Abstract

We propose a novel SPP coupling scheme capable of high SPP throughput and high SPP coupling efficiency based on a slit of width greater than the wavelength, immersed in a uniform dielectric. The dispersive properties of the slit are engineered such that the slit sustains a low-loss higher-order waveguide mode just above cutoff, which is shown to be amenable to wavevector matching to the SPP mode at the slit exit. The SPP throughput and SPP coupling efficiency are quantified by numerical simulations of visible light propagation through the slit for varying width and dielectric refractive index. An optimal SPP coupling configuration satisfying wavevector matching is shown to yield an order-of-magnitude greater SPP throughput than a comparable slit of sub-wavelength width and a peak SPP coupling efficiency ≃ 68%. To our knowledge, this is the first investigation of coupling between higher-order waveguide modes in slits of super-wavelength width and SPP modes.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. A. Maier, M. L. Brongersma, P. G. Kik, S. Meltzer, A. A. G. Requicha, and H. A. Atwater, “Plasmonics – a route to nanoscale optical devices,” Adv. Mater. 13, 1501–1505 (2001).
    [CrossRef]
  2. T. Nikolajsen, K. Leosson, I. Salakhutdinov, and S. I. Bozhevolnyi, “Polymer-based surface-plasmon-polariton stripe waveguides at telecommunication wavelengths,” Appl. Phys. Lett. 82, 668–670 (2003).
    [CrossRef]
  3. R. Mehfuz, M. W. Maqsood, and K. J. Chau, “Enhancing the efficiency of slit-coupling to surface-plasmon-polaritons via dispersion engineering,” Opt. Express 18, 18206–18216 (2010).
    [CrossRef] [PubMed]
  4. P. Lalanne, J. P. Hugonin, and J. C. Rodier, “Theory of Surface Plasmon Generation at Nanoslit Apertures,” Phys. Rev. Lett. 95, 263902 (2005).
    [CrossRef]
  5. P. Lalanne, J. P. Hugonin, and J. C. Rodier, “Approximate model for surface-plasmon generation at slit apertures,” J. Opt. Soc. Am. A 23, 1608–1615 (2006).
    [CrossRef]
  6. S. Astilean, Ph. Lalanne, and M. Palamaru, “Light transmission through metallic channels much smaller than the wavelength,” Opt. Commun. 175, 265–273 (2000).
    [CrossRef]
  7. H. W. Kihm, K. G. Lee, D. S. Kim, J. H. Kang, and Q.-H. Park, “Control of surface plasmon generation efficiency by slit-width tuning,” Appl. Phys. Lett. 92, 051115 (2008).
    [CrossRef]
  8. O. T. A. Janssen, H. P. Urbach, and G. W. ’t Hooft, “On the phase of plasmons excited by slits in a metal film,” Opt. Express 14, 11823–11832 (2006).
    [CrossRef] [PubMed]
  9. Y. Takakura, “Optical Resonance in a Narrow Slit in a Thick Metallic Screen,” Phys. Rev. Lett. 86, 5601–5603 (2001).
    [CrossRef] [PubMed]
  10. R. D. Kekatpure, A. C. Hryciw, E. S. Barnard, and M. L. Brongersma, “Solving dielectric and plasmonic waveguide dispersion relations on a pocket calculator,” Opt. Express 17, 24112–24129 (2009).
    [CrossRef]
  11. S. H. Talisa, “Application of Davidenko’s method to the solution of dispersion relations in lossy waveguiding systems,” IEEE Trans. Microw. Theory Tech. 33, 967–971 (1985).
    [CrossRef]
  12. P. B. Johnson, and R. W. Christy, “Optical Constants of the Noble Metals,” Phys. Rev. B 4, 43704379 (1972).
  13. M. W. Kowarz, “Homogeneous and evanescent contributions in scalar near-field diffraction,” Appl. Opt. 34, 3055–3063 (1995).
    [CrossRef] [PubMed]

2010

2009

2008

H. W. Kihm, K. G. Lee, D. S. Kim, J. H. Kang, and Q.-H. Park, “Control of surface plasmon generation efficiency by slit-width tuning,” Appl. Phys. Lett. 92, 051115 (2008).
[CrossRef]

2006

2005

P. Lalanne, J. P. Hugonin, and J. C. Rodier, “Theory of Surface Plasmon Generation at Nanoslit Apertures,” Phys. Rev. Lett. 95, 263902 (2005).
[CrossRef]

2003

T. Nikolajsen, K. Leosson, I. Salakhutdinov, and S. I. Bozhevolnyi, “Polymer-based surface-plasmon-polariton stripe waveguides at telecommunication wavelengths,” Appl. Phys. Lett. 82, 668–670 (2003).
[CrossRef]

2001

S. A. Maier, M. L. Brongersma, P. G. Kik, S. Meltzer, A. A. G. Requicha, and H. A. Atwater, “Plasmonics – a route to nanoscale optical devices,” Adv. Mater. 13, 1501–1505 (2001).
[CrossRef]

Y. Takakura, “Optical Resonance in a Narrow Slit in a Thick Metallic Screen,” Phys. Rev. Lett. 86, 5601–5603 (2001).
[CrossRef] [PubMed]

2000

S. Astilean, Ph. Lalanne, and M. Palamaru, “Light transmission through metallic channels much smaller than the wavelength,” Opt. Commun. 175, 265–273 (2000).
[CrossRef]

1995

1985

S. H. Talisa, “Application of Davidenko’s method to the solution of dispersion relations in lossy waveguiding systems,” IEEE Trans. Microw. Theory Tech. 33, 967–971 (1985).
[CrossRef]

1972

P. B. Johnson, and R. W. Christy, “Optical Constants of the Noble Metals,” Phys. Rev. B 4, 43704379 (1972).

’t Hooft, G. W.

Astilean, S.

S. Astilean, Ph. Lalanne, and M. Palamaru, “Light transmission through metallic channels much smaller than the wavelength,” Opt. Commun. 175, 265–273 (2000).
[CrossRef]

Atwater, H. A.

S. A. Maier, M. L. Brongersma, P. G. Kik, S. Meltzer, A. A. G. Requicha, and H. A. Atwater, “Plasmonics – a route to nanoscale optical devices,” Adv. Mater. 13, 1501–1505 (2001).
[CrossRef]

Barnard, E. S.

Bozhevolnyi, S. I.

T. Nikolajsen, K. Leosson, I. Salakhutdinov, and S. I. Bozhevolnyi, “Polymer-based surface-plasmon-polariton stripe waveguides at telecommunication wavelengths,” Appl. Phys. Lett. 82, 668–670 (2003).
[CrossRef]

Brongersma, M. L.

R. D. Kekatpure, A. C. Hryciw, E. S. Barnard, and M. L. Brongersma, “Solving dielectric and plasmonic waveguide dispersion relations on a pocket calculator,” Opt. Express 17, 24112–24129 (2009).
[CrossRef]

S. A. Maier, M. L. Brongersma, P. G. Kik, S. Meltzer, A. A. G. Requicha, and H. A. Atwater, “Plasmonics – a route to nanoscale optical devices,” Adv. Mater. 13, 1501–1505 (2001).
[CrossRef]

Chau, K. J.

Christy, R. W.

P. B. Johnson, and R. W. Christy, “Optical Constants of the Noble Metals,” Phys. Rev. B 4, 43704379 (1972).

Hryciw, A. C.

Hugonin, J. P.

P. Lalanne, J. P. Hugonin, and J. C. Rodier, “Approximate model for surface-plasmon generation at slit apertures,” J. Opt. Soc. Am. A 23, 1608–1615 (2006).
[CrossRef]

P. Lalanne, J. P. Hugonin, and J. C. Rodier, “Theory of Surface Plasmon Generation at Nanoslit Apertures,” Phys. Rev. Lett. 95, 263902 (2005).
[CrossRef]

Janssen, O. T. A.

Johnson, P. B.

P. B. Johnson, and R. W. Christy, “Optical Constants of the Noble Metals,” Phys. Rev. B 4, 43704379 (1972).

Kang, J. H.

H. W. Kihm, K. G. Lee, D. S. Kim, J. H. Kang, and Q.-H. Park, “Control of surface plasmon generation efficiency by slit-width tuning,” Appl. Phys. Lett. 92, 051115 (2008).
[CrossRef]

Kekatpure, R. D.

Kihm, H. W.

H. W. Kihm, K. G. Lee, D. S. Kim, J. H. Kang, and Q.-H. Park, “Control of surface plasmon generation efficiency by slit-width tuning,” Appl. Phys. Lett. 92, 051115 (2008).
[CrossRef]

Kik, P. G.

S. A. Maier, M. L. Brongersma, P. G. Kik, S. Meltzer, A. A. G. Requicha, and H. A. Atwater, “Plasmonics – a route to nanoscale optical devices,” Adv. Mater. 13, 1501–1505 (2001).
[CrossRef]

Kim, D. S.

H. W. Kihm, K. G. Lee, D. S. Kim, J. H. Kang, and Q.-H. Park, “Control of surface plasmon generation efficiency by slit-width tuning,” Appl. Phys. Lett. 92, 051115 (2008).
[CrossRef]

Kowarz, M. W.

Lalanne, P.

P. Lalanne, J. P. Hugonin, and J. C. Rodier, “Approximate model for surface-plasmon generation at slit apertures,” J. Opt. Soc. Am. A 23, 1608–1615 (2006).
[CrossRef]

P. Lalanne, J. P. Hugonin, and J. C. Rodier, “Theory of Surface Plasmon Generation at Nanoslit Apertures,” Phys. Rev. Lett. 95, 263902 (2005).
[CrossRef]

Lalanne, Ph.

S. Astilean, Ph. Lalanne, and M. Palamaru, “Light transmission through metallic channels much smaller than the wavelength,” Opt. Commun. 175, 265–273 (2000).
[CrossRef]

Lee, K. G.

H. W. Kihm, K. G. Lee, D. S. Kim, J. H. Kang, and Q.-H. Park, “Control of surface plasmon generation efficiency by slit-width tuning,” Appl. Phys. Lett. 92, 051115 (2008).
[CrossRef]

Leosson, K.

T. Nikolajsen, K. Leosson, I. Salakhutdinov, and S. I. Bozhevolnyi, “Polymer-based surface-plasmon-polariton stripe waveguides at telecommunication wavelengths,” Appl. Phys. Lett. 82, 668–670 (2003).
[CrossRef]

Maier, S. A.

S. A. Maier, M. L. Brongersma, P. G. Kik, S. Meltzer, A. A. G. Requicha, and H. A. Atwater, “Plasmonics – a route to nanoscale optical devices,” Adv. Mater. 13, 1501–1505 (2001).
[CrossRef]

Maqsood, M. W.

Mehfuz, R.

Meltzer, S.

S. A. Maier, M. L. Brongersma, P. G. Kik, S. Meltzer, A. A. G. Requicha, and H. A. Atwater, “Plasmonics – a route to nanoscale optical devices,” Adv. Mater. 13, 1501–1505 (2001).
[CrossRef]

Nikolajsen, T.

T. Nikolajsen, K. Leosson, I. Salakhutdinov, and S. I. Bozhevolnyi, “Polymer-based surface-plasmon-polariton stripe waveguides at telecommunication wavelengths,” Appl. Phys. Lett. 82, 668–670 (2003).
[CrossRef]

Palamaru, M.

S. Astilean, Ph. Lalanne, and M. Palamaru, “Light transmission through metallic channels much smaller than the wavelength,” Opt. Commun. 175, 265–273 (2000).
[CrossRef]

Park, Q.-H.

H. W. Kihm, K. G. Lee, D. S. Kim, J. H. Kang, and Q.-H. Park, “Control of surface plasmon generation efficiency by slit-width tuning,” Appl. Phys. Lett. 92, 051115 (2008).
[CrossRef]

Requicha, A. A. G.

S. A. Maier, M. L. Brongersma, P. G. Kik, S. Meltzer, A. A. G. Requicha, and H. A. Atwater, “Plasmonics – a route to nanoscale optical devices,” Adv. Mater. 13, 1501–1505 (2001).
[CrossRef]

Rodier, J. C.

P. Lalanne, J. P. Hugonin, and J. C. Rodier, “Approximate model for surface-plasmon generation at slit apertures,” J. Opt. Soc. Am. A 23, 1608–1615 (2006).
[CrossRef]

P. Lalanne, J. P. Hugonin, and J. C. Rodier, “Theory of Surface Plasmon Generation at Nanoslit Apertures,” Phys. Rev. Lett. 95, 263902 (2005).
[CrossRef]

Salakhutdinov, I.

T. Nikolajsen, K. Leosson, I. Salakhutdinov, and S. I. Bozhevolnyi, “Polymer-based surface-plasmon-polariton stripe waveguides at telecommunication wavelengths,” Appl. Phys. Lett. 82, 668–670 (2003).
[CrossRef]

Takakura, Y.

Y. Takakura, “Optical Resonance in a Narrow Slit in a Thick Metallic Screen,” Phys. Rev. Lett. 86, 5601–5603 (2001).
[CrossRef] [PubMed]

Talisa, S. H.

S. H. Talisa, “Application of Davidenko’s method to the solution of dispersion relations in lossy waveguiding systems,” IEEE Trans. Microw. Theory Tech. 33, 967–971 (1985).
[CrossRef]

Urbach, H. P.

Adv. Mater.

S. A. Maier, M. L. Brongersma, P. G. Kik, S. Meltzer, A. A. G. Requicha, and H. A. Atwater, “Plasmonics – a route to nanoscale optical devices,” Adv. Mater. 13, 1501–1505 (2001).
[CrossRef]

Appl. Opt.

Appl. Phys. Lett.

T. Nikolajsen, K. Leosson, I. Salakhutdinov, and S. I. Bozhevolnyi, “Polymer-based surface-plasmon-polariton stripe waveguides at telecommunication wavelengths,” Appl. Phys. Lett. 82, 668–670 (2003).
[CrossRef]

H. W. Kihm, K. G. Lee, D. S. Kim, J. H. Kang, and Q.-H. Park, “Control of surface plasmon generation efficiency by slit-width tuning,” Appl. Phys. Lett. 92, 051115 (2008).
[CrossRef]

IEEE Trans. Microw. Theory Tech.

S. H. Talisa, “Application of Davidenko’s method to the solution of dispersion relations in lossy waveguiding systems,” IEEE Trans. Microw. Theory Tech. 33, 967–971 (1985).
[CrossRef]

J. Opt. Soc. Am. A

Opt. Commun.

S. Astilean, Ph. Lalanne, and M. Palamaru, “Light transmission through metallic channels much smaller than the wavelength,” Opt. Commun. 175, 265–273 (2000).
[CrossRef]

Opt. Express

Phys. Rev. B

P. B. Johnson, and R. W. Christy, “Optical Constants of the Noble Metals,” Phys. Rev. B 4, 43704379 (1972).

Phys. Rev. Lett.

P. Lalanne, J. P. Hugonin, and J. C. Rodier, “Theory of Surface Plasmon Generation at Nanoslit Apertures,” Phys. Rev. Lett. 95, 263902 (2005).
[CrossRef]

Y. Takakura, “Optical Resonance in a Narrow Slit in a Thick Metallic Screen,” Phys. Rev. Lett. 86, 5601–5603 (2001).
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Formulation of a hypothesis for diffraction-assisted SPP coupling by a super-wavelength slit aperture. (a) Figure-of-merit and (b) the real transverse wavevector component versus frequency and wavelength for TM0 and TM1 modes sustained in slits of different widths. (c) Diffraction spectrum corresponding to the TM0 mode in a 200-nm-wide slit and the TM1 modes in 350-nm-wide and 500-nm-wide slits. (d) Wavevector-space depiction of diffraction-assisted SPP coupling from slits of width w = 200nm, w = 350nm, and w = 500nm, immersed in a uniform dielectric of refractive index n = 1.75

Fig. 2
Fig. 2

Images of the FDTD-calculated instantaneous |Hy|2 distribution (left) and the time-averaged |Hy|2 angular distribution (right) for a slit of width values (a) w = 150nm, (a) w = 350nm, and (a) w = 500nm immersed in a dielectric (n=1.75) and illuminated by a quasi-plane-wave of wavelength λ0 = 500nm. A common saturated color scale has been used to accentuate the fields on the exit side of the slit.

Fig. 3
Fig. 3

(a) SPP coupling efficiency as a function of optical slit width for dielectric refractive index values n = 1.0 (squares), n = 1.5 (circles), n = 1.75 (upright triangles), n = 2.0 (inverted triangles), n = 2.5 (diamonds). (b) The measured SPP intensity (squares), radiative intensity (circles), and total intensity (diamonds). The shaded region indicates the sub-wavelength-slit-width regime.

Fig. 4
Fig. 4

Wavevector mismatch Re[kspp] (Re[kx] + κp) as a function of refractive index of the dielectric region for a fixed optical slit width nw = 600nm and free-space wavelength λ0 = 500nm.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

FOM = | Re [ k _ z ] | | Im [ k _ z ] | ,
k _ x = k 2 k _ z 2 ,
η = 1 1 + I r / I s p p .

Metrics