Abstract

In this paper, transmission characteristics of the fundamental mode (TE10) of Parallel-Plate Dielectric Waveguide (PPDW) at 0.4-1.0 THz (1 THz = 1012 Hz) are studied. The investigation results show PPDW with virtually low attenuation and remarkable simple structure is a promising candidate as THz transmission medium. Then, a novel broadband coaxial probe to PPDW transition is designed. Although coaxial probe excitation has been used in microstrip lines and rectangular waveguides in microwave, millimeter-wave frequency domain, the present study shows that it is also an effective method to excite the PPDW at THz frequency. As the investigation results show, the return loss of coax-PPDW transition is better than 20 dB from 0.45 THz to 0.75 THz, and the insertion loss is as low as 0.18 dB, which will have wide potential application in the terahertz regime.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. H. Siegel, “Terahertz technology,” IEEE Trans. Microw. Theory Tech. 50(3), 910–928 (2002).
    [CrossRef]
  2. P. H. Siegel, “Terahertz Technology in Biology and Medicine,” IEEE Trans. Microw. Theory Tech. 52(10), 2438–2447 (2004).
    [CrossRef]
  3. C. A. Schmuttenmaer, “Exploring dynamics in the far-infrared with terahertz spectroscopy,” Chem. Rev. 104(4), 1759–1779 (2004).
    [CrossRef] [PubMed]
  4. X.-C. Zhang, “Terahertz wave imaging: horizons and hurdles,” Phys. Med. Biol. 47(21), 3667–3677 (2002).
    [CrossRef] [PubMed]
  5. D. L. Woolard, E. R. Brown, M. Pepper, and M. Kemp, “Terahertz Frequency Sensing and Imaging: A Time of Reckoning Future Applications?” Proc. IEEE 93(10), 1722–1743 (2005).
    [CrossRef]
  6. R. Mendis and D. Grischkowsky, “Undistorted guided-wave propagation of subpicosecond terahertz pulses,” Opt. Lett. 26(11), 846–848 (2001).
    [CrossRef]
  7. R. Mendis, “Guided-wave THz time-domain spectroscopy of highly doped silicon using parallel-plate waveguides,” Electron. Lett. 42(1), 19–21 (2006).
    [CrossRef]
  8. F. J. Tischer, “A waveguide structure with low losses,” Arch. Elekl.Ubntragung 7, 592–596 (1953).
  9. F. J. Tischer, “H Guide with Laminated Dielectric Slab,” IEEE Trans. Microw. Theory Tech. MTT-18(1), 9–15 (1970).
    [CrossRef]
  10. L. C. Chirwa and M. Omiya, “Analysis of the open-ended image NRD guide using FDTD,” IEEE Trans. Antenn. Propag. 52(9), 2374–2380 (2004).
    [CrossRef]
  11. T. Yoneyama and S. Nishida, “Nonradiative dielectric waveguide for millimeter wave integrated circuits,” IEEE Trans. Microw. Theory Tech. 29(11), 1188–1192 (1981).
    [CrossRef]
  12. T. Yoneyama, “Nonradiative Dielectric Waveguide,” Infrared and Millimeter Waves, Vol. 11, Ch. 2, K. J. ButtonEd. New York: Academic Press, 61–98 (1984).
  13. F. Kuroki, H. Ohta, and T. Yoneyama, “Transmission characteristics of NRD guide as a transmission medium in THz frequency band,” Infrared and Millimeter Waves and 13th International Conference on Terahertz Electronics, 2005. Vol.2, 1572547(2005).
  14. G. K. C. Kwan, and N. K. Das, “Coaxial-probe to parallel-plate dielectric waveguide transition: analysis and experiment,” Microwave Symposium Digest, 1998 IEEE MTT-S International, Vol.1, 245–248(1998).
  15. G.K.C. Kwan and N.K. Das, “Excitation of a parallel-plate dielectric waveguide using a coaxial probe-basic characteristics and experiments,” IEEE Trans. Microwave Theory & Tech. 50,(6), 1609–1620 (2002).
    [CrossRef]

2006 (1)

R. Mendis, “Guided-wave THz time-domain spectroscopy of highly doped silicon using parallel-plate waveguides,” Electron. Lett. 42(1), 19–21 (2006).
[CrossRef]

2005 (1)

D. L. Woolard, E. R. Brown, M. Pepper, and M. Kemp, “Terahertz Frequency Sensing and Imaging: A Time of Reckoning Future Applications?” Proc. IEEE 93(10), 1722–1743 (2005).
[CrossRef]

2004 (3)

P. H. Siegel, “Terahertz Technology in Biology and Medicine,” IEEE Trans. Microw. Theory Tech. 52(10), 2438–2447 (2004).
[CrossRef]

C. A. Schmuttenmaer, “Exploring dynamics in the far-infrared with terahertz spectroscopy,” Chem. Rev. 104(4), 1759–1779 (2004).
[CrossRef] [PubMed]

L. C. Chirwa and M. Omiya, “Analysis of the open-ended image NRD guide using FDTD,” IEEE Trans. Antenn. Propag. 52(9), 2374–2380 (2004).
[CrossRef]

2002 (3)

X.-C. Zhang, “Terahertz wave imaging: horizons and hurdles,” Phys. Med. Biol. 47(21), 3667–3677 (2002).
[CrossRef] [PubMed]

P. H. Siegel, “Terahertz technology,” IEEE Trans. Microw. Theory Tech. 50(3), 910–928 (2002).
[CrossRef]

G.K.C. Kwan and N.K. Das, “Excitation of a parallel-plate dielectric waveguide using a coaxial probe-basic characteristics and experiments,” IEEE Trans. Microwave Theory & Tech. 50,(6), 1609–1620 (2002).
[CrossRef]

2001 (1)

1981 (1)

T. Yoneyama and S. Nishida, “Nonradiative dielectric waveguide for millimeter wave integrated circuits,” IEEE Trans. Microw. Theory Tech. 29(11), 1188–1192 (1981).
[CrossRef]

1970 (1)

F. J. Tischer, “H Guide with Laminated Dielectric Slab,” IEEE Trans. Microw. Theory Tech. MTT-18(1), 9–15 (1970).
[CrossRef]

1953 (1)

F. J. Tischer, “A waveguide structure with low losses,” Arch. Elekl.Ubntragung 7, 592–596 (1953).

Brown, E. R.

D. L. Woolard, E. R. Brown, M. Pepper, and M. Kemp, “Terahertz Frequency Sensing and Imaging: A Time of Reckoning Future Applications?” Proc. IEEE 93(10), 1722–1743 (2005).
[CrossRef]

Chirwa, L. C.

L. C. Chirwa and M. Omiya, “Analysis of the open-ended image NRD guide using FDTD,” IEEE Trans. Antenn. Propag. 52(9), 2374–2380 (2004).
[CrossRef]

Das, N.K.

G.K.C. Kwan and N.K. Das, “Excitation of a parallel-plate dielectric waveguide using a coaxial probe-basic characteristics and experiments,” IEEE Trans. Microwave Theory & Tech. 50,(6), 1609–1620 (2002).
[CrossRef]

Grischkowsky, D.

Kemp, M.

D. L. Woolard, E. R. Brown, M. Pepper, and M. Kemp, “Terahertz Frequency Sensing and Imaging: A Time of Reckoning Future Applications?” Proc. IEEE 93(10), 1722–1743 (2005).
[CrossRef]

Kwan, G.K.C.

G.K.C. Kwan and N.K. Das, “Excitation of a parallel-plate dielectric waveguide using a coaxial probe-basic characteristics and experiments,” IEEE Trans. Microwave Theory & Tech. 50,(6), 1609–1620 (2002).
[CrossRef]

Mendis, R.

R. Mendis, “Guided-wave THz time-domain spectroscopy of highly doped silicon using parallel-plate waveguides,” Electron. Lett. 42(1), 19–21 (2006).
[CrossRef]

R. Mendis and D. Grischkowsky, “Undistorted guided-wave propagation of subpicosecond terahertz pulses,” Opt. Lett. 26(11), 846–848 (2001).
[CrossRef]

Nishida, S.

T. Yoneyama and S. Nishida, “Nonradiative dielectric waveguide for millimeter wave integrated circuits,” IEEE Trans. Microw. Theory Tech. 29(11), 1188–1192 (1981).
[CrossRef]

Omiya, M.

L. C. Chirwa and M. Omiya, “Analysis of the open-ended image NRD guide using FDTD,” IEEE Trans. Antenn. Propag. 52(9), 2374–2380 (2004).
[CrossRef]

Pepper, M.

D. L. Woolard, E. R. Brown, M. Pepper, and M. Kemp, “Terahertz Frequency Sensing and Imaging: A Time of Reckoning Future Applications?” Proc. IEEE 93(10), 1722–1743 (2005).
[CrossRef]

Schmuttenmaer, C. A.

C. A. Schmuttenmaer, “Exploring dynamics in the far-infrared with terahertz spectroscopy,” Chem. Rev. 104(4), 1759–1779 (2004).
[CrossRef] [PubMed]

Siegel, P. H.

P. H. Siegel, “Terahertz Technology in Biology and Medicine,” IEEE Trans. Microw. Theory Tech. 52(10), 2438–2447 (2004).
[CrossRef]

P. H. Siegel, “Terahertz technology,” IEEE Trans. Microw. Theory Tech. 50(3), 910–928 (2002).
[CrossRef]

Tischer, F. J.

F. J. Tischer, “H Guide with Laminated Dielectric Slab,” IEEE Trans. Microw. Theory Tech. MTT-18(1), 9–15 (1970).
[CrossRef]

F. J. Tischer, “A waveguide structure with low losses,” Arch. Elekl.Ubntragung 7, 592–596 (1953).

Woolard, D. L.

D. L. Woolard, E. R. Brown, M. Pepper, and M. Kemp, “Terahertz Frequency Sensing and Imaging: A Time of Reckoning Future Applications?” Proc. IEEE 93(10), 1722–1743 (2005).
[CrossRef]

Yoneyama, T.

T. Yoneyama and S. Nishida, “Nonradiative dielectric waveguide for millimeter wave integrated circuits,” IEEE Trans. Microw. Theory Tech. 29(11), 1188–1192 (1981).
[CrossRef]

Zhang, X.-C.

X.-C. Zhang, “Terahertz wave imaging: horizons and hurdles,” Phys. Med. Biol. 47(21), 3667–3677 (2002).
[CrossRef] [PubMed]

Arch. Elekl.Ubntragung (1)

F. J. Tischer, “A waveguide structure with low losses,” Arch. Elekl.Ubntragung 7, 592–596 (1953).

Chem. Rev. (1)

C. A. Schmuttenmaer, “Exploring dynamics in the far-infrared with terahertz spectroscopy,” Chem. Rev. 104(4), 1759–1779 (2004).
[CrossRef] [PubMed]

Electron. Lett. (1)

R. Mendis, “Guided-wave THz time-domain spectroscopy of highly doped silicon using parallel-plate waveguides,” Electron. Lett. 42(1), 19–21 (2006).
[CrossRef]

IEEE Trans. Antenn. Propag. (1)

L. C. Chirwa and M. Omiya, “Analysis of the open-ended image NRD guide using FDTD,” IEEE Trans. Antenn. Propag. 52(9), 2374–2380 (2004).
[CrossRef]

IEEE Trans. Microw. Theory Tech. (4)

T. Yoneyama and S. Nishida, “Nonradiative dielectric waveguide for millimeter wave integrated circuits,” IEEE Trans. Microw. Theory Tech. 29(11), 1188–1192 (1981).
[CrossRef]

F. J. Tischer, “H Guide with Laminated Dielectric Slab,” IEEE Trans. Microw. Theory Tech. MTT-18(1), 9–15 (1970).
[CrossRef]

P. H. Siegel, “Terahertz technology,” IEEE Trans. Microw. Theory Tech. 50(3), 910–928 (2002).
[CrossRef]

P. H. Siegel, “Terahertz Technology in Biology and Medicine,” IEEE Trans. Microw. Theory Tech. 52(10), 2438–2447 (2004).
[CrossRef]

IEEE Trans. Microwave Theory & Tech. (1)

G.K.C. Kwan and N.K. Das, “Excitation of a parallel-plate dielectric waveguide using a coaxial probe-basic characteristics and experiments,” IEEE Trans. Microwave Theory & Tech. 50,(6), 1609–1620 (2002).
[CrossRef]

Opt. Lett. (1)

Phys. Med. Biol. (1)

X.-C. Zhang, “Terahertz wave imaging: horizons and hurdles,” Phys. Med. Biol. 47(21), 3667–3677 (2002).
[CrossRef] [PubMed]

Proc. IEEE (1)

D. L. Woolard, E. R. Brown, M. Pepper, and M. Kemp, “Terahertz Frequency Sensing and Imaging: A Time of Reckoning Future Applications?” Proc. IEEE 93(10), 1722–1743 (2005).
[CrossRef]

Other (3)

T. Yoneyama, “Nonradiative Dielectric Waveguide,” Infrared and Millimeter Waves, Vol. 11, Ch. 2, K. J. ButtonEd. New York: Academic Press, 61–98 (1984).

F. Kuroki, H. Ohta, and T. Yoneyama, “Transmission characteristics of NRD guide as a transmission medium in THz frequency band,” Infrared and Millimeter Waves and 13th International Conference on Terahertz Electronics, 2005. Vol.2, 1572547(2005).

G. K. C. Kwan, and N. K. Das, “Coaxial-probe to parallel-plate dielectric waveguide transition: analysis and experiment,” Microwave Symposium Digest, 1998 IEEE MTT-S International, Vol.1, 245–248(1998).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

(a) Cross-sectional view of PPDW, PPDW dimensions: a = 100μm, b = 100μm, εr = 5.5, εs = 1, σ = 6.1 × 107; (b) PPDW TE10 mode electric field Ey normalized amplitude distribution in the xy-plane at 0.7 THz frequency. The red curve is calculation result by using formula (1), and the blue curve is simulation result by using HFSS (the same below).

Fig. 2
Fig. 2

(a) Dispersion curves (the εeff -f and εeff–b) for the fundamental PPDW mode (TE10 mode);(b) The Г–f and Г–b diagrams for the fundamental PPDW mode (TE10 mode). Where, PPDW dimensions: a = b = 100μm, εr = 5.5, εs = 1, σ = 6.1 × 107 for εeff –f and Г–f diagrams; PPDW dimensions: a = 100μm, εr = 5.5, εs = 1, σ = 6.1 × 107 and f = 0.7 THz for εeff b and Г–b diagrams.

Fig. 3
Fig. 3

(a).Electric field distribution of PPDW at 0.7 THz frequency; (b).Electric field distribution of parallel-plate waveguide at 0.7 THz frequency.

Fig. 4
Fig. 4

(a) Comparison of the frequency characteristics of total transmission loss αt , conductor loss αc , and dielectric loss αd and radiation loss αr of PPDW; (b)Comparison of the total transmission loss αt as a function of the width b of PPDw at 0.4, 0.6,0.8 THz.

Fig. 5
Fig. 5

Geometry of coax-PPDW transition.

Fig. 6
Fig. 6

(a) Reflection and transmission parameters of PPDW; (b)Reflection and transmission parameters of coax-PPDW transition. Where, PPDW dimensions: a = 100μm, b = 100μm, εr = 5.5, εs = 1, σ = 6.1 × 107;

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

E y ( x ) = { A exp [ γ s ( x + b / 2 ) ] < x b / 2 A { cos [ γ r ( x + b / 2 ) ] + γ s γ r sin [ γ r ( x + b / 2 ) ] } b / 2 x b / 2 A [ cos ( γ r b ) + γ s γ r sin ( γ r b ) ] exp [ γ s ( x b / 2 ) ] b / 2 x <
γ r = k 0 2 ε r β 2
γ s = β 2 k 0 2 ε s
tan ( b 2 k 0 ε r ε e f f ) = ε e f f ε s ε r ε e f f
Γ = 1 2 c o r e Re ( E × H * ) z ^ d x 1 2 t o t a l Re ( E × H * ) z ^ d x = 1 b + 2 γ s [ b + 2 γ s γ r 2 + γ s 2 ]
{ α t   =   α c + α d + α r silver ( σ = 6 .1 × 107 S/m ) & glass ( ε r = 5.5 , tan δ = 0.001 ) α t   c a s e   1 = α c 0 + α r silver ( σ = 6 .1 × 107 S/m ) & ideal glass ( ε r = 5.5 , tan δ = 0 ) α t   c a s e   2 = 0  + α d + α r PEC ( σ = ) & glass ( ε r = 5.5 , tan δ = 0.001 )
Z g = V 2 2 P

Metrics