Abstract

We report on conversion of near-ultraviolet and visible radiation ranging from 250 to 500nm into near-infrared emission by a Ca8Mg(SiO4)4Cl2: Eu2+, Er3+ phosphor. Efficient 1530-1560nm Er3+ emission (4I13/2→4I15/2) was detected under the excitation of Eu2+ (4f→5d) absorption band as a result of energy transfer from Eu2+ to Er3+, which is confirmed by both steady state and time-resolved emission spectra. The laser power dependent emission intensity changes were investigated to analysis the energy transfer mechanism. Energy transfer from Eu2+ to Er3+ followed by a multi-photon quantum cutting of Er3+ is proposed. The result indicates that the phosphor has potential application in enhancement of conversion efficient of germanium solar cells because the energy difference of Er3+: 4I13/2→4I15/2 transition matches well with the bandgap of Ge (Eg~0.785 eV).

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. Trupke, M. A. Green, and P. Wurfel, “Improving solar cell efficiencies by down-conversion of high-energy photons,” J. Appl. Phys. 92(3), 1668 (2002).
    [CrossRef]
  2. B. S. Richards, “Luminescent layers for enhanced silicon solar cell performance: Down-conversion,” Sol. Energy Mater. Sol. Cells 90(9), 1189–1207 (2006).
    [CrossRef]
  3. B. M. van der Ende, L. Aarts, and A. Meijerink, “Near-Infrared Quantum Cutting for Photovoltaics,” Adv. Mater. 21(30), 3073–5307 (2009).
    [CrossRef]
  4. S. Ye, B. Zhu, J. Luo, J. Chen, G. Lakshminarayana, and J. R. Qiu, “Enhanced cooperative quantum cutting in Tm3+- Yb3+ codoped glass ceramics containing LaF3 nanocrystals,” Opt. Express 16(12), 8989–8994 (2008).
    [CrossRef] [PubMed]
  5. Q. Y. Zhang, G. F. Yang, and Z. H. Jiang, “Cooperative downconversion in GdAl3(BO3)4:RE3+,Yb3+ (RE=Pr, Tb, and Tm),” Appl. Phys. Lett. 91(5), 051903 (2007).
    [CrossRef]
  6. S. Ye, B. Zhu, J. X. Chen, J. Luo, and J. R. Qiu, “Infrared quantum cutting in Tb3+,Yb3+ codoped transparent glass ceramics containing CaF2 nanocrystals,” Appl. Phys. Lett. 92(14), 141112 (2008).
    [CrossRef]
  7. J. Hecht, Laser Focus World, (Nov 1, 2007).
  8. J. Ueda and S. Tanabe, “Visible to near infrared conversion in Ce3+-Yb3+ co-doped YAG ceramics,” J. Appl. Phys. 106(4), 043101 (2009).
    [CrossRef]
  9. B. M. van der Ende, L. Aarts, and A. Meijerink, “Lanthanide ions as spectral converters for solar cells,” Phys. Chem. Chem. Phys. 11(47), 11081–11095 (2009).
    [CrossRef] [PubMed]
  10. J. J. Zhou, Y. X. Zhuang, S. Ye, Y. Teng, G. Lin, B. Zhu, J. H. Xie, and J. R. Qiu, “Broadband downconversion based infrared quantum cutting by cooperative energy transfer from Eu2+ to Yb3+ in glasses,” Appl. Phys. Lett. 95(14), 141101 (2009).
    [CrossRef]
  11. D. Q. Chen, Y. S. Wang, Y. L. Yu, P. Huang, and F. Y. Weng, “Quantum cutting downconversion by cooperative energy transfer from Ce3+ to Yb3+ in borate glasses,” J. Appl. Phys. 104(11), 116105 (2008).
    [CrossRef]
  12. X. B. Chen, J. G. Wu, X. Xu, Y. Z. Zhang, N. Sawanobori, C. L. Zhang, Q. H. Pan, and G. J. Salamo, “Three-photon infrared quantum cutting from single species of rare-earth Er3+ ions in Er0.3Gd0.7VO4 crystalline,” Opt. Lett. 34(7), 887–889 (2009).
    [CrossRef] [PubMed]
  13. X. Zhang and X. R. Liu, “Luminescence Properties and Energy Transfer of Eu2+ Doped Ca8Mg(Si04)4Cl2 Phosphors,” J. Electrochem. Soc. 139(2), 622–625 (1992).
    [CrossRef]
  14. M. Y. Peng, Z. W. Pei, G. Y. Hong, and Q. Su, “Study on the reduction of Eu3+→Eu2+ in Sr4Al14O25:Eu prepared in air atmosphere,” Chem. Phys. Lett. 371(1-2), 1–6 (2003).
    [CrossRef]

2009 (5)

B. M. van der Ende, L. Aarts, and A. Meijerink, “Near-Infrared Quantum Cutting for Photovoltaics,” Adv. Mater. 21(30), 3073–5307 (2009).
[CrossRef]

J. Ueda and S. Tanabe, “Visible to near infrared conversion in Ce3+-Yb3+ co-doped YAG ceramics,” J. Appl. Phys. 106(4), 043101 (2009).
[CrossRef]

B. M. van der Ende, L. Aarts, and A. Meijerink, “Lanthanide ions as spectral converters for solar cells,” Phys. Chem. Chem. Phys. 11(47), 11081–11095 (2009).
[CrossRef] [PubMed]

J. J. Zhou, Y. X. Zhuang, S. Ye, Y. Teng, G. Lin, B. Zhu, J. H. Xie, and J. R. Qiu, “Broadband downconversion based infrared quantum cutting by cooperative energy transfer from Eu2+ to Yb3+ in glasses,” Appl. Phys. Lett. 95(14), 141101 (2009).
[CrossRef]

X. B. Chen, J. G. Wu, X. Xu, Y. Z. Zhang, N. Sawanobori, C. L. Zhang, Q. H. Pan, and G. J. Salamo, “Three-photon infrared quantum cutting from single species of rare-earth Er3+ ions in Er0.3Gd0.7VO4 crystalline,” Opt. Lett. 34(7), 887–889 (2009).
[CrossRef] [PubMed]

2008 (3)

S. Ye, B. Zhu, J. Luo, J. Chen, G. Lakshminarayana, and J. R. Qiu, “Enhanced cooperative quantum cutting in Tm3+- Yb3+ codoped glass ceramics containing LaF3 nanocrystals,” Opt. Express 16(12), 8989–8994 (2008).
[CrossRef] [PubMed]

S. Ye, B. Zhu, J. X. Chen, J. Luo, and J. R. Qiu, “Infrared quantum cutting in Tb3+,Yb3+ codoped transparent glass ceramics containing CaF2 nanocrystals,” Appl. Phys. Lett. 92(14), 141112 (2008).
[CrossRef]

D. Q. Chen, Y. S. Wang, Y. L. Yu, P. Huang, and F. Y. Weng, “Quantum cutting downconversion by cooperative energy transfer from Ce3+ to Yb3+ in borate glasses,” J. Appl. Phys. 104(11), 116105 (2008).
[CrossRef]

2007 (1)

Q. Y. Zhang, G. F. Yang, and Z. H. Jiang, “Cooperative downconversion in GdAl3(BO3)4:RE3+,Yb3+ (RE=Pr, Tb, and Tm),” Appl. Phys. Lett. 91(5), 051903 (2007).
[CrossRef]

2006 (1)

B. S. Richards, “Luminescent layers for enhanced silicon solar cell performance: Down-conversion,” Sol. Energy Mater. Sol. Cells 90(9), 1189–1207 (2006).
[CrossRef]

2003 (1)

M. Y. Peng, Z. W. Pei, G. Y. Hong, and Q. Su, “Study on the reduction of Eu3+→Eu2+ in Sr4Al14O25:Eu prepared in air atmosphere,” Chem. Phys. Lett. 371(1-2), 1–6 (2003).
[CrossRef]

2002 (1)

T. Trupke, M. A. Green, and P. Wurfel, “Improving solar cell efficiencies by down-conversion of high-energy photons,” J. Appl. Phys. 92(3), 1668 (2002).
[CrossRef]

1992 (1)

X. Zhang and X. R. Liu, “Luminescence Properties and Energy Transfer of Eu2+ Doped Ca8Mg(Si04)4Cl2 Phosphors,” J. Electrochem. Soc. 139(2), 622–625 (1992).
[CrossRef]

Aarts, L.

B. M. van der Ende, L. Aarts, and A. Meijerink, “Lanthanide ions as spectral converters for solar cells,” Phys. Chem. Chem. Phys. 11(47), 11081–11095 (2009).
[CrossRef] [PubMed]

B. M. van der Ende, L. Aarts, and A. Meijerink, “Near-Infrared Quantum Cutting for Photovoltaics,” Adv. Mater. 21(30), 3073–5307 (2009).
[CrossRef]

Chen, D. Q.

D. Q. Chen, Y. S. Wang, Y. L. Yu, P. Huang, and F. Y. Weng, “Quantum cutting downconversion by cooperative energy transfer from Ce3+ to Yb3+ in borate glasses,” J. Appl. Phys. 104(11), 116105 (2008).
[CrossRef]

Chen, J.

Chen, J. X.

S. Ye, B. Zhu, J. X. Chen, J. Luo, and J. R. Qiu, “Infrared quantum cutting in Tb3+,Yb3+ codoped transparent glass ceramics containing CaF2 nanocrystals,” Appl. Phys. Lett. 92(14), 141112 (2008).
[CrossRef]

Chen, X. B.

Green, M. A.

T. Trupke, M. A. Green, and P. Wurfel, “Improving solar cell efficiencies by down-conversion of high-energy photons,” J. Appl. Phys. 92(3), 1668 (2002).
[CrossRef]

Hong, G. Y.

M. Y. Peng, Z. W. Pei, G. Y. Hong, and Q. Su, “Study on the reduction of Eu3+→Eu2+ in Sr4Al14O25:Eu prepared in air atmosphere,” Chem. Phys. Lett. 371(1-2), 1–6 (2003).
[CrossRef]

Huang, P.

D. Q. Chen, Y. S. Wang, Y. L. Yu, P. Huang, and F. Y. Weng, “Quantum cutting downconversion by cooperative energy transfer from Ce3+ to Yb3+ in borate glasses,” J. Appl. Phys. 104(11), 116105 (2008).
[CrossRef]

Jiang, Z. H.

Q. Y. Zhang, G. F. Yang, and Z. H. Jiang, “Cooperative downconversion in GdAl3(BO3)4:RE3+,Yb3+ (RE=Pr, Tb, and Tm),” Appl. Phys. Lett. 91(5), 051903 (2007).
[CrossRef]

Lakshminarayana, G.

Lin, G.

J. J. Zhou, Y. X. Zhuang, S. Ye, Y. Teng, G. Lin, B. Zhu, J. H. Xie, and J. R. Qiu, “Broadband downconversion based infrared quantum cutting by cooperative energy transfer from Eu2+ to Yb3+ in glasses,” Appl. Phys. Lett. 95(14), 141101 (2009).
[CrossRef]

Liu, X. R.

X. Zhang and X. R. Liu, “Luminescence Properties and Energy Transfer of Eu2+ Doped Ca8Mg(Si04)4Cl2 Phosphors,” J. Electrochem. Soc. 139(2), 622–625 (1992).
[CrossRef]

Luo, J.

S. Ye, B. Zhu, J. X. Chen, J. Luo, and J. R. Qiu, “Infrared quantum cutting in Tb3+,Yb3+ codoped transparent glass ceramics containing CaF2 nanocrystals,” Appl. Phys. Lett. 92(14), 141112 (2008).
[CrossRef]

S. Ye, B. Zhu, J. Luo, J. Chen, G. Lakshminarayana, and J. R. Qiu, “Enhanced cooperative quantum cutting in Tm3+- Yb3+ codoped glass ceramics containing LaF3 nanocrystals,” Opt. Express 16(12), 8989–8994 (2008).
[CrossRef] [PubMed]

Meijerink, A.

B. M. van der Ende, L. Aarts, and A. Meijerink, “Lanthanide ions as spectral converters for solar cells,” Phys. Chem. Chem. Phys. 11(47), 11081–11095 (2009).
[CrossRef] [PubMed]

B. M. van der Ende, L. Aarts, and A. Meijerink, “Near-Infrared Quantum Cutting for Photovoltaics,” Adv. Mater. 21(30), 3073–5307 (2009).
[CrossRef]

Pan, Q. H.

Pei, Z. W.

M. Y. Peng, Z. W. Pei, G. Y. Hong, and Q. Su, “Study on the reduction of Eu3+→Eu2+ in Sr4Al14O25:Eu prepared in air atmosphere,” Chem. Phys. Lett. 371(1-2), 1–6 (2003).
[CrossRef]

Peng, M. Y.

M. Y. Peng, Z. W. Pei, G. Y. Hong, and Q. Su, “Study on the reduction of Eu3+→Eu2+ in Sr4Al14O25:Eu prepared in air atmosphere,” Chem. Phys. Lett. 371(1-2), 1–6 (2003).
[CrossRef]

Qiu, J. R.

J. J. Zhou, Y. X. Zhuang, S. Ye, Y. Teng, G. Lin, B. Zhu, J. H. Xie, and J. R. Qiu, “Broadband downconversion based infrared quantum cutting by cooperative energy transfer from Eu2+ to Yb3+ in glasses,” Appl. Phys. Lett. 95(14), 141101 (2009).
[CrossRef]

S. Ye, B. Zhu, J. X. Chen, J. Luo, and J. R. Qiu, “Infrared quantum cutting in Tb3+,Yb3+ codoped transparent glass ceramics containing CaF2 nanocrystals,” Appl. Phys. Lett. 92(14), 141112 (2008).
[CrossRef]

S. Ye, B. Zhu, J. Luo, J. Chen, G. Lakshminarayana, and J. R. Qiu, “Enhanced cooperative quantum cutting in Tm3+- Yb3+ codoped glass ceramics containing LaF3 nanocrystals,” Opt. Express 16(12), 8989–8994 (2008).
[CrossRef] [PubMed]

Richards, B. S.

B. S. Richards, “Luminescent layers for enhanced silicon solar cell performance: Down-conversion,” Sol. Energy Mater. Sol. Cells 90(9), 1189–1207 (2006).
[CrossRef]

Salamo, G. J.

Sawanobori, N.

Su, Q.

M. Y. Peng, Z. W. Pei, G. Y. Hong, and Q. Su, “Study on the reduction of Eu3+→Eu2+ in Sr4Al14O25:Eu prepared in air atmosphere,” Chem. Phys. Lett. 371(1-2), 1–6 (2003).
[CrossRef]

Tanabe, S.

J. Ueda and S. Tanabe, “Visible to near infrared conversion in Ce3+-Yb3+ co-doped YAG ceramics,” J. Appl. Phys. 106(4), 043101 (2009).
[CrossRef]

Teng, Y.

J. J. Zhou, Y. X. Zhuang, S. Ye, Y. Teng, G. Lin, B. Zhu, J. H. Xie, and J. R. Qiu, “Broadband downconversion based infrared quantum cutting by cooperative energy transfer from Eu2+ to Yb3+ in glasses,” Appl. Phys. Lett. 95(14), 141101 (2009).
[CrossRef]

Trupke, T.

T. Trupke, M. A. Green, and P. Wurfel, “Improving solar cell efficiencies by down-conversion of high-energy photons,” J. Appl. Phys. 92(3), 1668 (2002).
[CrossRef]

Ueda, J.

J. Ueda and S. Tanabe, “Visible to near infrared conversion in Ce3+-Yb3+ co-doped YAG ceramics,” J. Appl. Phys. 106(4), 043101 (2009).
[CrossRef]

van der Ende, B. M.

B. M. van der Ende, L. Aarts, and A. Meijerink, “Lanthanide ions as spectral converters for solar cells,” Phys. Chem. Chem. Phys. 11(47), 11081–11095 (2009).
[CrossRef] [PubMed]

B. M. van der Ende, L. Aarts, and A. Meijerink, “Near-Infrared Quantum Cutting for Photovoltaics,” Adv. Mater. 21(30), 3073–5307 (2009).
[CrossRef]

Wang, Y. S.

D. Q. Chen, Y. S. Wang, Y. L. Yu, P. Huang, and F. Y. Weng, “Quantum cutting downconversion by cooperative energy transfer from Ce3+ to Yb3+ in borate glasses,” J. Appl. Phys. 104(11), 116105 (2008).
[CrossRef]

Weng, F. Y.

D. Q. Chen, Y. S. Wang, Y. L. Yu, P. Huang, and F. Y. Weng, “Quantum cutting downconversion by cooperative energy transfer from Ce3+ to Yb3+ in borate glasses,” J. Appl. Phys. 104(11), 116105 (2008).
[CrossRef]

Wu, J. G.

Wurfel, P.

T. Trupke, M. A. Green, and P. Wurfel, “Improving solar cell efficiencies by down-conversion of high-energy photons,” J. Appl. Phys. 92(3), 1668 (2002).
[CrossRef]

Xie, J. H.

J. J. Zhou, Y. X. Zhuang, S. Ye, Y. Teng, G. Lin, B. Zhu, J. H. Xie, and J. R. Qiu, “Broadband downconversion based infrared quantum cutting by cooperative energy transfer from Eu2+ to Yb3+ in glasses,” Appl. Phys. Lett. 95(14), 141101 (2009).
[CrossRef]

Xu, X.

Yang, G. F.

Q. Y. Zhang, G. F. Yang, and Z. H. Jiang, “Cooperative downconversion in GdAl3(BO3)4:RE3+,Yb3+ (RE=Pr, Tb, and Tm),” Appl. Phys. Lett. 91(5), 051903 (2007).
[CrossRef]

Ye, S.

J. J. Zhou, Y. X. Zhuang, S. Ye, Y. Teng, G. Lin, B. Zhu, J. H. Xie, and J. R. Qiu, “Broadband downconversion based infrared quantum cutting by cooperative energy transfer from Eu2+ to Yb3+ in glasses,” Appl. Phys. Lett. 95(14), 141101 (2009).
[CrossRef]

S. Ye, B. Zhu, J. X. Chen, J. Luo, and J. R. Qiu, “Infrared quantum cutting in Tb3+,Yb3+ codoped transparent glass ceramics containing CaF2 nanocrystals,” Appl. Phys. Lett. 92(14), 141112 (2008).
[CrossRef]

S. Ye, B. Zhu, J. Luo, J. Chen, G. Lakshminarayana, and J. R. Qiu, “Enhanced cooperative quantum cutting in Tm3+- Yb3+ codoped glass ceramics containing LaF3 nanocrystals,” Opt. Express 16(12), 8989–8994 (2008).
[CrossRef] [PubMed]

Yu, Y. L.

D. Q. Chen, Y. S. Wang, Y. L. Yu, P. Huang, and F. Y. Weng, “Quantum cutting downconversion by cooperative energy transfer from Ce3+ to Yb3+ in borate glasses,” J. Appl. Phys. 104(11), 116105 (2008).
[CrossRef]

Zhang, C. L.

Zhang, Q. Y.

Q. Y. Zhang, G. F. Yang, and Z. H. Jiang, “Cooperative downconversion in GdAl3(BO3)4:RE3+,Yb3+ (RE=Pr, Tb, and Tm),” Appl. Phys. Lett. 91(5), 051903 (2007).
[CrossRef]

Zhang, X.

X. Zhang and X. R. Liu, “Luminescence Properties and Energy Transfer of Eu2+ Doped Ca8Mg(Si04)4Cl2 Phosphors,” J. Electrochem. Soc. 139(2), 622–625 (1992).
[CrossRef]

Zhang, Y. Z.

Zhou, J. J.

J. J. Zhou, Y. X. Zhuang, S. Ye, Y. Teng, G. Lin, B. Zhu, J. H. Xie, and J. R. Qiu, “Broadband downconversion based infrared quantum cutting by cooperative energy transfer from Eu2+ to Yb3+ in glasses,” Appl. Phys. Lett. 95(14), 141101 (2009).
[CrossRef]

Zhu, B.

J. J. Zhou, Y. X. Zhuang, S. Ye, Y. Teng, G. Lin, B. Zhu, J. H. Xie, and J. R. Qiu, “Broadband downconversion based infrared quantum cutting by cooperative energy transfer from Eu2+ to Yb3+ in glasses,” Appl. Phys. Lett. 95(14), 141101 (2009).
[CrossRef]

S. Ye, B. Zhu, J. X. Chen, J. Luo, and J. R. Qiu, “Infrared quantum cutting in Tb3+,Yb3+ codoped transparent glass ceramics containing CaF2 nanocrystals,” Appl. Phys. Lett. 92(14), 141112 (2008).
[CrossRef]

S. Ye, B. Zhu, J. Luo, J. Chen, G. Lakshminarayana, and J. R. Qiu, “Enhanced cooperative quantum cutting in Tm3+- Yb3+ codoped glass ceramics containing LaF3 nanocrystals,” Opt. Express 16(12), 8989–8994 (2008).
[CrossRef] [PubMed]

Zhuang, Y. X.

J. J. Zhou, Y. X. Zhuang, S. Ye, Y. Teng, G. Lin, B. Zhu, J. H. Xie, and J. R. Qiu, “Broadband downconversion based infrared quantum cutting by cooperative energy transfer from Eu2+ to Yb3+ in glasses,” Appl. Phys. Lett. 95(14), 141101 (2009).
[CrossRef]

Adv. Mater. (1)

B. M. van der Ende, L. Aarts, and A. Meijerink, “Near-Infrared Quantum Cutting for Photovoltaics,” Adv. Mater. 21(30), 3073–5307 (2009).
[CrossRef]

Appl. Phys. Lett. (3)

Q. Y. Zhang, G. F. Yang, and Z. H. Jiang, “Cooperative downconversion in GdAl3(BO3)4:RE3+,Yb3+ (RE=Pr, Tb, and Tm),” Appl. Phys. Lett. 91(5), 051903 (2007).
[CrossRef]

S. Ye, B. Zhu, J. X. Chen, J. Luo, and J. R. Qiu, “Infrared quantum cutting in Tb3+,Yb3+ codoped transparent glass ceramics containing CaF2 nanocrystals,” Appl. Phys. Lett. 92(14), 141112 (2008).
[CrossRef]

J. J. Zhou, Y. X. Zhuang, S. Ye, Y. Teng, G. Lin, B. Zhu, J. H. Xie, and J. R. Qiu, “Broadband downconversion based infrared quantum cutting by cooperative energy transfer from Eu2+ to Yb3+ in glasses,” Appl. Phys. Lett. 95(14), 141101 (2009).
[CrossRef]

Chem. Phys. Lett. (1)

M. Y. Peng, Z. W. Pei, G. Y. Hong, and Q. Su, “Study on the reduction of Eu3+→Eu2+ in Sr4Al14O25:Eu prepared in air atmosphere,” Chem. Phys. Lett. 371(1-2), 1–6 (2003).
[CrossRef]

J. Appl. Phys. (3)

D. Q. Chen, Y. S. Wang, Y. L. Yu, P. Huang, and F. Y. Weng, “Quantum cutting downconversion by cooperative energy transfer from Ce3+ to Yb3+ in borate glasses,” J. Appl. Phys. 104(11), 116105 (2008).
[CrossRef]

T. Trupke, M. A. Green, and P. Wurfel, “Improving solar cell efficiencies by down-conversion of high-energy photons,” J. Appl. Phys. 92(3), 1668 (2002).
[CrossRef]

J. Ueda and S. Tanabe, “Visible to near infrared conversion in Ce3+-Yb3+ co-doped YAG ceramics,” J. Appl. Phys. 106(4), 043101 (2009).
[CrossRef]

J. Electrochem. Soc. (1)

X. Zhang and X. R. Liu, “Luminescence Properties and Energy Transfer of Eu2+ Doped Ca8Mg(Si04)4Cl2 Phosphors,” J. Electrochem. Soc. 139(2), 622–625 (1992).
[CrossRef]

Opt. Express (1)

Opt. Lett. (1)

Phys. Chem. Chem. Phys. (1)

B. M. van der Ende, L. Aarts, and A. Meijerink, “Lanthanide ions as spectral converters for solar cells,” Phys. Chem. Chem. Phys. 11(47), 11081–11095 (2009).
[CrossRef] [PubMed]

Sol. Energy Mater. Sol. Cells (1)

B. S. Richards, “Luminescent layers for enhanced silicon solar cell performance: Down-conversion,” Sol. Energy Mater. Sol. Cells 90(9), 1189–1207 (2006).
[CrossRef]

Other (1)

J. Hecht, Laser Focus World, (Nov 1, 2007).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

XRD patterns of CMSC: Eu2+, CMSC: Er3+ and CMSC: Eu2+-Er3+.

Fig. 2
Fig. 2

Excitation and emission spectra of CMSC: Eu2+, CMSC: Er3+ and CMSC: Eu2+-Er3+.

Fig. 3
Fig. 3

Time-resolved emission spectra of Er3+ near-infrared emission in CMSC: Eu2+-Er3+ under 378nm excitation.

Fig. 4
Fig. 4

Laser power dependent emission intensity changes in CMSC: Eu2+-Er3+ pumped by 375 nm laser.

Fig. 5
Fig. 5

Schematic energy level diagram of Eu2+ and Er3+ in Ca8Mg(SiO4)4Cl2 phosphor, showing the concept of infrared quantum cutting with visible excitation at 378nm.

Metrics