Abstract

The far-field angular response pattern for dipole antenna-coupled infrared detectors is investigated. These devices utilize an asymmetric metal-oxide-metal diode that is capable of rectifying infrared-frequency antenna currents without applied bias. Devices are fabricated on both planar and hemispherical lens substrates. Measurements indicate that the angular response can be tailored by the thickness of the electrical isolation standoff layer on which the detector is fabricated and/or the inclusion of a ground plane. Electromagnetic simulations and analytical expressions show excellent agreement with the measured results.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. Balanis, Antenna Theory: Analysis and Design (John Wiley and Sons, Inc., New York, NY, 1996).
  2. B. L. Coleman, “Propagation of Electromagnetic Disturbances Along a Thin Wire in a Horizontally Stratified Medium,” Philos. Mag. 41, 276 (1950).
  3. C. Middlebrook, P. Krenz, B. Lail, and G. D. Boreman, “Infrared Phased-Array Antenna,” Microwave and Opt, Techn. Lett. 50(4), 719–723 (2008).
    [CrossRef]
  4. F. González and G. Boreman, “Comparison of dipole, bowtie, spiral and log-periodic IR antennas,” Infrared Phys. Technol. 46(5), 418–428 (2005).
    [CrossRef]
  5. C. Allen, F. Ardms, M. Wang, and C. C. Bradley, “Infrared-to-Millimeter, Broadband, Solid State Bolometer Detectors,” Appl. Opt. 8(4), 813–817 (1969).
    [CrossRef] [PubMed]
  6. P. M. Krenz, B. A. Lail, and G. D. Boreman, “Calibration of Lead-Line Response Contribution in Measured Radiation Patterns of IR Dipole Arrays,” Accepted in IEEE J. Selected Topics Quant. Electron. 99 (2010).
  7. H. J. Visser, Array and Phased Array Antenna Basics (John Wiley & Sons, Ltd., Chichester, West Sussex, England, 2005).
  8. C. R. Brewitt-Taylor, D. J. Gunton, and H. D. Rees, “Planar Antennas on a Dielectric Surface,” Electron. Lett. 17(20), 729–731 (1981).
    [CrossRef]
  9. D. B. Rutledge, and M. S. Muha, “Imaging Antenna Arrays,” in IEEE Trans. on Antennas and PropagationAP-30 (4), 535–540 (1982).
  10. B. Twu and S. E. Schwarz, “Mechanism and Properties of Point-Contact Metal-Insulator-Metal Diode Detectors at 10.6 μ,” Appl. Phys. Lett. 25(10), 595–598 (1974).
    [CrossRef]
  11. S. M. Faris, T. K. Gustafson, and J. C. Wiesner, “Detection of Optical and Infrared Radiation with DC-Biased Electron-Tunneling Metal-Barrier-Metal Diodes,” IEEE J. Quantum Electron. 9(7), 737–745 (1973).
    [CrossRef]
  12. M. Heiblum, W. Shihyuan, J. R. Whinnery, and T. K. Gustafson, “Characteristics of Integrated MOM Junctions at DC and at Optical Frequencies,” IEEE J. Quantum Electron. 14(3), 159–169 (1978).
    [CrossRef]
  13. J. A. Bean, B. Tiwari, G. H. Bernstein, P. Fay, and W. Porod, “Thermal Infrared Detection Using Dipole Antenna-Coupled Metal-Oxide-Metal Diodes,” J. Vac. Sci. Technol. B 27(1), 11–14 (2009).
    [CrossRef]
  14. J. A. Bean, B. Tiwari, G. Szakmany, G. Bernstein, P. Fay, and W. Porod, “Antenna length and polarization response of antenna-coupled MOM diode infrared detectors,” Infrared Phys. Technol. 53(3), 182–185 (2010).
    [CrossRef]
  15. B. Slovick, P. Krenz, G. Zummo, and G. Boreman, “Evaporation of uniform antireflection coatings on hemispherical lenses to enhance infrared antenna gain,” Infrared Phys. Technol. 53(2), 89–93 (2010).
    [CrossRef]
  16. D. B. Rutledge, S. E. Schwarz, and A. T. Adams, “Infrared and Submillimetre Antennas,” Infrared Phys. 18(5-6), 713–729 (1978).
    [CrossRef]
  17. C. Fumeaux, M. Gritz, I. Codreanu, W. Schaich, F. González, and G. Boreman, “Measurement of the resonant lengths of infrared dipole antennas,” Infrared Phys. Technol. 41(5), 271–281 (2000).
    [CrossRef]
  18. P. Krenz, B. Slovick, J. Bean, and G. Boreman, “Alignment procedures for radiation pattern measurements of antenna-coupled infrared detectors,” Opt. Eng. 49(4), 033607 (2010).
    [CrossRef]
  19. E. Hecht, Optics (Addison Wesley Longman, Reading, MA, 1998).
    [PubMed]

2010 (4)

P. M. Krenz, B. A. Lail, and G. D. Boreman, “Calibration of Lead-Line Response Contribution in Measured Radiation Patterns of IR Dipole Arrays,” Accepted in IEEE J. Selected Topics Quant. Electron. 99 (2010).

J. A. Bean, B. Tiwari, G. Szakmany, G. Bernstein, P. Fay, and W. Porod, “Antenna length and polarization response of antenna-coupled MOM diode infrared detectors,” Infrared Phys. Technol. 53(3), 182–185 (2010).
[CrossRef]

B. Slovick, P. Krenz, G. Zummo, and G. Boreman, “Evaporation of uniform antireflection coatings on hemispherical lenses to enhance infrared antenna gain,” Infrared Phys. Technol. 53(2), 89–93 (2010).
[CrossRef]

P. Krenz, B. Slovick, J. Bean, and G. Boreman, “Alignment procedures for radiation pattern measurements of antenna-coupled infrared detectors,” Opt. Eng. 49(4), 033607 (2010).
[CrossRef]

2009 (1)

J. A. Bean, B. Tiwari, G. H. Bernstein, P. Fay, and W. Porod, “Thermal Infrared Detection Using Dipole Antenna-Coupled Metal-Oxide-Metal Diodes,” J. Vac. Sci. Technol. B 27(1), 11–14 (2009).
[CrossRef]

2008 (1)

C. Middlebrook, P. Krenz, B. Lail, and G. D. Boreman, “Infrared Phased-Array Antenna,” Microwave and Opt, Techn. Lett. 50(4), 719–723 (2008).
[CrossRef]

2005 (1)

F. González and G. Boreman, “Comparison of dipole, bowtie, spiral and log-periodic IR antennas,” Infrared Phys. Technol. 46(5), 418–428 (2005).
[CrossRef]

2000 (1)

C. Fumeaux, M. Gritz, I. Codreanu, W. Schaich, F. González, and G. Boreman, “Measurement of the resonant lengths of infrared dipole antennas,” Infrared Phys. Technol. 41(5), 271–281 (2000).
[CrossRef]

1981 (1)

C. R. Brewitt-Taylor, D. J. Gunton, and H. D. Rees, “Planar Antennas on a Dielectric Surface,” Electron. Lett. 17(20), 729–731 (1981).
[CrossRef]

1978 (2)

M. Heiblum, W. Shihyuan, J. R. Whinnery, and T. K. Gustafson, “Characteristics of Integrated MOM Junctions at DC and at Optical Frequencies,” IEEE J. Quantum Electron. 14(3), 159–169 (1978).
[CrossRef]

D. B. Rutledge, S. E. Schwarz, and A. T. Adams, “Infrared and Submillimetre Antennas,” Infrared Phys. 18(5-6), 713–729 (1978).
[CrossRef]

1974 (1)

B. Twu and S. E. Schwarz, “Mechanism and Properties of Point-Contact Metal-Insulator-Metal Diode Detectors at 10.6 μ,” Appl. Phys. Lett. 25(10), 595–598 (1974).
[CrossRef]

1973 (1)

S. M. Faris, T. K. Gustafson, and J. C. Wiesner, “Detection of Optical and Infrared Radiation with DC-Biased Electron-Tunneling Metal-Barrier-Metal Diodes,” IEEE J. Quantum Electron. 9(7), 737–745 (1973).
[CrossRef]

1969 (1)

1950 (1)

B. L. Coleman, “Propagation of Electromagnetic Disturbances Along a Thin Wire in a Horizontally Stratified Medium,” Philos. Mag. 41, 276 (1950).

Adams, A. T.

D. B. Rutledge, S. E. Schwarz, and A. T. Adams, “Infrared and Submillimetre Antennas,” Infrared Phys. 18(5-6), 713–729 (1978).
[CrossRef]

Allen, C.

Ardms, F.

Bean, J.

P. Krenz, B. Slovick, J. Bean, and G. Boreman, “Alignment procedures for radiation pattern measurements of antenna-coupled infrared detectors,” Opt. Eng. 49(4), 033607 (2010).
[CrossRef]

Bean, J. A.

J. A. Bean, B. Tiwari, G. Szakmany, G. Bernstein, P. Fay, and W. Porod, “Antenna length and polarization response of antenna-coupled MOM diode infrared detectors,” Infrared Phys. Technol. 53(3), 182–185 (2010).
[CrossRef]

J. A. Bean, B. Tiwari, G. H. Bernstein, P. Fay, and W. Porod, “Thermal Infrared Detection Using Dipole Antenna-Coupled Metal-Oxide-Metal Diodes,” J. Vac. Sci. Technol. B 27(1), 11–14 (2009).
[CrossRef]

Bernstein, G.

J. A. Bean, B. Tiwari, G. Szakmany, G. Bernstein, P. Fay, and W. Porod, “Antenna length and polarization response of antenna-coupled MOM diode infrared detectors,” Infrared Phys. Technol. 53(3), 182–185 (2010).
[CrossRef]

Bernstein, G. H.

J. A. Bean, B. Tiwari, G. H. Bernstein, P. Fay, and W. Porod, “Thermal Infrared Detection Using Dipole Antenna-Coupled Metal-Oxide-Metal Diodes,” J. Vac. Sci. Technol. B 27(1), 11–14 (2009).
[CrossRef]

Boreman, G.

B. Slovick, P. Krenz, G. Zummo, and G. Boreman, “Evaporation of uniform antireflection coatings on hemispherical lenses to enhance infrared antenna gain,” Infrared Phys. Technol. 53(2), 89–93 (2010).
[CrossRef]

P. Krenz, B. Slovick, J. Bean, and G. Boreman, “Alignment procedures for radiation pattern measurements of antenna-coupled infrared detectors,” Opt. Eng. 49(4), 033607 (2010).
[CrossRef]

F. González and G. Boreman, “Comparison of dipole, bowtie, spiral and log-periodic IR antennas,” Infrared Phys. Technol. 46(5), 418–428 (2005).
[CrossRef]

C. Fumeaux, M. Gritz, I. Codreanu, W. Schaich, F. González, and G. Boreman, “Measurement of the resonant lengths of infrared dipole antennas,” Infrared Phys. Technol. 41(5), 271–281 (2000).
[CrossRef]

Boreman, G. D.

P. M. Krenz, B. A. Lail, and G. D. Boreman, “Calibration of Lead-Line Response Contribution in Measured Radiation Patterns of IR Dipole Arrays,” Accepted in IEEE J. Selected Topics Quant. Electron. 99 (2010).

C. Middlebrook, P. Krenz, B. Lail, and G. D. Boreman, “Infrared Phased-Array Antenna,” Microwave and Opt, Techn. Lett. 50(4), 719–723 (2008).
[CrossRef]

Bradley, C. C.

Brewitt-Taylor, C. R.

C. R. Brewitt-Taylor, D. J. Gunton, and H. D. Rees, “Planar Antennas on a Dielectric Surface,” Electron. Lett. 17(20), 729–731 (1981).
[CrossRef]

Codreanu, I.

C. Fumeaux, M. Gritz, I. Codreanu, W. Schaich, F. González, and G. Boreman, “Measurement of the resonant lengths of infrared dipole antennas,” Infrared Phys. Technol. 41(5), 271–281 (2000).
[CrossRef]

Coleman, B. L.

B. L. Coleman, “Propagation of Electromagnetic Disturbances Along a Thin Wire in a Horizontally Stratified Medium,” Philos. Mag. 41, 276 (1950).

Faris, S. M.

S. M. Faris, T. K. Gustafson, and J. C. Wiesner, “Detection of Optical and Infrared Radiation with DC-Biased Electron-Tunneling Metal-Barrier-Metal Diodes,” IEEE J. Quantum Electron. 9(7), 737–745 (1973).
[CrossRef]

Fay, P.

J. A. Bean, B. Tiwari, G. Szakmany, G. Bernstein, P. Fay, and W. Porod, “Antenna length and polarization response of antenna-coupled MOM diode infrared detectors,” Infrared Phys. Technol. 53(3), 182–185 (2010).
[CrossRef]

J. A. Bean, B. Tiwari, G. H. Bernstein, P. Fay, and W. Porod, “Thermal Infrared Detection Using Dipole Antenna-Coupled Metal-Oxide-Metal Diodes,” J. Vac. Sci. Technol. B 27(1), 11–14 (2009).
[CrossRef]

Fumeaux, C.

C. Fumeaux, M. Gritz, I. Codreanu, W. Schaich, F. González, and G. Boreman, “Measurement of the resonant lengths of infrared dipole antennas,” Infrared Phys. Technol. 41(5), 271–281 (2000).
[CrossRef]

González, F.

F. González and G. Boreman, “Comparison of dipole, bowtie, spiral and log-periodic IR antennas,” Infrared Phys. Technol. 46(5), 418–428 (2005).
[CrossRef]

C. Fumeaux, M. Gritz, I. Codreanu, W. Schaich, F. González, and G. Boreman, “Measurement of the resonant lengths of infrared dipole antennas,” Infrared Phys. Technol. 41(5), 271–281 (2000).
[CrossRef]

Gritz, M.

C. Fumeaux, M. Gritz, I. Codreanu, W. Schaich, F. González, and G. Boreman, “Measurement of the resonant lengths of infrared dipole antennas,” Infrared Phys. Technol. 41(5), 271–281 (2000).
[CrossRef]

Gunton, D. J.

C. R. Brewitt-Taylor, D. J. Gunton, and H. D. Rees, “Planar Antennas on a Dielectric Surface,” Electron. Lett. 17(20), 729–731 (1981).
[CrossRef]

Gustafson, T. K.

M. Heiblum, W. Shihyuan, J. R. Whinnery, and T. K. Gustafson, “Characteristics of Integrated MOM Junctions at DC and at Optical Frequencies,” IEEE J. Quantum Electron. 14(3), 159–169 (1978).
[CrossRef]

S. M. Faris, T. K. Gustafson, and J. C. Wiesner, “Detection of Optical and Infrared Radiation with DC-Biased Electron-Tunneling Metal-Barrier-Metal Diodes,” IEEE J. Quantum Electron. 9(7), 737–745 (1973).
[CrossRef]

Heiblum, M.

M. Heiblum, W. Shihyuan, J. R. Whinnery, and T. K. Gustafson, “Characteristics of Integrated MOM Junctions at DC and at Optical Frequencies,” IEEE J. Quantum Electron. 14(3), 159–169 (1978).
[CrossRef]

Krenz, P.

B. Slovick, P. Krenz, G. Zummo, and G. Boreman, “Evaporation of uniform antireflection coatings on hemispherical lenses to enhance infrared antenna gain,” Infrared Phys. Technol. 53(2), 89–93 (2010).
[CrossRef]

P. Krenz, B. Slovick, J. Bean, and G. Boreman, “Alignment procedures for radiation pattern measurements of antenna-coupled infrared detectors,” Opt. Eng. 49(4), 033607 (2010).
[CrossRef]

C. Middlebrook, P. Krenz, B. Lail, and G. D. Boreman, “Infrared Phased-Array Antenna,” Microwave and Opt, Techn. Lett. 50(4), 719–723 (2008).
[CrossRef]

Krenz, P. M.

P. M. Krenz, B. A. Lail, and G. D. Boreman, “Calibration of Lead-Line Response Contribution in Measured Radiation Patterns of IR Dipole Arrays,” Accepted in IEEE J. Selected Topics Quant. Electron. 99 (2010).

Lail, B.

C. Middlebrook, P. Krenz, B. Lail, and G. D. Boreman, “Infrared Phased-Array Antenna,” Microwave and Opt, Techn. Lett. 50(4), 719–723 (2008).
[CrossRef]

Lail, B. A.

P. M. Krenz, B. A. Lail, and G. D. Boreman, “Calibration of Lead-Line Response Contribution in Measured Radiation Patterns of IR Dipole Arrays,” Accepted in IEEE J. Selected Topics Quant. Electron. 99 (2010).

Middlebrook, C.

C. Middlebrook, P. Krenz, B. Lail, and G. D. Boreman, “Infrared Phased-Array Antenna,” Microwave and Opt, Techn. Lett. 50(4), 719–723 (2008).
[CrossRef]

Porod, W.

J. A. Bean, B. Tiwari, G. Szakmany, G. Bernstein, P. Fay, and W. Porod, “Antenna length and polarization response of antenna-coupled MOM diode infrared detectors,” Infrared Phys. Technol. 53(3), 182–185 (2010).
[CrossRef]

J. A. Bean, B. Tiwari, G. H. Bernstein, P. Fay, and W. Porod, “Thermal Infrared Detection Using Dipole Antenna-Coupled Metal-Oxide-Metal Diodes,” J. Vac. Sci. Technol. B 27(1), 11–14 (2009).
[CrossRef]

Rees, H. D.

C. R. Brewitt-Taylor, D. J. Gunton, and H. D. Rees, “Planar Antennas on a Dielectric Surface,” Electron. Lett. 17(20), 729–731 (1981).
[CrossRef]

Rutledge, D. B.

D. B. Rutledge, S. E. Schwarz, and A. T. Adams, “Infrared and Submillimetre Antennas,” Infrared Phys. 18(5-6), 713–729 (1978).
[CrossRef]

Schaich, W.

C. Fumeaux, M. Gritz, I. Codreanu, W. Schaich, F. González, and G. Boreman, “Measurement of the resonant lengths of infrared dipole antennas,” Infrared Phys. Technol. 41(5), 271–281 (2000).
[CrossRef]

Schwarz, S. E.

D. B. Rutledge, S. E. Schwarz, and A. T. Adams, “Infrared and Submillimetre Antennas,” Infrared Phys. 18(5-6), 713–729 (1978).
[CrossRef]

B. Twu and S. E. Schwarz, “Mechanism and Properties of Point-Contact Metal-Insulator-Metal Diode Detectors at 10.6 μ,” Appl. Phys. Lett. 25(10), 595–598 (1974).
[CrossRef]

Shihyuan, W.

M. Heiblum, W. Shihyuan, J. R. Whinnery, and T. K. Gustafson, “Characteristics of Integrated MOM Junctions at DC and at Optical Frequencies,” IEEE J. Quantum Electron. 14(3), 159–169 (1978).
[CrossRef]

Slovick, B.

B. Slovick, P. Krenz, G. Zummo, and G. Boreman, “Evaporation of uniform antireflection coatings on hemispherical lenses to enhance infrared antenna gain,” Infrared Phys. Technol. 53(2), 89–93 (2010).
[CrossRef]

P. Krenz, B. Slovick, J. Bean, and G. Boreman, “Alignment procedures for radiation pattern measurements of antenna-coupled infrared detectors,” Opt. Eng. 49(4), 033607 (2010).
[CrossRef]

Szakmany, G.

J. A. Bean, B. Tiwari, G. Szakmany, G. Bernstein, P. Fay, and W. Porod, “Antenna length and polarization response of antenna-coupled MOM diode infrared detectors,” Infrared Phys. Technol. 53(3), 182–185 (2010).
[CrossRef]

Tiwari, B.

J. A. Bean, B. Tiwari, G. Szakmany, G. Bernstein, P. Fay, and W. Porod, “Antenna length and polarization response of antenna-coupled MOM diode infrared detectors,” Infrared Phys. Technol. 53(3), 182–185 (2010).
[CrossRef]

J. A. Bean, B. Tiwari, G. H. Bernstein, P. Fay, and W. Porod, “Thermal Infrared Detection Using Dipole Antenna-Coupled Metal-Oxide-Metal Diodes,” J. Vac. Sci. Technol. B 27(1), 11–14 (2009).
[CrossRef]

Twu, B.

B. Twu and S. E. Schwarz, “Mechanism and Properties of Point-Contact Metal-Insulator-Metal Diode Detectors at 10.6 μ,” Appl. Phys. Lett. 25(10), 595–598 (1974).
[CrossRef]

Wang, M.

Whinnery, J. R.

M. Heiblum, W. Shihyuan, J. R. Whinnery, and T. K. Gustafson, “Characteristics of Integrated MOM Junctions at DC and at Optical Frequencies,” IEEE J. Quantum Electron. 14(3), 159–169 (1978).
[CrossRef]

Wiesner, J. C.

S. M. Faris, T. K. Gustafson, and J. C. Wiesner, “Detection of Optical and Infrared Radiation with DC-Biased Electron-Tunneling Metal-Barrier-Metal Diodes,” IEEE J. Quantum Electron. 9(7), 737–745 (1973).
[CrossRef]

Zummo, G.

B. Slovick, P. Krenz, G. Zummo, and G. Boreman, “Evaporation of uniform antireflection coatings on hemispherical lenses to enhance infrared antenna gain,” Infrared Phys. Technol. 53(2), 89–93 (2010).
[CrossRef]

Appl. Opt. (1)

Appl. Phys. Lett. (1)

B. Twu and S. E. Schwarz, “Mechanism and Properties of Point-Contact Metal-Insulator-Metal Diode Detectors at 10.6 μ,” Appl. Phys. Lett. 25(10), 595–598 (1974).
[CrossRef]

Electron. Lett. (1)

C. R. Brewitt-Taylor, D. J. Gunton, and H. D. Rees, “Planar Antennas on a Dielectric Surface,” Electron. Lett. 17(20), 729–731 (1981).
[CrossRef]

IEEE J. Quantum Electron. (2)

S. M. Faris, T. K. Gustafson, and J. C. Wiesner, “Detection of Optical and Infrared Radiation with DC-Biased Electron-Tunneling Metal-Barrier-Metal Diodes,” IEEE J. Quantum Electron. 9(7), 737–745 (1973).
[CrossRef]

M. Heiblum, W. Shihyuan, J. R. Whinnery, and T. K. Gustafson, “Characteristics of Integrated MOM Junctions at DC and at Optical Frequencies,” IEEE J. Quantum Electron. 14(3), 159–169 (1978).
[CrossRef]

IEEE J. Selected Topics Quant. Electron. (1)

P. M. Krenz, B. A. Lail, and G. D. Boreman, “Calibration of Lead-Line Response Contribution in Measured Radiation Patterns of IR Dipole Arrays,” Accepted in IEEE J. Selected Topics Quant. Electron. 99 (2010).

Infrared Phys. (1)

D. B. Rutledge, S. E. Schwarz, and A. T. Adams, “Infrared and Submillimetre Antennas,” Infrared Phys. 18(5-6), 713–729 (1978).
[CrossRef]

Infrared Phys. Technol. (4)

C. Fumeaux, M. Gritz, I. Codreanu, W. Schaich, F. González, and G. Boreman, “Measurement of the resonant lengths of infrared dipole antennas,” Infrared Phys. Technol. 41(5), 271–281 (2000).
[CrossRef]

F. González and G. Boreman, “Comparison of dipole, bowtie, spiral and log-periodic IR antennas,” Infrared Phys. Technol. 46(5), 418–428 (2005).
[CrossRef]

J. A. Bean, B. Tiwari, G. Szakmany, G. Bernstein, P. Fay, and W. Porod, “Antenna length and polarization response of antenna-coupled MOM diode infrared detectors,” Infrared Phys. Technol. 53(3), 182–185 (2010).
[CrossRef]

B. Slovick, P. Krenz, G. Zummo, and G. Boreman, “Evaporation of uniform antireflection coatings on hemispherical lenses to enhance infrared antenna gain,” Infrared Phys. Technol. 53(2), 89–93 (2010).
[CrossRef]

J. Vac. Sci. Technol. B (1)

J. A. Bean, B. Tiwari, G. H. Bernstein, P. Fay, and W. Porod, “Thermal Infrared Detection Using Dipole Antenna-Coupled Metal-Oxide-Metal Diodes,” J. Vac. Sci. Technol. B 27(1), 11–14 (2009).
[CrossRef]

Microwave and Opt, Techn. Lett. (1)

C. Middlebrook, P. Krenz, B. Lail, and G. D. Boreman, “Infrared Phased-Array Antenna,” Microwave and Opt, Techn. Lett. 50(4), 719–723 (2008).
[CrossRef]

Opt. Eng. (1)

P. Krenz, B. Slovick, J. Bean, and G. Boreman, “Alignment procedures for radiation pattern measurements of antenna-coupled infrared detectors,” Opt. Eng. 49(4), 033607 (2010).
[CrossRef]

Philos. Mag. (1)

B. L. Coleman, “Propagation of Electromagnetic Disturbances Along a Thin Wire in a Horizontally Stratified Medium,” Philos. Mag. 41, 276 (1950).

Other (4)

C. Balanis, Antenna Theory: Analysis and Design (John Wiley and Sons, Inc., New York, NY, 1996).

H. J. Visser, Array and Phased Array Antenna Basics (John Wiley & Sons, Ltd., Chichester, West Sussex, England, 2005).

D. B. Rutledge, and M. S. Muha, “Imaging Antenna Arrays,” in IEEE Trans. on Antennas and PropagationAP-30 (4), 535–540 (1982).

E. Hecht, Optics (Addison Wesley Longman, Reading, MA, 1998).
[PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Scanning electron micrograph of a dipole antenna-coupled MOM diode infrared detector. The dipole is 100 nm wide and 60 nm thick. Inset: detail of the MOM diode overlap area, which is approximately 75 x 75 nm.

Fig. 2
Fig. 2

Cross sectional illustration of a device fabricated on a thin insulating film on a germanium hemispherical lens. The hemispherical lens is very large compared to the wavelength of incident radiation, while the thickness of the SiO2 film is very small compared to the incident wavelength. The incident beam is normal to the curved surface and consequently aligned with the device at the center of the lens.

Fig. 3
Fig. 3

H-plane angular response pattern of dipole ACMOMD on 47 nm film of SiO2. The critical angle between Ge and air is approximately 15°, where the peak angular response is measured.

Fig. 4
Fig. 4

H-plane angular response pattern of dipole ACMOMD on 169 nm film of SiO2. The peak angular response is at approximately 15°, which is the critical angle between Ge and air.

Fig. 5
Fig. 5

H-plane angular response pattern of dipole ACMOMD on 475 nm film of SiO2. Again, the peak angular response is measured at the Ge/air critical angle.

Fig. 6
Fig. 6

Cross-sectional view of devices fabricated on a planar substrate with a 1.6 µm layer of BCB above a ground plane, illuminated from the air side. The device responds to radiation from both the air side and the DUT image reflected from the ground plane. As such, a quarter-wave layer of BCB was chosen.

Fig. 7
Fig. 7

H-plane angular response pattern for dipole device on 1.6 µm BCB microcavity above a ground plane.

Fig. 8
Fig. 8

Cross-sectional view of devices fabricated on a germanium hemispherical substrate with a 475 nm layer of SiO2 and then covered with a layer of SiO2 and an aluminum ground plane. This device is illuminated through the germanium half-space. The device responds to radiation incident from the germanium hemisphere and that reflected from the ground plane.

Fig. 9
Fig. 9

H-plane angular response pattern of dipole antenna on 475 nm film of SiO2 below 0.9 μm SiO2 layer with ground plane.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

t = ( 1 + r t f ) ( 1 r i f ) e i δ 1 r t f r i f e i 2 δ ,
δ = 2 π λ 0 d n f 2 n i 2 sin 2 θ .
r 12 = n 1 cos θ n 2 2 n 1 2 sin 2 θ n 1 cos θ + n 2 2 n 1 2 sin 2 θ .
t G P = t [ 1 + exp ( i ϕ ) ] .
ϕ = 4 π h λ 0 n t 2 n i 2 sin 2 θ ± π .

Metrics