluid Mech. 111(-1), 123–140 (1981).

Glezer, E. N.

Grigoropoulos, C. P.

I. Zergioti, S. Mailis, N. A. Vainos, P. Papakonstantinou, C. Kalpouzos, C. P. Grigoropoulos, and C. Fotakis, “Microdeposition of metal and oxide structures using ultrashort laser pulses,” Appl. Phys., A Mater. Sci. Process. 66(5), 579–582 (1998).

Heisterkamp, A.

Hopp, B.

A. Doraiswamy, R. Narayan, T. Lippert, L. Urech, A. Wokaun, M. Nagel, B. Hopp, M. Dinescu, R. Modi, and R. Auyeung, “Excimer laser forward transfer of mammalian cells using a novel triazene absorbing layer,” Appl. Surf. Sci. 252(13), 4743–4747 (2006).

B. Hopp, T. Smausz, N. Kresz, N. Barna, Z. Bor, L. Kolozsvári, D. B. Chrisey, A. Szabó, and A. Nógrádi, “Survival and proliferative ability of various living cell types after laser-induced forward transfer,” Tissue Eng. 11(11-12), 1817–1823 (2005).

Huston, A. L.

H. Kim, R. C. Y. Auyeung, S. H. Lee, A. L. Huston, and A. Pique, “Laser forward transfer of silver electrodes for organic thin-film transistors,” Appl. Phys., A Mater. Sci. Process. 96(2), 441–445 (2009).

Josserand, C.

L. Duchemin, S. Popinet, C. Josserand, and S. Zaleski, “Jet formation in bubbles bursting at a free surface,” Phys. Fluids 14(9), 3000–3008 (2002).

Kafetzopoulos, D.

V. Dinca, M. Farsari, D. Kafetzopoulos, A. Popescu, M. Dinescu, and C. Fotakis, “Patterning parameters for biomolecules microarrays constructed with nanosecond and femtosecond UV lasers,” Thin Solid Films 516(18), 6504–6511 (2008).

Kalpouzos, C.

I. Zergioti, S. Mailis, N. A. Vainos, P. Papakonstantinou, C. Kalpouzos, C. P. Grigoropoulos, and C. Fotakis, “Microdeposition of metal and oxide structures using ultrashort laser pulses,” Appl. Phys., A Mater. Sci. Process. 66(5), 579–582 (1998).

Kim, A. M. T.

Kim, B. F.

J. Bohandy, B. F. Kim, and F. J. Adrian, “Metal-deposition from a supported metal-film using an excimer laser,” J. Appl. Phys. 60(4), 1538–1539 (1986).

Kim, H.

H. Kim, R. C. Y. Auyeung, S. H. Lee, A. L. Huston, and A. Pique, “Laser forward transfer of silver electrodes for organic thin-film transistors,” Appl. Phys., A Mater. Sci. Process. 96(2), 441–445 (2009).

Kleber, B.

B. W. Zeff, B. Kleber, J. Fineberg, and D. P. Lathrop, “Singularity dynamics in curvature collapse and jet eruption on a fluid surface,” Nature 403(6768), 401–404 (2000).
[PubMed]

Kolozsvári, L.

B. Hopp, T. Smausz, N. Kresz, N. Barna, Z. Bor, L. Kolozsvári, D. B. Chrisey, A. Szabó, and A. Nógrádi, “Survival and proliferative ability of various living cell types after laser-induced forward transfer,” Tissue Eng. 11(11-12), 1817–1823 (2005).

Kouzen, S.

A. Ogawa, K. Utsuno, M. Mutou, S. Kouzen, Y. Shimotake, and Y. Satou, “Morphological study of cavity and Worthington jet formations for newtonian and non-newtonian liquids,” Particul. Sci. Technol. 24(2), 181–225 (2006).

Kresz, N.

B. Hopp, T. Smausz, N. Kresz, N. Barna, Z. Bor, L. Kolozsvári, D. B. Chrisey, A. Szabó, and A. Nógrádi, “Survival and proliferative ability of various living cell types after laser-induced forward transfer,” Tissue Eng. 11(11-12), 1817–1823 (2005).

Krizman, D. B.

J. A. Barron, H. D. Young, D. D. Dlott, M. M. Darfler, D. B. Krizman, and B. R. Ringeisen, “Printing of protein microarrays via a capillary-free fluid jetting mechanism,” Proteomics 5(16), 4138–4144 (2005).
[PubMed]

Lakeou, S.

A. Piqué, D. B. Chrisey, J. M. Fitz-Gerald, R. A. McGill, R. C. Y. Auyeung, H. D. Wu, S. Lakeou, V. Nguyen, R. Chung, and M. Duignan, “Direct writing of electronic and sensor materials using a laser transfer technique,” J. Mater. Res. 15(9), 1872–1875 (2000).

A. Piqué, D. B. Chrisey, R. C. Y. Auyeung, J. Fitz-Gerald, H. D. Wu, R. A. McGill, S. Lakeou, P. K. Wu, V. Nguyen, and M. Duignan, “A novel laser transfer process for direct writing of electronic and sensor materials,” Appl. Phys., A Mater. Sci. Process. 69(7), S279–S284 (1999).

Lathrop, D. P.

B. W. Zeff, B. Kleber, J. Fineberg, and D. P. Lathrop, “Singularity dynamics in curvature collapse and jet eruption on a fluid surface,” Nature 403(6768), 401–404 (2000).
[PubMed]

Lee, S. H.

H. Kim, R. C. Y. Auyeung, S. H. Lee, A. L. Huston, and A. Pique, “Laser forward transfer of silver electrodes for organic thin-film transistors,” Appl. Phys., A Mater. Sci. Process. 96(2), 441–445 (2009).

Levene, M. L.

Lippert, T.

A. Doraiswamy, R. Narayan, T. Lippert, L. Urech, A. Wokaun, M. Nagel, B. Hopp, M. Dinescu, R. Modi, and R. Auyeung, “Excimer laser forward transfer of mammalian cells using a novel triazene absorbing layer,” Appl. Surf. Sci. 252(13), 4743–4747 (2006).

Lubatschowski, H.

Mailis, S.

I. Zergioti, S. Mailis, N. A. Vainos, P. Papakonstantinou, C. Kalpouzos, C. P. Grigoropoulos, and C. Fotakis, “Microdeposition of metal and oxide structures using ultrashort laser pulses,” Appl. Phys., A Mater. Sci. Process. 66(5), 579–582 (1998).

Mazur, E.

McGill, R. A.

A. Piqué, D. B. Chrisey, J. M. Fitz-Gerald, R. A. McGill, R. C. Y. Auyeung, H. D. Wu, S. Lakeou, V. Nguyen, R. Chung, and M. Duignan, “Direct writing of electronic and sensor materials using a laser transfer technique,” J. Mater. Res. 15(9), 1872–1875 (2000).

A. Piqué, D. B. Chrisey, R. C. Y. Auyeung, J. Fitz-Gerald, H. D. Wu, R. A. McGill, S. Lakeou, P. K. Wu, V. Nguyen, and M. Duignan, “A novel laser transfer process for direct writing of electronic and sensor materials,” Appl. Phys., A Mater. Sci. Process. 69(7), S279–S284 (1999).

Mcmahon, T. A.

J. Shin and T. A. Mcmahon, “The tuning of a splash,” Phys. Fluids A 2(8), 1312–1317 (1990).

Modi, R.

A. Doraiswamy, R. Narayan, T. Lippert, L. Urech, A. Wokaun, M. Nagel, B. Hopp, M. Dinescu, R. Modi, and R. Auyeung, “Excimer laser forward transfer of mammalian cells using a novel triazene absorbing layer,” Appl. Surf. Sci. 252(13), 4743–4747 (2006).

Morenza, J. L.

M. Duocastella, J. M. Fernández-Pradas, J. L. Morenza, D. Zafra, and P. Serra, ““Novel laser printing technique for miniaturized biosensors preparation,” Sens. Act,” Biol. Chem. 145, 596–600 (2010).

M. Duocastella, J. M. Fernández-Pradas, J. L. Morenza, and P. Serra, “Sessile droplet formation in the laser-induced forward transfer of liquids: a time-resolved imaging study,” Thin Solid Films 518(18), 5321–5325 (2010).

M. Duocastella, J. M. Fernández-Pradas, J. Domínguez, P. Serra, and J. L. Morenza, “Printing biological solutions through laser-induced forward transfer,” Appl. Phys., A Mater. Sci. Process. 93(4), 941–945 (2008).

M. Duocastella, J. M. Fernández-Pradas, P. Serra, and J. L. Morenza, “Jet formation in the laser forward transfer of liquids,” Appl. Phys., A Mater. Sci. Process. 93(2), 453–456 (2008).

M. Colina, P. Serra, J. M. Fernández-Pradas, L. Sevilla, and J. L. Morenza, “DNA deposition through laser induced forward transfer,” Biosens. Bioelectron. 20(8), 1638–1642 (2005).
[PubMed]

P. Serra, M. Colina, J. M. Fernández-Pradas, L. Sevilla, and J. L. Morenza, “Preparation of functional DNA microarrays through laser-induced forward transfer,” Appl. Phys. Lett. 85(9), 1639–1641 (2004).

Mutou, M.

A. Ogawa, K. Utsuno, M. Mutou, S. Kouzen, Y. Shimotake, and Y. Satou, “Morphological study of cavity and Worthington jet formations for newtonian and non-newtonian liquids,” Particul. Sci. Technol. 24(2), 181–225 (2006).

Nagel, M.

A. Doraiswamy, R. Narayan, T. Lippert, L. Urech, A. Wokaun, M. Nagel, B. Hopp, M. Dinescu, R. Modi, and R. Auyeung, “Excimer laser forward transfer of mammalian cells using a novel triazene absorbing layer,” Appl. Surf. Sci. 252(13), 4743–4747 (2006).

Narayan, R.

A. Doraiswamy, R. Narayan, T. Lippert, L. Urech, A. Wokaun, M. Nagel, B. Hopp, M. Dinescu, R. Modi, and R. Auyeung, “Excimer laser forward transfer of mammalian cells using a novel triazene absorbing layer,” Appl. Surf. Sci. 252(13), 4743–4747 (2006).

Nguyen, V.

A. Piqué, D. B. Chrisey, J. M. Fitz-Gerald, R. A. McGill, R. C. Y. Auyeung, H. D. Wu, S. Lakeou, V. Nguyen, R. Chung, and M. Duignan, “Direct writing of electronic and sensor materials using a laser transfer technique,” J. Mater. Res. 15(9), 1872–1875 (2000).

A. Piqué, D. B. Chrisey, R. C. Y. Auyeung, J. Fitz-Gerald, H. D. Wu, R. A. McGill, S. Lakeou, P. K. Wu, V. Nguyen, and M. Duignan, “A novel laser transfer process for direct writing of electronic and sensor materials,” Appl. Phys., A Mater. Sci. Process. 69(7), S279–S284 (1999).

Nishimura, N.

Nógrádi, A.

B. Hopp, T. Smausz, N. Kresz, N. Barna, Z. Bor, L. Kolozsvári, D. B. Chrisey, A. Szabó, and A. Nógrádi, “Survival and proliferative ability of various living cell types after laser-induced forward transfer,” Tissue Eng. 11(11-12), 1817–1823 (2005).

Ogawa, A.

A. Ogawa, K. Utsuno, M. Mutou, S. Kouzen, Y. Shimotake, and Y. Satou, “Morphological study of cavity and Worthington jet formations for newtonian and non-newtonian liquids,” Particul. Sci. Technol. 24(2), 181–225 (2006).

Othon, C. M.

B. R. Ringeisen, C. M. Othon, J. A. Barron, D. Young, and B. J. Spargo, “Jet-based methods to print living cells,” Biotechnol. J. 1(9), 930–948 (2006).
[PubMed]

Otto, S. R.

A. Pearson, E. Cox, J. R. Blake, and S. R. Otto, “Bubble interactions near a free surface,” Eng. Anal. Bound. Elem. 28(4), 295–313 (2004).

Papakonstantinou, P.

I. Zergioti, S. Mailis, N. A. Vainos, P. Papakonstantinou, C. Kalpouzos, C. P. Grigoropoulos, and C. Fotakis, “Microdeposition of metal and oxide structures using ultrashort laser pulses,” Appl. Phys., A Mater. Sci. Process. 66(5), 579–582 (1998).

Parlitz, U.

A. Vogel, S. Busch, and U. Parlitz, “Shock wave emission and cavitation bubble generation by picosecond and nanosecond optical breakdown in water,” J. Acoust. Soc. Am. 100(1), 148–165 (1996).

Pearson, A.

A. Pearson, E. Cox, J. R. Blake, and S. R. Otto, “Bubble interactions near a free surface,” Eng. Anal. Bound. Elem. 28(4), 295–313 (2004).

Pique, A.

H. Kim, R. C. Y. Auyeung, S. H. Lee, A. L. Huston, and A. Pique, “Laser forward transfer of silver electrodes for organic thin-film transistors,” Appl. Phys., A Mater. Sci. Process. 96(2), 441–445 (2009).

Piqué, A.

C. B. Arnold, P. Serra, and A. Piqué, “Laser direct-write techniques for printing of complex materials,” MRS Bull. 32, 23–31 (2007).

A. Piqué, D. B. Chrisey, J. M. Fitz-Gerald, R. A. McGill, R. C. Y. Auyeung, H. D. Wu, S. Lakeou, V. Nguyen, R. Chung, and M. Duignan, “Direct writing of electronic and sensor materials using a laser transfer technique,” J. Mater. Res. 15(9), 1872–1875 (2000).

A. Piqué, D. B. Chrisey, R. C. Y. Auyeung, J. Fitz-Gerald, H. D. Wu, R. A. McGill, S. Lakeou, P. K. Wu, V. Nguyen, and M. Duignan, “A novel laser transfer process for direct writing of electronic and sensor materials,” Appl. Phys., A Mater. Sci. Process. 69(7), S279–S284 (1999).

Popescu, A.

V. Dinca, M. Farsari, D. Kafetzopoulos, A. Popescu, M. Dinescu, and C. Fotakis, “Patterning parameters for biomolecules microarrays constructed with nanosecond and femtosecond UV lasers,” Thin Solid Films 516(18), 6504–6511 (2008).

Popinet, S.

L. Duchemin, S. Popinet, C. Josserand, and S. Zaleski, “Jet formation in bubbles bursting at a free surface,” Phys. Fluids 14(9), 3000–3008 (2002).

Rein, M.

M. Rein, “Phenomena of liquid-drop impact on solid and liquid surfaces,” Fluid Dyn. Res. 12(2), 61–93 (1993).

Ringeisen, B. R.

B. R. Ringeisen, C. M. Othon, J. A. Barron, D. Young, and B. J. Spargo, “Jet-based methods to print living cells,” Biotechnol. J. 1(9), 930–948 (2006).
[PubMed]

J. A. Barron, H. D. Young, D. D. Dlott, M. M. Darfler, D. B. Krizman, and B. R. Ringeisen, “Printing of protein microarrays via a capillary-free fluid jetting mechanism,” Proteomics 5(16), 4138–4144 (2005).
[PubMed]

Satou, Y.

A. Ogawa, K. Utsuno, M. Mutou, S. Kouzen, Y. Shimotake, and Y. Satou, “Morphological study of cavity and Worthington jet formations for newtonian and non-newtonian liquids,” Particul. Sci. Technol. 24(2), 181–225 (2006).

Schaffer, C. B.

Scott, R. D.

Serra, P.

M. Duocastella, J. M. Fernández-Pradas, J. L. Morenza, D. Zafra, and P. Serra, ““Novel laser printing technique for miniaturized biosensors preparation,” Sens. Act,” Biol. Chem. 145, 596–600 (2010).

M. Duocastella, J. M. Fernández-Pradas, J. L. Morenza, and P. Serra, “Sessile droplet formation in the laser-induced forward transfer of liquids: a time-resolved imaging study,” Thin Solid Films 518(18), 5321–5325 (2010).

M. Duocastella, J. M. Fernández-Pradas, J. Domínguez, P. Serra, and J. L. Morenza, “Printing biological solutions through laser-induced forward transfer,” Appl. Phys., A Mater. Sci. Process. 93(4), 941–945 (2008).

M. Duocastella, J. M. Fernández-Pradas, P. Serra, and J. L. Morenza, “Jet formation in the laser forward transfer of liquids,” Appl. Phys., A Mater. Sci. Process. 93(2), 453–456 (2008).

C. B. Arnold, P. Serra, and A. Piqué, “Laser direct-write techniques for printing of complex materials,” MRS Bull. 32, 23–31 (2007).

M. Colina, P. Serra, J. M. Fernández-Pradas, L. Sevilla, and J. L. Morenza, “DNA deposition through laser induced forward transfer,” Biosens. Bioelectron. 20(8), 1638–1642 (2005).
[PubMed]

P. Serra, M. Colina, J. M. Fernández-Pradas, L. Sevilla, and J. L. Morenza, “Preparation of functional DNA microarrays through laser-induced forward transfer,” Appl. Phys. Lett. 85(9), 1639–1641 (2004).

Sevilla, L.

M. Colina, P. Serra, J. M. Fernández-Pradas, L. Sevilla, and J. L. Morenza, “DNA deposition through laser induced forward transfer,” Biosens. Bioelectron. 20(8), 1638–1642 (2005).
[PubMed]

P. Serra, M. Colina, J. M. Fernández-Pradas, L. Sevilla, and J. L. Morenza, “Preparation of functional DNA microarrays through laser-induced forward transfer,” Appl. Phys. Lett. 85(9), 1639–1641 (2004).

Shimotake, Y.

A. Ogawa, K. Utsuno, M. Mutou, S. Kouzen, Y. Shimotake, and Y. Satou, “Morphological study of cavity and Worthington jet formations for newtonian and non-newtonian liquids,” Particul. Sci. Technol. 24(2), 181–225 (2006).

Shin, J.

J. Shin and T. A. Mcmahon, “The tuning of a splash,” Phys. Fluids A 2(8), 1312–1317 (1990).

Siryj, B. W.

Smausz, T.

B. Hopp, T. Smausz, N. Kresz, N. Barna, Z. Bor, L. Kolozsvári, D. B. Chrisey, A. Szabó, and A. Nógrádi, “Survival and proliferative ability of various living cell types after laser-induced forward transfer,” Tissue Eng. 11(11-12), 1817–1823 (2005).

Spargo, B. J.

B. R. Ringeisen, C. M. Othon, J. A. Barron, D. Young, and B. J. Spargo, “Jet-based methods to print living cells,” Biotechnol. J. 1(9), 930–948 (2006).
[PubMed]

Szabó, A.

B. Hopp, T. Smausz, N. Kresz, N. Barna, Z. Bor, L. Kolozsvári, D. B. Chrisey, A. Szabó, and A. Nógrádi, “Survival and proliferative ability of various living cell types after laser-induced forward transfer,” Tissue Eng. 11(11-12), 1817–1823 (2005).

Urech, L.

A. Doraiswamy, R. Narayan, T. Lippert, L. Urech, A. Wokaun, M. Nagel, B. Hopp, M. Dinescu, R. Modi, and R. Auyeung, “Excimer laser forward transfer of mammalian cells using a novel triazene absorbing layer,” Appl. Surf. Sci. 252(13), 4743–4747 (2006).

Utsuno, K.

A. Ogawa, K. Utsuno, M. Mutou, S. Kouzen, Y. Shimotake, and Y. Satou, “Morphological study of cavity and Worthington jet formations for newtonian and non-newtonian liquids,” Particul. Sci. Technol. 24(2), 181–225 (2006).

Vainos, N. A.

I. Zergioti, S. Mailis, N. A. Vainos, P. Papakonstantinou, C. Kalpouzos, C. P. Grigoropoulos, and C. Fotakis, “Microdeposition of metal and oxide structures using ultrashort laser pulses,” Appl. Phys., A Mater. Sci. Process. 66(5), 579–582 (1998).

Vogel, A.

A. Vogel, S. Busch, and U. Parlitz, “Shock wave emission and cavitation bubble generation by picosecond and nanosecond optical breakdown in water,” J. Acoust. Soc. Am. 100(1), 148–165 (1996).

Wokaun, A.

A. Doraiswamy, R. Narayan, T. Lippert, L. Urech, A. Wokaun, M. Nagel, B. Hopp, M. Dinescu, R. Modi, and R. Auyeung, “Excimer laser forward transfer of mammalian cells using a novel triazene absorbing layer,” Appl. Surf. Sci. 252(13), 4743–4747 (2006).

Worthington, A. M.

A. M. Worthington and R. S. Cole, “Impact with a liquid surface studied by the aid of instantaneous photography,” Philos. Trans. R. Soc. Lond. A 25, 261–498 (1897).

Wu, H. D.

A. Piqué, D. B. Chrisey, J. M. Fitz-Gerald, R. A. McGill, R. C. Y. Auyeung, H. D. Wu, S. Lakeou, V. Nguyen, R. Chung, and M. Duignan, “Direct writing of electronic and sensor materials using a laser transfer technique,” J. Mater. Res. 15(9), 1872–1875 (2000).

A. Piqué, D. B. Chrisey, R. C. Y. Auyeung, J. Fitz-Gerald, H. D. Wu, R. A. McGill, S. Lakeou, P. K. Wu, V. Nguyen, and M. Duignan, “A novel laser transfer process for direct writing of electronic and sensor materials,” Appl. Phys., A Mater. Sci. Process. 69(7), S279–S284 (1999).

Wu, P. K.

A. Piqué, D. B. Chrisey, R. C. Y. Auyeung, J. Fitz-Gerald, H. D. Wu, R. A. McGill, S. Lakeou, P. K. Wu, V. Nguyen, and M. Duignan, “A novel laser transfer process for direct writing of electronic and sensor materials,” Appl. Phys., A Mater. Sci. Process. 69(7), S279–S284 (1999).

Young, D.

B. R. Ringeisen, C. M. Othon, J. A. Barron, D. Young, and B. J. Spargo, “Jet-based methods to print living cells,” Biotechnol. J. 1(9), 930–948 (2006).
[PubMed]

Young, H. D.

J. A. Barron, H. D. Young, D. D. Dlott, M. M. Darfler, D. B. Krizman, and B. R. Ringeisen, “Printing of protein microarrays via a capillary-free fluid jetting mechanism,” Proteomics 5(16), 4138–4144 (2005).
[PubMed]

Zafra, D.

M. Duocastella, J. M. Fernández-Pradas, J. L. Morenza, D. Zafra, and P. Serra, ““Novel laser printing technique for miniaturized biosensors preparation,” Sens. Act,” Biol. Chem. 145, 596–600 (2010).

Zaleski, S.

L. Duchemin, S. Popinet, C. Josserand, and S. Zaleski, “Jet formation in bubbles bursting at a free surface,” Phys. Fluids 14(9), 3000–3008 (2002).

Zeff, B. W.

B. W. Zeff, B. Kleber, J. Fineberg, and D. P. Lathrop, “Singularity dynamics in curvature collapse and jet eruption on a fluid surface,” Nature 403(6768), 401–404 (2000).
[PubMed]

Zergioti, I.

I. Zergioti, S. Mailis, N. A. Vainos, P. Papakonstantinou, C. Kalpouzos, C. P. Grigoropoulos, and C. Fotakis, “Microdeposition of metal and oxide structures using ultrashort laser pulses,” Appl. Phys., A Mater. Sci. Process. 66(5), 579–582 (1998).

Appl. Opt. (1)

Appl. Phys. Lett. (1)

P. Serra, M. Colina, J. M. Fernández-Pradas, L. Sevilla, and J. L. Morenza, “Preparation of functional DNA microarrays through laser-induced forward transfer,” Appl. Phys. Lett. 85(9), 1639–1641 (2004).

Appl. Phys., A Mater. Sci. Process. (5)

I. Zergioti, S. Mailis, N. A. Vainos, P. Papakonstantinou, C. Kalpouzos, C. P. Grigoropoulos, and C. Fotakis, “Microdeposition of metal and oxide structures using ultrashort laser pulses,” Appl. Phys., A Mater. Sci. Process. 66(5), 579–582 (1998).

A. Piqué, D. B. Chrisey, R. C. Y. Auyeung, J. Fitz-Gerald, H. D. Wu, R. A. McGill, S. Lakeou, P. K. Wu, V. Nguyen, and M. Duignan, “A novel laser transfer process for direct writing of electronic and sensor materials,” Appl. Phys., A Mater. Sci. Process. 69(7), S279–S284 (1999).

H. Kim, R. C. Y. Auyeung, S. H. Lee, A. L. Huston, and A. Pique, “Laser forward transfer of silver electrodes for organic thin-film transistors,” Appl. Phys., A Mater. Sci. Process. 96(2), 441–445 (2009).

M. Duocastella, J. M. Fernández-Pradas, J. Domínguez, P. Serra, and J. L. Morenza, “Printing biological solutions through laser-induced forward transfer,” Appl. Phys., A Mater. Sci. Process. 93(4), 941–945 (2008).

M. Duocastella, J. M. Fernández-Pradas, P. Serra, and J. L. Morenza, “Jet formation in the laser forward transfer of liquids,” Appl. Phys., A Mater. Sci. Process. 93(2), 453–456 (2008).

Appl. Surf. Sci. (1)

A. Doraiswamy, R. Narayan, T. Lippert, L. Urech, A. Wokaun, M. Nagel, B. Hopp, M. Dinescu, R. Modi, and R. Auyeung, “Excimer laser forward transfer of mammalian cells using a novel triazene absorbing layer,” Appl. Surf. Sci. 252(13), 4743–4747 (2006).

Biol. Chem. (1)

M. Duocastella, J. M. Fernández-Pradas, J. L. Morenza, D. Zafra, and P. Serra, ““Novel laser printing technique for miniaturized biosensors preparation,” Sens. Act,” Biol. Chem. 145, 596–600 (2010).

Biosens. Bioelectron. (1)

M. Colina, P. Serra, J. M. Fernández-Pradas, L. Sevilla, and J. L. Morenza, “DNA deposition through laser induced forward transfer,” Biosens. Bioelectron. 20(8), 1638–1642 (2005).
[PubMed]

Biotechnol. J. (1)

B. R. Ringeisen, C. M. Othon, J. A. Barron, D. Young, and B. J. Spargo, “Jet-based methods to print living cells,” Biotechnol. J. 1(9), 930–948 (2006).
[PubMed]

Eng. Anal. Bound. Elem. (1)

A. Pearson, E. Cox, J. R. Blake, and S. R. Otto, “Bubble interactions near a free surface,” Eng. Anal. Bound. Elem. 28(4), 295–313 (2004).

Fluid Dyn. Res. (1)

M. Rein, “Phenomena of liquid-drop impact on solid and liquid surfaces,” Fluid Dyn. Res. 12(2), 61–93 (1993).

J. Acoust. Soc. Am. (1)

A. Vogel, S. Busch, and U. Parlitz, “Shock wave emission and cavitation bubble generation by picosecond and nanosecond optical breakdown in water,” J. Acoust. Soc. Am. 100(1), 148–165 (1996).

J. Appl. Phys. (1)

J. Bohandy, B. F. Kim, and F. J. Adrian, “Metal-deposition from a supported metal-film using an excimer laser,” J. Appl. Phys. 60(4), 1538–1539 (1986).

J. Fluid Mech. (1)

J. R. Blake and D. C. Gibson, “Growth and collapse of a vapor cavity near a free-surface,” J. Fluid Mech. 111(-1), 123–140 (1981).

J. Mater. Res. (1)

A. Piqué, D. B. Chrisey, J. M. Fitz-Gerald, R. A. McGill, R. C. Y. Auyeung, H. D. Wu, S. Lakeou, V. Nguyen, R. Chung, and M. Duignan, “Direct writing of electronic and sensor materials using a laser transfer technique,” J. Mater. Res. 15(9), 1872–1875 (2000).

Meas. Sci. Technol. (1)

C. B. Schaffer, A. Brodeur, and E. Mazur, “Laser-induced breakdown and damage in bulk transparent materials induced by tightly focused femtosecond laser pulses,” Meas. Sci. Technol. 12(11), 1784–1794 (2001).

MRS Bull. (1)

C. B. Arnold, P. Serra, and A. Piqué, “Laser direct-write techniques for printing of complex materials,” MRS Bull. 32, 23–31 (2007).

Nature (1)

B. W. Zeff, B. Kleber, J. Fineberg, and D. P. Lathrop, “Singularity dynamics in curvature collapse and jet eruption on a fluid surface,” Nature 403(6768), 401–404 (2000).
[PubMed]

Opt. Express (2)

Opt. Lett. (1)

Particul. Sci. Technol. (1)

A. Ogawa, K. Utsuno, M. Mutou, S. Kouzen, Y. Shimotake, and Y. Satou, “Morphological study of cavity and Worthington jet formations for newtonian and non-newtonian liquids,” Particul. Sci. Technol. 24(2), 181–225 (2006).

Philos. Trans. R. Soc. Lond. A (1)

A. M. Worthington and R. S. Cole, “Impact with a liquid surface studied by the aid of instantaneous photography,” Philos. Trans. R. Soc. Lond. A 25, 261–498 (1897).

Phys. Fluids (1)

L. Duchemin, S. Popinet, C. Josserand, and S. Zaleski, “Jet formation in bubbles bursting at a free surface,” Phys. Fluids 14(9), 3000–3008 (2002).

Phys. Fluids A (1)

J. Shin and T. A. Mcmahon, “The tuning of a splash,” Phys. Fluids A 2(8), 1312–1317 (1990).

Proteomics (1)

J. A. Barron, H. D. Young, D. D. Dlott, M. M. Darfler, D. B. Krizman, and B. R. Ringeisen, “Printing of protein microarrays via a capillary-free fluid jetting mechanism,” Proteomics 5(16), 4138–4144 (2005).
[PubMed]

Rev. Mod. Phys. (2)

P. G. de Gennes, “Wetting - statics and dynamics,” Rev. Mod. Phys. 57(3), 827–863 (1985).

J. Eggers, “Nonlinear dynamics and breakup of free-surface flows,” Rev. Mod. Phys. 69(3), 865–930 (1997).

Thin Solid Films (2)

M. Duocastella, J. M. Fernández-Pradas, J. L. Morenza, and P. Serra, “Sessile droplet formation in the laser-induced forward transfer of liquids: a time-resolved imaging study,” Thin Solid Films 518(18), 5321–5325 (2010).

V. Dinca, M. Farsari, D. Kafetzopoulos, A. Popescu, M. Dinescu, and C. Fotakis, “Patterning parameters for biomolecules microarrays constructed with nanosecond and femtosecond UV lasers,” Thin Solid Films 516(18), 6504–6511 (2008).

Tissue Eng. (1)

B. Hopp, T. Smausz, N. Kresz, N. Barna, Z. Bor, L. Kolozsvári, D. B. Chrisey, A. Szabó, and A. Nógrádi, “Survival and proliferative ability of various living cell types after laser-induced forward transfer,” Tissue Eng. 11(11-12), 1817–1823 (2005).

Other (9)

M. Colina, M. Duocastella, J.M. Fernández-Pradas, P. Serra, and J.L. Morenza, “Laser-induced forward transfer of liquids: study of the droplet ejection process,” J. Appl. Phys. 99, 084909 (2006).

N.T. Kattamis, P.E. Purnick, R. Weiss, and C.B. Arnold, “Thick film laser induced forward transfer for deposition of thermally and mechanically sensitive materials,” Appl. Phys. Lett. 91, 171120 (2007).

N.T. Kattamis, N.D. McDaniel, S. Bernhard, and C.B. Arnold, “Laser direct write printing of sensitive and robust light emitting organic molecules,” Appl. Phys. Lett. 94, 103306 (2009).

L. Rapp, A.K. Diallo, A.P. Alloncle, C. Videlot-Ackermann, F. Fages, and P. Delaporte, “Pulsed-laser printing of organic thin-film transistors,” Appl. Phys. Lett. 95, 171109 (2009).

I. Zergioti, A. Karaiskou, D.G. Papazoglou, C. Fotakis, M. Kapsetaki, and D. Kafetzopoulos, “Femtosecond laser microprinting of biomaterials,” Appl. Phys. Lett. 86, 163902 (2005).

C. Boutopoulos, V. Tsouti, D. Goustouridis, S. Chatzandroulis, and I. Zergioti, “Liquid phase direct laser printing of polymers for chemical sensing applications,” Appl. Phys. Lett. 93, 191109 (2008).

M. Duocastella, J.M. Fernández-Pradas, J.L. Morenza, and P. Serra, “Time-resolved imaging of the laser forward transfer of liquids,” J. Appl. Phys. 106, 084907 (2009).

A. Vogel, N. Linz, S. Freidank, and G. Paltauf, “Femtosecond-laser-induced nanocavitation in water: implications for optical breakdown threshold and cell surgery,” Phys. Rev. Lett. 100, 038102 (2008).
[PubMed]

Y. Lin, Y. Huang, and D.B. Chrisey, “Droplet formation in matrix-assisted pulsed-laser evaporation direct writing of glycerol-water solution,” J. Appl. Phys. 105, 093111 (2009).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

a) Focusing of a plane wave of intensity Io at a depth zF inside a medium. The dashed curve at depth z represents a spherical front with intensity I(z). b) Plot of the corresponding power absorbed per unit volume (αI) versus depth (z) for the case of linear (k = 0) and non-linear absorption (k>0). The dashed straight line indicates the optical breakdown threshold for the medium.

Fig. 2
Fig. 2

Scheme of the film-free laser forward printing setup.

Fig. 3
Fig. 3

Array of microdroplets printed with the film-free laser forward printing technique. The focusing depth is about 20 µm and the laser pulse energy is around 4.0 µJ. The droplets have a diameter of about 25 µm.

Fig. 4
Fig. 4

a) Array of microdroplets printed with the film-free laser forward printing technique at varying laser pulse energy. The focusing depth is about 30 µm. b) Plot of the corresponding droplet diameters versus laser pulse energy.

Fig. 5
Fig. 5

Series of time-resolved images of the ejection of liquid generated with the film-free laser forward printing technique at a laser pulse energy of a) 5.0 µJ and b) 8.0 µJ. The focusing depth is about 30 µm, and the aperture time is 100 ns in all the images.

Metrics