Abstract

We have designed, fabricated and characterized poly(dimethylsiloxane) (PDMS) arrayed waveguide grating (AWG) with four-channel output for operation in the visible light wavelength range. The PDMS AWG was realized based on the single-mode PDMS rib waveguide. The device was designed for 1 nm channel spacing with the wavelength ranging from 639 to 644 nm. The measured insertion loss is 11.4 dB at the peak transmission spectrum and the adjacent crosstalk is less than −16 dB. The AWG device occupies an area of 7.5 × 15 mm2. PDMS AWG has the potential for integration with microfluidics in a monolithic PDMS lab-on-a-chip device for visible light spectroscopy applications.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. K. Smit, “New focusing and dispersive planar component based on an optical phased array,” Electron. Lett. 24(7), 385–386 (1988).
    [CrossRef]
  2. H. Takahashi, S. Suzuki, K. Kato, and I. Nishi, “Arrayed-waveguide grating for wavelength division multi/demultiplexer with nanometer resolution,” Electron. Lett. 26(2), 87–88 (1990).
    [CrossRef]
  3. C. Dragone, “An N×N optical multiplexer using a planar arrangement of two star couplers,” IEEE Photon. Technol. Lett. 3(9), 812–815 (1991).
    [CrossRef]
  4. Y. Hibino, “Recent advances in high-density and large-scale AWG multi/demultiplexers with higher index-contrast silica-based PLCs,” IEEE J. Sel. Top. Quantum Electron. 8(6), 1090–1101 (2002).
    [CrossRef]
  5. P. Cheben, J. H. Schmid, A. Delâge, A. Densmore, S. Janz, B. Lamontagne, J. Lapointe, E. Post, P. Waldron, and D. X. Xu, “A high-resolution silicon-on-insulator arrayed waveguide grating microspectrometer with sub-micrometer aperture waveguides,” Opt. Express 15(5), 2299–2306 (2007).
    [CrossRef] [PubMed]
  6. K. Okamoto, K. Moriwaki, and S. Suzuki, “Fabrication of 64 × 64 arrayed waveguide grating multiplexer on Silicon,” Electron. Lett. 31(3), 184–185 (1995).
    [CrossRef]
  7. M. Diemeer, L. Spiekman, R. Ramsamoedj, and M. K. Smit, “Polymeric phased array wavelength multiplexer operating around 1550 nm,” Electron. Lett. 32(12), 1132–1133 (1996).
    [CrossRef]
  8. K. Kodate and Y. Komai, “Compact spectroscopic sensor using an arrayed waveguide grating,” J. Opt. A, Pure Appl. Opt. 10(4), 044011–044018 (2008).
    [CrossRef]
  9. H. Ma, A. K.-Y. Jen, and L. R. Dalton, “Polymer-Based Optical Waveguides: Materials, Processing, and Devices,” Adv. Mater. 14(19), 1339–1365 (2002).
    [CrossRef]
  10. S. K. Sia and G. M. Whitesides, “Microfluidic devices fabricated in poly(dimethylsiloxane) for biological studies,” Electrophoresis 24(21), 3563–3576 (2003).
    [CrossRef] [PubMed]
  11. E. Verpoorte, “Chip vision-optics for microchips,” Lab Chip 3(3), 42N–52N (2003).
  12. J. S. Kee, D. P. Poenar, P. Neuzil, and L. Yobas, “Design and fabrication of poly(dimethylsiloxane) single-mode rib waveguide,” Opt. Express 17(14), 11739–11746 (2009).
    [CrossRef] [PubMed]
  13. M. K. Smit and C. Van Dam, “PHASAR-Based WDM-Devices: Principles, Design and Applications,” IEEE J. Sel. Top. Quantum Electron. 2(2), 236–250 (1996).
    [CrossRef]
  14. K. Okamoto, Fundamental of Optical Waveguides, (Academic Press, 2006), Chap. 9.
  15. P. Cheben, “Wavelength Dispersive Planar Waveguide Devices: Echelle and Arrayed Waveguide Gratings,” in Optical Waveguides: From Theory to Applied Technologies, M. L. Calvo and V. Laksminarayanan, ed.(Taylor & Francis, London, 2007).
  16. L. Vivien, S. Laval, B. Dumont, S. Lardenois, A. Koster, and E. Cassan, “Polarization-indepenedent single-mode rib waveguides on silicon-on-insulator for telecommunication wavelengths,” Opt. Commun. 210(1-2), 43–49 (2002).
    [CrossRef]
  17. C. R. Doerr, and K. Okamoto, Optical Fiber Telecommunications V A:Components and Subsystems, (Elsevier Inc., 2008), Chap. 9.
  18. K. Okamoto and A. Sugita, “Flat spectral response arrayed-waveguide grating multiplexer with parabolic waveguide horns,” Electron. Lett. 32(18), 1661–1662 (1996).
    [CrossRef]
  19. K. Okamoto and H. Yamada, “Arrayed-waveguide grating multiplexer with flat spectral response,” Opt. Lett. 20(1), 43–45 (1995).
    [CrossRef] [PubMed]

2009

2008

K. Kodate and Y. Komai, “Compact spectroscopic sensor using an arrayed waveguide grating,” J. Opt. A, Pure Appl. Opt. 10(4), 044011–044018 (2008).
[CrossRef]

2007

2003

S. K. Sia and G. M. Whitesides, “Microfluidic devices fabricated in poly(dimethylsiloxane) for biological studies,” Electrophoresis 24(21), 3563–3576 (2003).
[CrossRef] [PubMed]

E. Verpoorte, “Chip vision-optics for microchips,” Lab Chip 3(3), 42N–52N (2003).

2002

L. Vivien, S. Laval, B. Dumont, S. Lardenois, A. Koster, and E. Cassan, “Polarization-indepenedent single-mode rib waveguides on silicon-on-insulator for telecommunication wavelengths,” Opt. Commun. 210(1-2), 43–49 (2002).
[CrossRef]

H. Ma, A. K.-Y. Jen, and L. R. Dalton, “Polymer-Based Optical Waveguides: Materials, Processing, and Devices,” Adv. Mater. 14(19), 1339–1365 (2002).
[CrossRef]

Y. Hibino, “Recent advances in high-density and large-scale AWG multi/demultiplexers with higher index-contrast silica-based PLCs,” IEEE J. Sel. Top. Quantum Electron. 8(6), 1090–1101 (2002).
[CrossRef]

1996

M. Diemeer, L. Spiekman, R. Ramsamoedj, and M. K. Smit, “Polymeric phased array wavelength multiplexer operating around 1550 nm,” Electron. Lett. 32(12), 1132–1133 (1996).
[CrossRef]

K. Okamoto and A. Sugita, “Flat spectral response arrayed-waveguide grating multiplexer with parabolic waveguide horns,” Electron. Lett. 32(18), 1661–1662 (1996).
[CrossRef]

M. K. Smit and C. Van Dam, “PHASAR-Based WDM-Devices: Principles, Design and Applications,” IEEE J. Sel. Top. Quantum Electron. 2(2), 236–250 (1996).
[CrossRef]

1995

K. Okamoto and H. Yamada, “Arrayed-waveguide grating multiplexer with flat spectral response,” Opt. Lett. 20(1), 43–45 (1995).
[CrossRef] [PubMed]

K. Okamoto, K. Moriwaki, and S. Suzuki, “Fabrication of 64 × 64 arrayed waveguide grating multiplexer on Silicon,” Electron. Lett. 31(3), 184–185 (1995).
[CrossRef]

1991

C. Dragone, “An N×N optical multiplexer using a planar arrangement of two star couplers,” IEEE Photon. Technol. Lett. 3(9), 812–815 (1991).
[CrossRef]

1990

H. Takahashi, S. Suzuki, K. Kato, and I. Nishi, “Arrayed-waveguide grating for wavelength division multi/demultiplexer with nanometer resolution,” Electron. Lett. 26(2), 87–88 (1990).
[CrossRef]

1988

M. K. Smit, “New focusing and dispersive planar component based on an optical phased array,” Electron. Lett. 24(7), 385–386 (1988).
[CrossRef]

Cassan, E.

L. Vivien, S. Laval, B. Dumont, S. Lardenois, A. Koster, and E. Cassan, “Polarization-indepenedent single-mode rib waveguides on silicon-on-insulator for telecommunication wavelengths,” Opt. Commun. 210(1-2), 43–49 (2002).
[CrossRef]

Cheben, P.

Dalton, L. R.

H. Ma, A. K.-Y. Jen, and L. R. Dalton, “Polymer-Based Optical Waveguides: Materials, Processing, and Devices,” Adv. Mater. 14(19), 1339–1365 (2002).
[CrossRef]

Delâge, A.

Densmore, A.

Diemeer, M.

M. Diemeer, L. Spiekman, R. Ramsamoedj, and M. K. Smit, “Polymeric phased array wavelength multiplexer operating around 1550 nm,” Electron. Lett. 32(12), 1132–1133 (1996).
[CrossRef]

Dragone, C.

C. Dragone, “An N×N optical multiplexer using a planar arrangement of two star couplers,” IEEE Photon. Technol. Lett. 3(9), 812–815 (1991).
[CrossRef]

Dumont, B.

L. Vivien, S. Laval, B. Dumont, S. Lardenois, A. Koster, and E. Cassan, “Polarization-indepenedent single-mode rib waveguides on silicon-on-insulator for telecommunication wavelengths,” Opt. Commun. 210(1-2), 43–49 (2002).
[CrossRef]

Hibino, Y.

Y. Hibino, “Recent advances in high-density and large-scale AWG multi/demultiplexers with higher index-contrast silica-based PLCs,” IEEE J. Sel. Top. Quantum Electron. 8(6), 1090–1101 (2002).
[CrossRef]

Janz, S.

Jen, A. K.-Y.

H. Ma, A. K.-Y. Jen, and L. R. Dalton, “Polymer-Based Optical Waveguides: Materials, Processing, and Devices,” Adv. Mater. 14(19), 1339–1365 (2002).
[CrossRef]

Kato, K.

H. Takahashi, S. Suzuki, K. Kato, and I. Nishi, “Arrayed-waveguide grating for wavelength division multi/demultiplexer with nanometer resolution,” Electron. Lett. 26(2), 87–88 (1990).
[CrossRef]

Kee, J. S.

Kodate, K.

K. Kodate and Y. Komai, “Compact spectroscopic sensor using an arrayed waveguide grating,” J. Opt. A, Pure Appl. Opt. 10(4), 044011–044018 (2008).
[CrossRef]

Komai, Y.

K. Kodate and Y. Komai, “Compact spectroscopic sensor using an arrayed waveguide grating,” J. Opt. A, Pure Appl. Opt. 10(4), 044011–044018 (2008).
[CrossRef]

Koster, A.

L. Vivien, S. Laval, B. Dumont, S. Lardenois, A. Koster, and E. Cassan, “Polarization-indepenedent single-mode rib waveguides on silicon-on-insulator for telecommunication wavelengths,” Opt. Commun. 210(1-2), 43–49 (2002).
[CrossRef]

Lamontagne, B.

Lapointe, J.

Lardenois, S.

L. Vivien, S. Laval, B. Dumont, S. Lardenois, A. Koster, and E. Cassan, “Polarization-indepenedent single-mode rib waveguides on silicon-on-insulator for telecommunication wavelengths,” Opt. Commun. 210(1-2), 43–49 (2002).
[CrossRef]

Laval, S.

L. Vivien, S. Laval, B. Dumont, S. Lardenois, A. Koster, and E. Cassan, “Polarization-indepenedent single-mode rib waveguides on silicon-on-insulator for telecommunication wavelengths,” Opt. Commun. 210(1-2), 43–49 (2002).
[CrossRef]

Ma, H.

H. Ma, A. K.-Y. Jen, and L. R. Dalton, “Polymer-Based Optical Waveguides: Materials, Processing, and Devices,” Adv. Mater. 14(19), 1339–1365 (2002).
[CrossRef]

Moriwaki, K.

K. Okamoto, K. Moriwaki, and S. Suzuki, “Fabrication of 64 × 64 arrayed waveguide grating multiplexer on Silicon,” Electron. Lett. 31(3), 184–185 (1995).
[CrossRef]

Neuzil, P.

Nishi, I.

H. Takahashi, S. Suzuki, K. Kato, and I. Nishi, “Arrayed-waveguide grating for wavelength division multi/demultiplexer with nanometer resolution,” Electron. Lett. 26(2), 87–88 (1990).
[CrossRef]

Okamoto, K.

K. Okamoto and A. Sugita, “Flat spectral response arrayed-waveguide grating multiplexer with parabolic waveguide horns,” Electron. Lett. 32(18), 1661–1662 (1996).
[CrossRef]

K. Okamoto and H. Yamada, “Arrayed-waveguide grating multiplexer with flat spectral response,” Opt. Lett. 20(1), 43–45 (1995).
[CrossRef] [PubMed]

K. Okamoto, K. Moriwaki, and S. Suzuki, “Fabrication of 64 × 64 arrayed waveguide grating multiplexer on Silicon,” Electron. Lett. 31(3), 184–185 (1995).
[CrossRef]

Poenar, D. P.

Post, E.

Ramsamoedj, R.

M. Diemeer, L. Spiekman, R. Ramsamoedj, and M. K. Smit, “Polymeric phased array wavelength multiplexer operating around 1550 nm,” Electron. Lett. 32(12), 1132–1133 (1996).
[CrossRef]

Schmid, J. H.

Sia, S. K.

S. K. Sia and G. M. Whitesides, “Microfluidic devices fabricated in poly(dimethylsiloxane) for biological studies,” Electrophoresis 24(21), 3563–3576 (2003).
[CrossRef] [PubMed]

Smit, M. K.

M. Diemeer, L. Spiekman, R. Ramsamoedj, and M. K. Smit, “Polymeric phased array wavelength multiplexer operating around 1550 nm,” Electron. Lett. 32(12), 1132–1133 (1996).
[CrossRef]

M. K. Smit and C. Van Dam, “PHASAR-Based WDM-Devices: Principles, Design and Applications,” IEEE J. Sel. Top. Quantum Electron. 2(2), 236–250 (1996).
[CrossRef]

M. K. Smit, “New focusing and dispersive planar component based on an optical phased array,” Electron. Lett. 24(7), 385–386 (1988).
[CrossRef]

Spiekman, L.

M. Diemeer, L. Spiekman, R. Ramsamoedj, and M. K. Smit, “Polymeric phased array wavelength multiplexer operating around 1550 nm,” Electron. Lett. 32(12), 1132–1133 (1996).
[CrossRef]

Sugita, A.

K. Okamoto and A. Sugita, “Flat spectral response arrayed-waveguide grating multiplexer with parabolic waveguide horns,” Electron. Lett. 32(18), 1661–1662 (1996).
[CrossRef]

Suzuki, S.

K. Okamoto, K. Moriwaki, and S. Suzuki, “Fabrication of 64 × 64 arrayed waveguide grating multiplexer on Silicon,” Electron. Lett. 31(3), 184–185 (1995).
[CrossRef]

H. Takahashi, S. Suzuki, K. Kato, and I. Nishi, “Arrayed-waveguide grating for wavelength division multi/demultiplexer with nanometer resolution,” Electron. Lett. 26(2), 87–88 (1990).
[CrossRef]

Takahashi, H.

H. Takahashi, S. Suzuki, K. Kato, and I. Nishi, “Arrayed-waveguide grating for wavelength division multi/demultiplexer with nanometer resolution,” Electron. Lett. 26(2), 87–88 (1990).
[CrossRef]

Van Dam, C.

M. K. Smit and C. Van Dam, “PHASAR-Based WDM-Devices: Principles, Design and Applications,” IEEE J. Sel. Top. Quantum Electron. 2(2), 236–250 (1996).
[CrossRef]

Verpoorte, E.

E. Verpoorte, “Chip vision-optics for microchips,” Lab Chip 3(3), 42N–52N (2003).

Vivien, L.

L. Vivien, S. Laval, B. Dumont, S. Lardenois, A. Koster, and E. Cassan, “Polarization-indepenedent single-mode rib waveguides on silicon-on-insulator for telecommunication wavelengths,” Opt. Commun. 210(1-2), 43–49 (2002).
[CrossRef]

Waldron, P.

Whitesides, G. M.

S. K. Sia and G. M. Whitesides, “Microfluidic devices fabricated in poly(dimethylsiloxane) for biological studies,” Electrophoresis 24(21), 3563–3576 (2003).
[CrossRef] [PubMed]

Xu, D. X.

Yamada, H.

Yobas, L.

Adv. Mater.

H. Ma, A. K.-Y. Jen, and L. R. Dalton, “Polymer-Based Optical Waveguides: Materials, Processing, and Devices,” Adv. Mater. 14(19), 1339–1365 (2002).
[CrossRef]

Electron. Lett.

M. K. Smit, “New focusing and dispersive planar component based on an optical phased array,” Electron. Lett. 24(7), 385–386 (1988).
[CrossRef]

H. Takahashi, S. Suzuki, K. Kato, and I. Nishi, “Arrayed-waveguide grating for wavelength division multi/demultiplexer with nanometer resolution,” Electron. Lett. 26(2), 87–88 (1990).
[CrossRef]

K. Okamoto, K. Moriwaki, and S. Suzuki, “Fabrication of 64 × 64 arrayed waveguide grating multiplexer on Silicon,” Electron. Lett. 31(3), 184–185 (1995).
[CrossRef]

M. Diemeer, L. Spiekman, R. Ramsamoedj, and M. K. Smit, “Polymeric phased array wavelength multiplexer operating around 1550 nm,” Electron. Lett. 32(12), 1132–1133 (1996).
[CrossRef]

K. Okamoto and A. Sugita, “Flat spectral response arrayed-waveguide grating multiplexer with parabolic waveguide horns,” Electron. Lett. 32(18), 1661–1662 (1996).
[CrossRef]

Electrophoresis

S. K. Sia and G. M. Whitesides, “Microfluidic devices fabricated in poly(dimethylsiloxane) for biological studies,” Electrophoresis 24(21), 3563–3576 (2003).
[CrossRef] [PubMed]

IEEE J. Sel. Top. Quantum Electron.

M. K. Smit and C. Van Dam, “PHASAR-Based WDM-Devices: Principles, Design and Applications,” IEEE J. Sel. Top. Quantum Electron. 2(2), 236–250 (1996).
[CrossRef]

Y. Hibino, “Recent advances in high-density and large-scale AWG multi/demultiplexers with higher index-contrast silica-based PLCs,” IEEE J. Sel. Top. Quantum Electron. 8(6), 1090–1101 (2002).
[CrossRef]

IEEE Photon. Technol. Lett.

C. Dragone, “An N×N optical multiplexer using a planar arrangement of two star couplers,” IEEE Photon. Technol. Lett. 3(9), 812–815 (1991).
[CrossRef]

J. Opt. A, Pure Appl. Opt.

K. Kodate and Y. Komai, “Compact spectroscopic sensor using an arrayed waveguide grating,” J. Opt. A, Pure Appl. Opt. 10(4), 044011–044018 (2008).
[CrossRef]

Lab Chip

E. Verpoorte, “Chip vision-optics for microchips,” Lab Chip 3(3), 42N–52N (2003).

Opt. Commun.

L. Vivien, S. Laval, B. Dumont, S. Lardenois, A. Koster, and E. Cassan, “Polarization-indepenedent single-mode rib waveguides on silicon-on-insulator for telecommunication wavelengths,” Opt. Commun. 210(1-2), 43–49 (2002).
[CrossRef]

Opt. Express

Opt. Lett.

Other

C. R. Doerr, and K. Okamoto, Optical Fiber Telecommunications V A:Components and Subsystems, (Elsevier Inc., 2008), Chap. 9.

K. Okamoto, Fundamental of Optical Waveguides, (Academic Press, 2006), Chap. 9.

P. Cheben, “Wavelength Dispersive Planar Waveguide Devices: Echelle and Arrayed Waveguide Gratings,” in Optical Waveguides: From Theory to Applied Technologies, M. L. Calvo and V. Laksminarayanan, ed.(Taylor & Francis, London, 2007).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Schematic top view of the PDMS AWG with geometrical design parameters.

Fig. 2
Fig. 2

Simulated insertion loss of the PDMS AWG output waveguides with the geometrical parameters shown in Table 1.

Fig. 3
Fig. 3

SEM images of the PDMS AWG: a) array waveguide pitch; b) 24 array waveguides; c) output waveguide pitch.

Fig. 4
Fig. 4

Simulation results indicating the effect of deviations in key fabrication parameters on the AWG performance: a) The effect of a 5% and 10% change in refractive index contrast, b) The effect of a 2 µm, 4 µm and 6 µm slab height of the rib waveguide, c) The effect of the waveguide sidewall slope 88° 89° and 90°, and d) The effect of the rib waveguide height (or SU-8 photoresist height) 8, 9 and 10 µm. For (b) and (d), only channels 1 and 2 are shown for clarity.

Fig. 5
Fig. 5

Output modal images of the four-channel PDMS AWG. Comparison of the measured output mode field profile with the simulated results of the output mode for the wavelength of 640, 641, 642 and 643 nm.

Fig. 6
Fig. 6

The TE and TM mode studies for the PDMS AWG; a) the calculated pass wavelength difference caused by the effective index difference of the TE and TM mode and b) measurement of the insertion loss of both TE and TM mode, only channel 3 is shown for clarity.

Fig. 7
Fig. 7

Measured insertion loss of the four-channel PDMS AWG.

Tables (1)

Tables Icon

Table 1 The values of the design parameters for the four-channel PDMS AWG

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

Δ x Δ λ n g f Δ L n s d λ 0
δ λ = n c ( T E ) n c ( T M ) m Δ L

Metrics