Abstract

A novel 1 × N optical power splitter has been proposed, to realize the desired specific optical power splitting, in which the asymmetric Y-branch waveguides based on total internal reflection have been introduced. The simulated results show that the arbitrary expected splitting can be achieved in the device. The device has been fabricated by using polymer materials, and it experimentally exhibits good uniformity at optical power output ports, which is consistent with the simulation prediction. The novel 1 × N optical power splitter has wide potential application in the integrated optical system.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. K. Chung, H. P. Chan, and P. L. Chu, “A 1×4 polarization and wavelength independent optical power splitter based on a novel wide-angle low-loss Y-junction,” Opt. Commun. 267(2), 367–372 (2006).
    [CrossRef]
  2. M. Olivero and M. Svalgaard, “UV-written integrated optical 1×N splitters,” Opt. Express 14(1), 162–170 (2006).
    [CrossRef] [PubMed]
  3. S. Y. Tseng, C. Fuentes-Hernandez, D. Owens, and B. Kippelen, “Variable splitting ratio 2 x 2 MMI couplers using multimode waveguide holograms,” Opt. Express 15(14), 9015–9021 (2007).
    [CrossRef] [PubMed]
  4. K. B. Chung and J. S. Yoon, “Properties of a 1×4 optical power splitter made of photonic crystal waveguides,” Opt. Quantum Electron. 35(10), 959–966 (2003).
    [CrossRef]
  5. M. Bayindir, B. Temelkuran, and E. Ozbay, “Photonic-crystal-based beam splitters,” Appl. Phys. Lett. 77(24), 3902–3904 (2000).
    [CrossRef]
  6. G. Veronis and S. Fan, “Bends and splitters in metal-dielectric-metal subwavelength plasmonic waveguides,” Appl. Phys. Lett. 87(13), 1–3 (2005).
    [CrossRef]
  7. H. Sasaki, E. Shiki, and N. Mikoshiba, “Propagation characteristics of optical guided waves in asymmetric branching waveguides,” IEEE J. Quantum Electron. 17(6), 1051–1057 (1981).
    [CrossRef]
  8. H. Lin, J. Su, R. Cheng, and W. Wang, “Novel optical single-mode asymmetric Y-branches for variable power splitting,” IEEE J. Quantum Electron. 35(7), 1092–1096 (1999).
    [CrossRef]
  9. Y. Qian, J. Song, S. Kim, W. Hu, and G. P. Nordin, “Compact waveguide splitter networks,” Opt. Express 16(7), 4981–4990 (2008).
    [CrossRef] [PubMed]
  10. N. Rahmanian, S. Kim, Y. Lin, and G. P. Nordin, “Air-trench splitters for ultra-compact ring resonators in low refractive index contrast waveguides,” Opt. Express 16(1), 456–465 (2008).
    [CrossRef] [PubMed]
  11. K. Kawano, and T. Kitoh, Introduction to optical waveguide analysis: solving Maxwell’s equations and the SchrÊdinger equation (John Wiley & Sons, Inc., New York, 2001), Chap. 2.
  12. W. H. Wong, K. K. Liu, K. S. Chan, and E. Y. B. Pun, “Polymer devices for photonic applications,” J. Cryst. Growth 288(1), 100–104 (2006).
    [CrossRef]
  13. W. P. Huang and C. L. Xu, “A wide-angle vector beam propagation method,” IEEE Photon. Technol. Lett. 4(10), 1118–1120 (1992).
    [CrossRef]
  14. X. Tang, J. Liao, H. Li, R. Lu, Y. Liu, and M. Dong, “Design for Y-branch waveguides with wide angle and low loss,” Optoelectron. Lett. 5(6), 401–404 (2009).
    [CrossRef]

2009 (1)

X. Tang, J. Liao, H. Li, R. Lu, Y. Liu, and M. Dong, “Design for Y-branch waveguides with wide angle and low loss,” Optoelectron. Lett. 5(6), 401–404 (2009).
[CrossRef]

2008 (2)

2007 (1)

2006 (3)

M. Olivero and M. Svalgaard, “UV-written integrated optical 1×N splitters,” Opt. Express 14(1), 162–170 (2006).
[CrossRef] [PubMed]

K. K. Chung, H. P. Chan, and P. L. Chu, “A 1×4 polarization and wavelength independent optical power splitter based on a novel wide-angle low-loss Y-junction,” Opt. Commun. 267(2), 367–372 (2006).
[CrossRef]

W. H. Wong, K. K. Liu, K. S. Chan, and E. Y. B. Pun, “Polymer devices for photonic applications,” J. Cryst. Growth 288(1), 100–104 (2006).
[CrossRef]

2005 (1)

G. Veronis and S. Fan, “Bends and splitters in metal-dielectric-metal subwavelength plasmonic waveguides,” Appl. Phys. Lett. 87(13), 1–3 (2005).
[CrossRef]

2003 (1)

K. B. Chung and J. S. Yoon, “Properties of a 1×4 optical power splitter made of photonic crystal waveguides,” Opt. Quantum Electron. 35(10), 959–966 (2003).
[CrossRef]

2000 (1)

M. Bayindir, B. Temelkuran, and E. Ozbay, “Photonic-crystal-based beam splitters,” Appl. Phys. Lett. 77(24), 3902–3904 (2000).
[CrossRef]

1999 (1)

H. Lin, J. Su, R. Cheng, and W. Wang, “Novel optical single-mode asymmetric Y-branches for variable power splitting,” IEEE J. Quantum Electron. 35(7), 1092–1096 (1999).
[CrossRef]

1992 (1)

W. P. Huang and C. L. Xu, “A wide-angle vector beam propagation method,” IEEE Photon. Technol. Lett. 4(10), 1118–1120 (1992).
[CrossRef]

1981 (1)

H. Sasaki, E. Shiki, and N. Mikoshiba, “Propagation characteristics of optical guided waves in asymmetric branching waveguides,” IEEE J. Quantum Electron. 17(6), 1051–1057 (1981).
[CrossRef]

Bayindir, M.

M. Bayindir, B. Temelkuran, and E. Ozbay, “Photonic-crystal-based beam splitters,” Appl. Phys. Lett. 77(24), 3902–3904 (2000).
[CrossRef]

Chan, H. P.

K. K. Chung, H. P. Chan, and P. L. Chu, “A 1×4 polarization and wavelength independent optical power splitter based on a novel wide-angle low-loss Y-junction,” Opt. Commun. 267(2), 367–372 (2006).
[CrossRef]

Chan, K. S.

W. H. Wong, K. K. Liu, K. S. Chan, and E. Y. B. Pun, “Polymer devices for photonic applications,” J. Cryst. Growth 288(1), 100–104 (2006).
[CrossRef]

Cheng, R.

H. Lin, J. Su, R. Cheng, and W. Wang, “Novel optical single-mode asymmetric Y-branches for variable power splitting,” IEEE J. Quantum Electron. 35(7), 1092–1096 (1999).
[CrossRef]

Chu, P. L.

K. K. Chung, H. P. Chan, and P. L. Chu, “A 1×4 polarization and wavelength independent optical power splitter based on a novel wide-angle low-loss Y-junction,” Opt. Commun. 267(2), 367–372 (2006).
[CrossRef]

Chung, K. B.

K. B. Chung and J. S. Yoon, “Properties of a 1×4 optical power splitter made of photonic crystal waveguides,” Opt. Quantum Electron. 35(10), 959–966 (2003).
[CrossRef]

Chung, K. K.

K. K. Chung, H. P. Chan, and P. L. Chu, “A 1×4 polarization and wavelength independent optical power splitter based on a novel wide-angle low-loss Y-junction,” Opt. Commun. 267(2), 367–372 (2006).
[CrossRef]

Dong, M.

X. Tang, J. Liao, H. Li, R. Lu, Y. Liu, and M. Dong, “Design for Y-branch waveguides with wide angle and low loss,” Optoelectron. Lett. 5(6), 401–404 (2009).
[CrossRef]

Fan, S.

G. Veronis and S. Fan, “Bends and splitters in metal-dielectric-metal subwavelength plasmonic waveguides,” Appl. Phys. Lett. 87(13), 1–3 (2005).
[CrossRef]

Fuentes-Hernandez, C.

Hu, W.

Huang, W. P.

W. P. Huang and C. L. Xu, “A wide-angle vector beam propagation method,” IEEE Photon. Technol. Lett. 4(10), 1118–1120 (1992).
[CrossRef]

Kim, S.

Kippelen, B.

Li, H.

X. Tang, J. Liao, H. Li, R. Lu, Y. Liu, and M. Dong, “Design for Y-branch waveguides with wide angle and low loss,” Optoelectron. Lett. 5(6), 401–404 (2009).
[CrossRef]

Liao, J.

X. Tang, J. Liao, H. Li, R. Lu, Y. Liu, and M. Dong, “Design for Y-branch waveguides with wide angle and low loss,” Optoelectron. Lett. 5(6), 401–404 (2009).
[CrossRef]

Lin, H.

H. Lin, J. Su, R. Cheng, and W. Wang, “Novel optical single-mode asymmetric Y-branches for variable power splitting,” IEEE J. Quantum Electron. 35(7), 1092–1096 (1999).
[CrossRef]

Lin, Y.

Liu, K. K.

W. H. Wong, K. K. Liu, K. S. Chan, and E. Y. B. Pun, “Polymer devices for photonic applications,” J. Cryst. Growth 288(1), 100–104 (2006).
[CrossRef]

Liu, Y.

X. Tang, J. Liao, H. Li, R. Lu, Y. Liu, and M. Dong, “Design for Y-branch waveguides with wide angle and low loss,” Optoelectron. Lett. 5(6), 401–404 (2009).
[CrossRef]

Lu, R.

X. Tang, J. Liao, H. Li, R. Lu, Y. Liu, and M. Dong, “Design for Y-branch waveguides with wide angle and low loss,” Optoelectron. Lett. 5(6), 401–404 (2009).
[CrossRef]

Mikoshiba, N.

H. Sasaki, E. Shiki, and N. Mikoshiba, “Propagation characteristics of optical guided waves in asymmetric branching waveguides,” IEEE J. Quantum Electron. 17(6), 1051–1057 (1981).
[CrossRef]

Nordin, G. P.

Olivero, M.

Owens, D.

Ozbay, E.

M. Bayindir, B. Temelkuran, and E. Ozbay, “Photonic-crystal-based beam splitters,” Appl. Phys. Lett. 77(24), 3902–3904 (2000).
[CrossRef]

Pun, E. Y. B.

W. H. Wong, K. K. Liu, K. S. Chan, and E. Y. B. Pun, “Polymer devices for photonic applications,” J. Cryst. Growth 288(1), 100–104 (2006).
[CrossRef]

Qian, Y.

Rahmanian, N.

Sasaki, H.

H. Sasaki, E. Shiki, and N. Mikoshiba, “Propagation characteristics of optical guided waves in asymmetric branching waveguides,” IEEE J. Quantum Electron. 17(6), 1051–1057 (1981).
[CrossRef]

Shiki, E.

H. Sasaki, E. Shiki, and N. Mikoshiba, “Propagation characteristics of optical guided waves in asymmetric branching waveguides,” IEEE J. Quantum Electron. 17(6), 1051–1057 (1981).
[CrossRef]

Song, J.

Su, J.

H. Lin, J. Su, R. Cheng, and W. Wang, “Novel optical single-mode asymmetric Y-branches for variable power splitting,” IEEE J. Quantum Electron. 35(7), 1092–1096 (1999).
[CrossRef]

Svalgaard, M.

Tang, X.

X. Tang, J. Liao, H. Li, R. Lu, Y. Liu, and M. Dong, “Design for Y-branch waveguides with wide angle and low loss,” Optoelectron. Lett. 5(6), 401–404 (2009).
[CrossRef]

Temelkuran, B.

M. Bayindir, B. Temelkuran, and E. Ozbay, “Photonic-crystal-based beam splitters,” Appl. Phys. Lett. 77(24), 3902–3904 (2000).
[CrossRef]

Tseng, S. Y.

Veronis, G.

G. Veronis and S. Fan, “Bends and splitters in metal-dielectric-metal subwavelength plasmonic waveguides,” Appl. Phys. Lett. 87(13), 1–3 (2005).
[CrossRef]

Wang, W.

H. Lin, J. Su, R. Cheng, and W. Wang, “Novel optical single-mode asymmetric Y-branches for variable power splitting,” IEEE J. Quantum Electron. 35(7), 1092–1096 (1999).
[CrossRef]

Wong, W. H.

W. H. Wong, K. K. Liu, K. S. Chan, and E. Y. B. Pun, “Polymer devices for photonic applications,” J. Cryst. Growth 288(1), 100–104 (2006).
[CrossRef]

Xu, C. L.

W. P. Huang and C. L. Xu, “A wide-angle vector beam propagation method,” IEEE Photon. Technol. Lett. 4(10), 1118–1120 (1992).
[CrossRef]

Yoon, J. S.

K. B. Chung and J. S. Yoon, “Properties of a 1×4 optical power splitter made of photonic crystal waveguides,” Opt. Quantum Electron. 35(10), 959–966 (2003).
[CrossRef]

Appl. Phys. Lett. (2)

M. Bayindir, B. Temelkuran, and E. Ozbay, “Photonic-crystal-based beam splitters,” Appl. Phys. Lett. 77(24), 3902–3904 (2000).
[CrossRef]

G. Veronis and S. Fan, “Bends and splitters in metal-dielectric-metal subwavelength plasmonic waveguides,” Appl. Phys. Lett. 87(13), 1–3 (2005).
[CrossRef]

IEEE J. Quantum Electron. (2)

H. Sasaki, E. Shiki, and N. Mikoshiba, “Propagation characteristics of optical guided waves in asymmetric branching waveguides,” IEEE J. Quantum Electron. 17(6), 1051–1057 (1981).
[CrossRef]

H. Lin, J. Su, R. Cheng, and W. Wang, “Novel optical single-mode asymmetric Y-branches for variable power splitting,” IEEE J. Quantum Electron. 35(7), 1092–1096 (1999).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

W. P. Huang and C. L. Xu, “A wide-angle vector beam propagation method,” IEEE Photon. Technol. Lett. 4(10), 1118–1120 (1992).
[CrossRef]

J. Cryst. Growth (1)

W. H. Wong, K. K. Liu, K. S. Chan, and E. Y. B. Pun, “Polymer devices for photonic applications,” J. Cryst. Growth 288(1), 100–104 (2006).
[CrossRef]

Opt. Commun. (1)

K. K. Chung, H. P. Chan, and P. L. Chu, “A 1×4 polarization and wavelength independent optical power splitter based on a novel wide-angle low-loss Y-junction,” Opt. Commun. 267(2), 367–372 (2006).
[CrossRef]

Opt. Express (4)

Opt. Quantum Electron. (1)

K. B. Chung and J. S. Yoon, “Properties of a 1×4 optical power splitter made of photonic crystal waveguides,” Opt. Quantum Electron. 35(10), 959–966 (2003).
[CrossRef]

Optoelectron. Lett. (1)

X. Tang, J. Liao, H. Li, R. Lu, Y. Liu, and M. Dong, “Design for Y-branch waveguides with wide angle and low loss,” Optoelectron. Lett. 5(6), 401–404 (2009).
[CrossRef]

Other (1)

K. Kawano, and T. Kitoh, Introduction to optical waveguide analysis: solving Maxwell’s equations and the SchrÊdinger equation (John Wiley & Sons, Inc., New York, 2001), Chap. 2.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Proposed structure of optical power splitter.

Fig. 2
Fig. 2

(a) structure of asymmetric Y-branch waveguide, (b) cross-section view of waveguide structure, (c) their corresponding effective refractive index in different region.

Fig. 3
Fig. 3

Normalized optical power output of branch waveguide with different Δ x .

Fig. 4
Fig. 4

Normalized optical power output of branch waveguide, under different operation wavelength condition.

Fig. 5
Fig. 5

The simulated results for optical field propagation in the 1 × 4 optical power splitter, (a) TM polarization state, (a) TE polarization state.

Fig. 6
Fig. 6

(a) fabricated 1 × 4 optical power splitter, (b) the close-up view of waveguide at the branching point.

Tables (1)

Tables Icon

Table 1 Measured optical power at each output port.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

P L 1 : P R 1 = η 1 : [ η 2 + ( η 3 + η 4 ) / T 3 ] / T 2
P L 2 : P R 2 = η 2 : ( η 3 + η 4 ) / T 3
P L 3 : P R 3 = η 3 : η 4
θ = θ 2 = 2 θ 1
θ 1 θ 1max = arc cos ( N 1 / N 2 )

Metrics