Abstract

This paper proposes a low-cost RoF transceiver for multichannel SCM/WDM signal distribution suitable for future broadband access networks. The transceiver is based on the phase modulation of an optical broadband source centered at third transmission window. Prior to phase modulation the optical broadband source output signal is launched into a Mach-Zehnder interferometer structure, as key device enabling radio signals propagation over the optical link. Furthermore, an optical CWDM is employed to create a multichannel scenario by performing the spectral slicing of the modulated optical signal into a number of channels each one conveying the information from the central office to different base stations. The operation range is up to 20 GHz with a modulation bandwidth around of 500 MHz. Experimental results of the transmission of SCM QPSK and 64-QAM data through 20 Km of SMF exhibit good EVM results in the operative range determined by the phase-to-intensity conversion process. The proposed approach shows a great suitability for WDM networks based on RoF signal transport and also represents a cost-effective solution for passive optical networks.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C.-H. Lee, W. V. Sorin, and B. Y. Kim, “Fiber to the home using a PON infrastructure,” J. Lightwave Technol. 24(12), 4568–4583 (2006).
    [CrossRef]
  2. R. Lin, “Next generation PON in emerging networks,” in Proceedings of Optical Fiber Communication Conf (OFC2008), San Diego (CA), Feb. 2008, OWH1.
  3. A. Banerjee, Y. Park, F. Clarke, H. Song, S. Yang, G. Kramer, K. Kim, and B. Mukherjee, “Wavelength-division-multiplexed passive optical network (WDM-PON) technologies for broadband access: a review [Invited],” J. Opt. Netw. 4(11), 737–758 (2005).
    [CrossRef]
  4. L. G. Kazovsky, S. W. T. Shaw, D. Gutierrez, N. Cheng, and S. W. Wong, “Next-generation optical access networks,” J. Lightwave Technol. 25(11), 3428–3442 (2007).
    [CrossRef]
  5. J. Cho, J. Kim, D. Gutierrez, L.G. Kazovsky, “Broadcast transmission in WDM-PON using a broadband light source,” in Proceedings of Optical Fiber Communication Conf (OFC2007), Anaheim (CA), March 2007, OWS7.
  6. K. H. Han, E. S. Son, H. Y. Choi, K. W. Lim, and Y. C. Chung, “Bidirectional WDM PON using light-emitting diodes spectrum-sliced with cyclic arrayed-waveguide grating,” IEEE Photon. Technol. Lett. 16(10), 2380–2382 (2004).
    [CrossRef]
  7. P. K. J. Park, S. B. Jun, H. Kim, D. K. Jung, W. R. Lee, and Y. C. Chung, “Reduction of polarization-induced performance degradation in WDM PON utilizing MQW-SLD-based broadband source,” Opt. Express 15(21), 14228–14233 (2007).
    [CrossRef] [PubMed]
  8. F. Grassi, J. Mora, B. Ortega, and J. Capmany, “Subcarrier multiplexing tolerant dispersion transmission system employing optical broadband sources,” Opt. Express 17(6), 4740–4751 (2009).
    [CrossRef] [PubMed]
  9. J. Yao, G. Maury, Y. Le Guennec, and B. Cabon, “All-optical subcarrier frequency conversion using an electrooptic phase modulator,” IEEE Photon. Technol. Lett. 17(11), 2427–2429 (2005).
    [CrossRef]
  10. C. Lethien, C. Loyez, and J.-P. Vilcot, “Potentials of radio over multimode fiber systems for the in-buildings coverage of mobile and wireless LAN applications,” IEEE Photon. Technol. Lett. 17(12), 2793–2795 (2005).
    [CrossRef]

2009 (1)

2007 (2)

2006 (1)

2005 (3)

A. Banerjee, Y. Park, F. Clarke, H. Song, S. Yang, G. Kramer, K. Kim, and B. Mukherjee, “Wavelength-division-multiplexed passive optical network (WDM-PON) technologies for broadband access: a review [Invited],” J. Opt. Netw. 4(11), 737–758 (2005).
[CrossRef]

J. Yao, G. Maury, Y. Le Guennec, and B. Cabon, “All-optical subcarrier frequency conversion using an electrooptic phase modulator,” IEEE Photon. Technol. Lett. 17(11), 2427–2429 (2005).
[CrossRef]

C. Lethien, C. Loyez, and J.-P. Vilcot, “Potentials of radio over multimode fiber systems for the in-buildings coverage of mobile and wireless LAN applications,” IEEE Photon. Technol. Lett. 17(12), 2793–2795 (2005).
[CrossRef]

2004 (1)

K. H. Han, E. S. Son, H. Y. Choi, K. W. Lim, and Y. C. Chung, “Bidirectional WDM PON using light-emitting diodes spectrum-sliced with cyclic arrayed-waveguide grating,” IEEE Photon. Technol. Lett. 16(10), 2380–2382 (2004).
[CrossRef]

Banerjee, A.

Cabon, B.

J. Yao, G. Maury, Y. Le Guennec, and B. Cabon, “All-optical subcarrier frequency conversion using an electrooptic phase modulator,” IEEE Photon. Technol. Lett. 17(11), 2427–2429 (2005).
[CrossRef]

Capmany, J.

Cheng, N.

Choi, H. Y.

K. H. Han, E. S. Son, H. Y. Choi, K. W. Lim, and Y. C. Chung, “Bidirectional WDM PON using light-emitting diodes spectrum-sliced with cyclic arrayed-waveguide grating,” IEEE Photon. Technol. Lett. 16(10), 2380–2382 (2004).
[CrossRef]

Chung, Y. C.

P. K. J. Park, S. B. Jun, H. Kim, D. K. Jung, W. R. Lee, and Y. C. Chung, “Reduction of polarization-induced performance degradation in WDM PON utilizing MQW-SLD-based broadband source,” Opt. Express 15(21), 14228–14233 (2007).
[CrossRef] [PubMed]

K. H. Han, E. S. Son, H. Y. Choi, K. W. Lim, and Y. C. Chung, “Bidirectional WDM PON using light-emitting diodes spectrum-sliced with cyclic arrayed-waveguide grating,” IEEE Photon. Technol. Lett. 16(10), 2380–2382 (2004).
[CrossRef]

Clarke, F.

Grassi, F.

Gutierrez, D.

Han, K. H.

K. H. Han, E. S. Son, H. Y. Choi, K. W. Lim, and Y. C. Chung, “Bidirectional WDM PON using light-emitting diodes spectrum-sliced with cyclic arrayed-waveguide grating,” IEEE Photon. Technol. Lett. 16(10), 2380–2382 (2004).
[CrossRef]

Jun, S. B.

Jung, D. K.

Kazovsky, L. G.

Kim, B. Y.

Kim, H.

Kim, K.

Kramer, G.

Le Guennec, Y.

J. Yao, G. Maury, Y. Le Guennec, and B. Cabon, “All-optical subcarrier frequency conversion using an electrooptic phase modulator,” IEEE Photon. Technol. Lett. 17(11), 2427–2429 (2005).
[CrossRef]

Lee, C.-H.

Lee, W. R.

Lethien, C.

C. Lethien, C. Loyez, and J.-P. Vilcot, “Potentials of radio over multimode fiber systems for the in-buildings coverage of mobile and wireless LAN applications,” IEEE Photon. Technol. Lett. 17(12), 2793–2795 (2005).
[CrossRef]

Lim, K. W.

K. H. Han, E. S. Son, H. Y. Choi, K. W. Lim, and Y. C. Chung, “Bidirectional WDM PON using light-emitting diodes spectrum-sliced with cyclic arrayed-waveguide grating,” IEEE Photon. Technol. Lett. 16(10), 2380–2382 (2004).
[CrossRef]

Loyez, C.

C. Lethien, C. Loyez, and J.-P. Vilcot, “Potentials of radio over multimode fiber systems for the in-buildings coverage of mobile and wireless LAN applications,” IEEE Photon. Technol. Lett. 17(12), 2793–2795 (2005).
[CrossRef]

Maury, G.

J. Yao, G. Maury, Y. Le Guennec, and B. Cabon, “All-optical subcarrier frequency conversion using an electrooptic phase modulator,” IEEE Photon. Technol. Lett. 17(11), 2427–2429 (2005).
[CrossRef]

Mora, J.

Mukherjee, B.

Ortega, B.

Park, P. K. J.

Park, Y.

Shaw, S. W. T.

Son, E. S.

K. H. Han, E. S. Son, H. Y. Choi, K. W. Lim, and Y. C. Chung, “Bidirectional WDM PON using light-emitting diodes spectrum-sliced with cyclic arrayed-waveguide grating,” IEEE Photon. Technol. Lett. 16(10), 2380–2382 (2004).
[CrossRef]

Song, H.

Sorin, W. V.

Vilcot, J.-P.

C. Lethien, C. Loyez, and J.-P. Vilcot, “Potentials of radio over multimode fiber systems for the in-buildings coverage of mobile and wireless LAN applications,” IEEE Photon. Technol. Lett. 17(12), 2793–2795 (2005).
[CrossRef]

Wong, S. W.

Yang, S.

Yao, J.

J. Yao, G. Maury, Y. Le Guennec, and B. Cabon, “All-optical subcarrier frequency conversion using an electrooptic phase modulator,” IEEE Photon. Technol. Lett. 17(11), 2427–2429 (2005).
[CrossRef]

IEEE Photon. Technol. Lett. (3)

K. H. Han, E. S. Son, H. Y. Choi, K. W. Lim, and Y. C. Chung, “Bidirectional WDM PON using light-emitting diodes spectrum-sliced with cyclic arrayed-waveguide grating,” IEEE Photon. Technol. Lett. 16(10), 2380–2382 (2004).
[CrossRef]

J. Yao, G. Maury, Y. Le Guennec, and B. Cabon, “All-optical subcarrier frequency conversion using an electrooptic phase modulator,” IEEE Photon. Technol. Lett. 17(11), 2427–2429 (2005).
[CrossRef]

C. Lethien, C. Loyez, and J.-P. Vilcot, “Potentials of radio over multimode fiber systems for the in-buildings coverage of mobile and wireless LAN applications,” IEEE Photon. Technol. Lett. 17(12), 2793–2795 (2005).
[CrossRef]

J. Lightwave Technol. (2)

J. Opt. Netw. (1)

Opt. Express (2)

Other (2)

J. Cho, J. Kim, D. Gutierrez, L.G. Kazovsky, “Broadcast transmission in WDM-PON using a broadband light source,” in Proceedings of Optical Fiber Communication Conf (OFC2007), Anaheim (CA), March 2007, OWS7.

R. Lin, “Next generation PON in emerging networks,” in Proceedings of Optical Fiber Communication Conf (OFC2008), San Diego (CA), Feb. 2008, OWH1.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Experimental Radio over Fiber transceiver based on the phase modulation of an optical broadband source and the insertion of a Mach-Zehnder interferometric structure. Inset (a) corresponds with the optical spectrum of OBS, inset (c) plots a zoom of the output optical spectrum after the MZI and inset (c) shows the spectrum for each optical channel.

Fig. 2
Fig. 2

(a) Experimental amplitude response at BSG1 with transmission window tuned alternatively at 6 GHz, 10 GHz and 14 GHz. The amplitude response of the phase-to-intensity conversion measured by using a laser source is represented by the dashed line. (b) Amplitude response at all BSGs centered at 1531 nm (▬), 1551 nm (▬), 1571 nm (▬) and 1591 nm (▬) with transmission windows tuned at 10 GHz.

Fig. 3
Fig. 3

(a) EVM versus electrical subcarrier frequency measured at the BSG1 for QPSK and 64-QAM modulation. (b) EVM over optical central wavelength when the bandpass window is tuned at 10 GHz for all BSGs.

Fig. 4
Fig. 4

Constellation diagrams in the best case BSG1 (a, b) and the worst case BSG4 (c, d).

Fig. 5
Fig. 5

EVM as a function of the number of BS per BSG1 (●) and BSG4 (■) for subcarrier frequency at 10 GHz and 5 Mb/s digital sequences modulated in (a) QPSK and (b) 64-QAM.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

f C H i = Δ τ 2 π β 2 ( ω C H i ) ( L o + L i ) ,

Metrics