Abstract

We extend a simple dipole approximation model to predict nonlinear scattering from small particles. This numerical method is known as Discrete Dipole Approximation (DDA) and has been extensively used to model linear scattering by small particles of various shapes and sizes. We show here that DDA can be used to efficiently model second harmonic scattering by small particles. Our results are compared with experimental data and other computational methods.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. L. Nehl and J. H. Hafner, “Shape-dependent plasmon resonances of gold nanoparticles,” J. Mater. Chem. 18(21), 2415–2419 (2008).
    [CrossRef]
  2. E. Adler, “Nonlinear Optical Frequency Polarization in a Dielectric,” Phys. Rev. 134(3A), A728–A733 (1964).
    [CrossRef]
  3. G. S. Agarwal and S. S. Jha, “Theory of second harmonic generation at a metal surface with surface plasmon excitation,” Solid State Commun. 41(6), 499–501 (1982).
    [CrossRef]
  4. X. M. Hua and J. I. Gersten, “Theory of second-harmonic generation by small metal spheres,” Phys. Rev. B 33(6), 3756–3764 (1986).
    [CrossRef]
  5. O. A. Aktsipetrov, P. V. Elyutin, A. A. Nikulin, and E. A. Ostrovskaya, “Size effects in optical second-harmonic generation by metallic nanocrystals and semiconductor quantum dots: The role of quantum chaotic dynamics,” Phys. Rev. B 51(24), 17591–17599 (1995).
    [CrossRef]
  6. A. Guerrero and B. S. Mendoza, “Model for great enhancement of second-harmonic generation in quantum dots,” J. Opt. Soc. Am. B 12(4), 559–569 (1995).
    [CrossRef]
  7. V. L. Brudny, B. S. Mendoza, and W. Luis Mochán, “Second-harmonic generation from spherical particles,” Phys. Rev. B 62(16), 11152–11162 (2000).
    [CrossRef]
  8. W. L. Mochán, J. A. Maytorena, B. S. Mendoza, and V. L. Brudny, “Second-harmonic generation in arrays of spherical particles,” Phys. Rev. B 68(8), 085318 (2003).
    [CrossRef]
  9. D. Östling, P. Stampfli, and K. H. Bennemann, “Theory of nonlinear optical properties of small metallic spheres,” Z. Phys. D At. Mol. Clust. 28, 169–175 (1993).
    [CrossRef]
  10. J. Martorell, R. Vilaseca, and R. Corbalán, “Scattering of second-harmonic light from small spherical particles ordered in a crystalline lattice,” Phys. Rev. A 55(6), 4520–4525 (1997).
    [CrossRef]
  11. N. Yang, W. E. Angerer, and A. G. Yodh, “Angle-resolved second-harmonic light scattering from colloidal particles,” Phys. Rev. Lett. 87(10), 103902 (2001).
    [CrossRef] [PubMed]
  12. J. I. Dadap, J. Shan, K. B. Eisenthal, and T. F. Heinz, “Second-Harmonic Rayleigh Scattering from a Sphere of Centrosymmetric Material,” Phys. Rev. Lett. 83(20), 4045–4048 (1999).
    [CrossRef]
  13. J. I. Dadap, J. Shan, and T. F. Heinz, “Theory of optical second-harmonic generation from a sphere of centrosymmetric material: small-particle limit,” J. Opt. Soc. Am. B 21(7), 1328–1347 (2004).
    [CrossRef]
  14. N. J. Durr, T. Larson, D. K. Smith, B. A. Korgel, K. Sokolov, and A. Ben-Yakar, “Two-photon luminescence imaging of cancer cells using molecularly targeted gold nanorods,” Nano Lett. 7(4), 941–945 (2007).
    [CrossRef] [PubMed]
  15. Y. Jung, H. Chen, L. Tong, and J.-X. Cheng, “Imaging Gold Nanorods by Plasmon-Resonance-Enhanced Four Wave Mixing,” J. Phys. Chem. C 113(7), 2657–2663 (2009).
    [CrossRef]
  16. A. Wijaya, S. B. Schaffer, I. G. Pallares, and K. Hamad-Schifferli, “Selective release of multiple DNA oligonucleotides from gold nanorods,” ACS Nano 3(1), 80–86 (2009).
    [CrossRef] [PubMed]
  17. E. M. Purcell and C. R. Pennypacker, “Scattering and Absorption of Light by Nonspherical Dielectric Grains,” Astrophys. J. 186, 705–714 (1973).
    [CrossRef]
  18. B. T. Draine, “The discrete-dipole approximation and its application to interstellar graphite grains,” Astrophys. J. 333, 848–872 (1988).
    [CrossRef]
  19. J. J. Goodman, B. T. Draine, and P. J. Flatau, “Application of fast-Fourier-transform techniques to the discrete-dipole approximation,” Opt. Lett. 16(15), 1198–1200 (1991).
    [CrossRef] [PubMed]
  20. B. T. Draine and P. J. Flatau, “Discrete-dipole approximation for scattering calculations,” J. Opt. Soc. Am. A 11(4), 1491–1499 (1994).
    [CrossRef]
  21. B. T. Draine and P. J. Flatau, “User Guide for the Discrete Dipole Approximation Code DDSCAT 7.0,” (2008).
  22. A. G. Hoekstra and P. M. A. Sloot, “Coupled dipole simulations of elastic light scattering on parallel systems,” Int. J. Mod. Phys. C 6(5), 663–679 (1995).
    [CrossRef]
  23. A. G. Hoekstra, M. D. Grimminck, and P. M. A. Sloot, “Large Scale Simulations of Elastic Light Scattering by a Fast Discrete Dipole Approximation,” Int. J. Mod. Phys. C 9(1), 87–102 (1998).
    [CrossRef]
  24. A. Lakhtakia, “General theory of the Purcell-Pennypacker scattering approach and its extension to bianisotropic scatterers,” Astrophys. J. 394, 494–499 (1992).
    [CrossRef]
  25. N. Arzate, B. S. Mendoza, and R. A. Vázquez-Nava, “Polarizable dipole models for reflectance anisotropy spectroscopy: a review,” J. Phys. Condens. Matter 16(39), S4259–S4278 (2004).
    [CrossRef]
  26. W.-H. Yang, G. C. Schatz, and R. P. Van Duyne, “Discrete dipole approximation for calculating extinction and Raman intensities for small particles with arbitrary shapes,” J. Chem. Phys. 103(3), 869–875 (1995).
    [CrossRef]
  27. N. Félidj, J. Aubard, and G. Levi, “Discrete dipole approximation for ultraviolet–visible extinction spectra simulation of silver and gold colloids,” J. Chem. Phys. 111(3), 1195–1208 (1999).
    [CrossRef]
  28. K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, “The Optical Properties of Metal Nanoparticles: The Influence of Size, Shape, and Dielectric Environment,” J. Phys. Chem. B 107(3), 668–677 (2003).
    [CrossRef]
  29. P. K. Jain, K. S. Lee, I. H. El-Sayed, and M. A. El-Sayed, “Calculated absorption and scattering properties of gold nanoparticles of different size, shape, and composition: applications in biological imaging and biomedicine,” J. Phys. Chem. B 110(14), 7238–7248 (2006).
    [CrossRef] [PubMed]
  30. S. W. Prescott and P. Mulvaney, “Gold nanorod extinction spectra,” J. Appl. Phys. 99(12), 123504–123507 (2006).
    [CrossRef]
  31. B. T. Draine and P. J. Flatau, “Discrete-dipole approximation for periodic targets: theory and tests,” J. Opt. Soc. Am. A 25(11), 2693–2703 (2008).
    [CrossRef]
  32. F. Bordas, N. Louvion, S. Callard, P. C. Chaumet, and A. Rahmani, “Coupled dipole method for radiation dynamics in finite photonic crystal structures,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 73(5), 056601 (2006).
    [CrossRef] [PubMed]
  33. D. A. Smith and K. L. Stokes, “Discrete dipole approximation for magneto-optical scattering calculations,” Opt. Express 14(12), 5746–5754 (2006).
    [CrossRef] [PubMed]
  34. Y. You, G. W. Kattawar, and P. Yang, “Invisibility cloaks for toroids,” Opt. Express 17(8), 6591–6599 (2009).
    [CrossRef] [PubMed]
  35. M. A. Yurkin, K. A. Semyanov, P. A. Tarasov, A. V. Chernyshev, A. G. Hoekstra, and V. P. Maltsev, “Experimental and theoretical study of light scattering by individual mature red blood cells by use of scanning flow cytometry and a discrete dipole approximation,” Appl. Opt. 44(25), 5249–5256 (2005).
    [CrossRef] [PubMed]
  36. P. C. Chaumet, A. Rahmani, A. Sentenac, and G. W. Bryant, “Efficient computation of optical forces with the coupled dipole method,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 72(4), 046708 (2005).
    [CrossRef] [PubMed]
  37. P. Flatau, “Fast solvers for one dimensional light scattering in the discrete dipole approximation,” Opt. Express 12(14), 3149–3155 (2004).
    [CrossRef] [PubMed]
  38. P. J. Flatau, “Improvements in the discrete-dipole approximation method of computing scattering and absorption,” Opt. Lett. 22(16), 1205–1207 (1997).
    [CrossRef] [PubMed]
  39. C. M. J. Wijers, T. Rasing, and R. W. J. Hollering, “Second harmonic generation from thin slabs in the discrete dipole approach,” Solid State Commun. 85(3), 233–237 (1993).
    [CrossRef]
  40. E. Y. Poliakov, V. A. Markel, V. M. Shalaev, and R. Botet, “Nonlinear optical phenomena on rough surfaces of metal thin films,” Phys. Rev. B 57(23), 14901–14913 (1998).
    [CrossRef]
  41. L. Moreaux, O. Sandre, and J. Mertz, “Membrane imaging by second-harmonic generation microscopy,” J. Opt. Soc. Am. B 17(10), 1685–1694 (2000).
    [CrossRef]
  42. J.-X. Cheng and X. S. Xie, “Green's function formulation for third-harmonic generation microscopy,” J. Opt. Soc. Am. B 19(7), 1604–1610 (2002).
    [CrossRef]
  43. N. P. Blanchard, C. Smith, D. S. Martin, D. J. Hayton, T. E. Jenkins, and P. Weightman, “High-resolution measurements of the bulk dielectric constants of single crystal gold with application to reflection anisotropy spectroscopy,” Phys. Status Solidi 0(8c), 2931–2937 (2003).
    [CrossRef]
  44. G. Bachelier, I. Russier-Antoine, E. Benichou, C. Jonin, and P.-F. Brevet, “Multipolar second-harmonic generation in noble metal nanoparticles,” J. Opt. Soc. Am. B 25(6), 955–960 (2008).
    [CrossRef]
  45. J. Nappa, G. Revillod, I. Russier-Antoine, E. Benichou, C. Jonin, and P. F. Brevet, “Electric dipole origin of the second harmonic generation of small metallic particles,” Phys. Rev. B 71(16), 165407 (2005).
    [CrossRef]
  46. I. Russier-Antoine, E. Benichou, G. Bachelier, C. Jonin, and P. F. Brevet, “Multipolar Contributions of the Second Harmonic Generation from Silver and Gold Nanoparticles,” J. Phys. Chem. C 111(26), 9044–9048 (2007).
    [CrossRef]

2009

Y. Jung, H. Chen, L. Tong, and J.-X. Cheng, “Imaging Gold Nanorods by Plasmon-Resonance-Enhanced Four Wave Mixing,” J. Phys. Chem. C 113(7), 2657–2663 (2009).
[CrossRef]

A. Wijaya, S. B. Schaffer, I. G. Pallares, and K. Hamad-Schifferli, “Selective release of multiple DNA oligonucleotides from gold nanorods,” ACS Nano 3(1), 80–86 (2009).
[CrossRef] [PubMed]

Y. You, G. W. Kattawar, and P. Yang, “Invisibility cloaks for toroids,” Opt. Express 17(8), 6591–6599 (2009).
[CrossRef] [PubMed]

2008

2007

N. J. Durr, T. Larson, D. K. Smith, B. A. Korgel, K. Sokolov, and A. Ben-Yakar, “Two-photon luminescence imaging of cancer cells using molecularly targeted gold nanorods,” Nano Lett. 7(4), 941–945 (2007).
[CrossRef] [PubMed]

I. Russier-Antoine, E. Benichou, G. Bachelier, C. Jonin, and P. F. Brevet, “Multipolar Contributions of the Second Harmonic Generation from Silver and Gold Nanoparticles,” J. Phys. Chem. C 111(26), 9044–9048 (2007).
[CrossRef]

2006

P. K. Jain, K. S. Lee, I. H. El-Sayed, and M. A. El-Sayed, “Calculated absorption and scattering properties of gold nanoparticles of different size, shape, and composition: applications in biological imaging and biomedicine,” J. Phys. Chem. B 110(14), 7238–7248 (2006).
[CrossRef] [PubMed]

S. W. Prescott and P. Mulvaney, “Gold nanorod extinction spectra,” J. Appl. Phys. 99(12), 123504–123507 (2006).
[CrossRef]

F. Bordas, N. Louvion, S. Callard, P. C. Chaumet, and A. Rahmani, “Coupled dipole method for radiation dynamics in finite photonic crystal structures,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 73(5), 056601 (2006).
[CrossRef] [PubMed]

D. A. Smith and K. L. Stokes, “Discrete dipole approximation for magneto-optical scattering calculations,” Opt. Express 14(12), 5746–5754 (2006).
[CrossRef] [PubMed]

2005

M. A. Yurkin, K. A. Semyanov, P. A. Tarasov, A. V. Chernyshev, A. G. Hoekstra, and V. P. Maltsev, “Experimental and theoretical study of light scattering by individual mature red blood cells by use of scanning flow cytometry and a discrete dipole approximation,” Appl. Opt. 44(25), 5249–5256 (2005).
[CrossRef] [PubMed]

J. Nappa, G. Revillod, I. Russier-Antoine, E. Benichou, C. Jonin, and P. F. Brevet, “Electric dipole origin of the second harmonic generation of small metallic particles,” Phys. Rev. B 71(16), 165407 (2005).
[CrossRef]

P. C. Chaumet, A. Rahmani, A. Sentenac, and G. W. Bryant, “Efficient computation of optical forces with the coupled dipole method,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 72(4), 046708 (2005).
[CrossRef] [PubMed]

2004

2003

W. L. Mochán, J. A. Maytorena, B. S. Mendoza, and V. L. Brudny, “Second-harmonic generation in arrays of spherical particles,” Phys. Rev. B 68(8), 085318 (2003).
[CrossRef]

N. P. Blanchard, C. Smith, D. S. Martin, D. J. Hayton, T. E. Jenkins, and P. Weightman, “High-resolution measurements of the bulk dielectric constants of single crystal gold with application to reflection anisotropy spectroscopy,” Phys. Status Solidi 0(8c), 2931–2937 (2003).
[CrossRef]

K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, “The Optical Properties of Metal Nanoparticles: The Influence of Size, Shape, and Dielectric Environment,” J. Phys. Chem. B 107(3), 668–677 (2003).
[CrossRef]

2002

2001

N. Yang, W. E. Angerer, and A. G. Yodh, “Angle-resolved second-harmonic light scattering from colloidal particles,” Phys. Rev. Lett. 87(10), 103902 (2001).
[CrossRef] [PubMed]

2000

V. L. Brudny, B. S. Mendoza, and W. Luis Mochán, “Second-harmonic generation from spherical particles,” Phys. Rev. B 62(16), 11152–11162 (2000).
[CrossRef]

L. Moreaux, O. Sandre, and J. Mertz, “Membrane imaging by second-harmonic generation microscopy,” J. Opt. Soc. Am. B 17(10), 1685–1694 (2000).
[CrossRef]

1999

J. I. Dadap, J. Shan, K. B. Eisenthal, and T. F. Heinz, “Second-Harmonic Rayleigh Scattering from a Sphere of Centrosymmetric Material,” Phys. Rev. Lett. 83(20), 4045–4048 (1999).
[CrossRef]

N. Félidj, J. Aubard, and G. Levi, “Discrete dipole approximation for ultraviolet–visible extinction spectra simulation of silver and gold colloids,” J. Chem. Phys. 111(3), 1195–1208 (1999).
[CrossRef]

1998

A. G. Hoekstra, M. D. Grimminck, and P. M. A. Sloot, “Large Scale Simulations of Elastic Light Scattering by a Fast Discrete Dipole Approximation,” Int. J. Mod. Phys. C 9(1), 87–102 (1998).
[CrossRef]

E. Y. Poliakov, V. A. Markel, V. M. Shalaev, and R. Botet, “Nonlinear optical phenomena on rough surfaces of metal thin films,” Phys. Rev. B 57(23), 14901–14913 (1998).
[CrossRef]

1997

J. Martorell, R. Vilaseca, and R. Corbalán, “Scattering of second-harmonic light from small spherical particles ordered in a crystalline lattice,” Phys. Rev. A 55(6), 4520–4525 (1997).
[CrossRef]

P. J. Flatau, “Improvements in the discrete-dipole approximation method of computing scattering and absorption,” Opt. Lett. 22(16), 1205–1207 (1997).
[CrossRef] [PubMed]

1995

W.-H. Yang, G. C. Schatz, and R. P. Van Duyne, “Discrete dipole approximation for calculating extinction and Raman intensities for small particles with arbitrary shapes,” J. Chem. Phys. 103(3), 869–875 (1995).
[CrossRef]

A. G. Hoekstra and P. M. A. Sloot, “Coupled dipole simulations of elastic light scattering on parallel systems,” Int. J. Mod. Phys. C 6(5), 663–679 (1995).
[CrossRef]

O. A. Aktsipetrov, P. V. Elyutin, A. A. Nikulin, and E. A. Ostrovskaya, “Size effects in optical second-harmonic generation by metallic nanocrystals and semiconductor quantum dots: The role of quantum chaotic dynamics,” Phys. Rev. B 51(24), 17591–17599 (1995).
[CrossRef]

A. Guerrero and B. S. Mendoza, “Model for great enhancement of second-harmonic generation in quantum dots,” J. Opt. Soc. Am. B 12(4), 559–569 (1995).
[CrossRef]

1994

1993

C. M. J. Wijers, T. Rasing, and R. W. J. Hollering, “Second harmonic generation from thin slabs in the discrete dipole approach,” Solid State Commun. 85(3), 233–237 (1993).
[CrossRef]

D. Östling, P. Stampfli, and K. H. Bennemann, “Theory of nonlinear optical properties of small metallic spheres,” Z. Phys. D At. Mol. Clust. 28, 169–175 (1993).
[CrossRef]

1992

A. Lakhtakia, “General theory of the Purcell-Pennypacker scattering approach and its extension to bianisotropic scatterers,” Astrophys. J. 394, 494–499 (1992).
[CrossRef]

1991

1988

B. T. Draine, “The discrete-dipole approximation and its application to interstellar graphite grains,” Astrophys. J. 333, 848–872 (1988).
[CrossRef]

1986

X. M. Hua and J. I. Gersten, “Theory of second-harmonic generation by small metal spheres,” Phys. Rev. B 33(6), 3756–3764 (1986).
[CrossRef]

1982

G. S. Agarwal and S. S. Jha, “Theory of second harmonic generation at a metal surface with surface plasmon excitation,” Solid State Commun. 41(6), 499–501 (1982).
[CrossRef]

1973

E. M. Purcell and C. R. Pennypacker, “Scattering and Absorption of Light by Nonspherical Dielectric Grains,” Astrophys. J. 186, 705–714 (1973).
[CrossRef]

1964

E. Adler, “Nonlinear Optical Frequency Polarization in a Dielectric,” Phys. Rev. 134(3A), A728–A733 (1964).
[CrossRef]

Adler, E.

E. Adler, “Nonlinear Optical Frequency Polarization in a Dielectric,” Phys. Rev. 134(3A), A728–A733 (1964).
[CrossRef]

Agarwal, G. S.

G. S. Agarwal and S. S. Jha, “Theory of second harmonic generation at a metal surface with surface plasmon excitation,” Solid State Commun. 41(6), 499–501 (1982).
[CrossRef]

Aktsipetrov, O. A.

O. A. Aktsipetrov, P. V. Elyutin, A. A. Nikulin, and E. A. Ostrovskaya, “Size effects in optical second-harmonic generation by metallic nanocrystals and semiconductor quantum dots: The role of quantum chaotic dynamics,” Phys. Rev. B 51(24), 17591–17599 (1995).
[CrossRef]

Angerer, W. E.

N. Yang, W. E. Angerer, and A. G. Yodh, “Angle-resolved second-harmonic light scattering from colloidal particles,” Phys. Rev. Lett. 87(10), 103902 (2001).
[CrossRef] [PubMed]

Arzate, N.

N. Arzate, B. S. Mendoza, and R. A. Vázquez-Nava, “Polarizable dipole models for reflectance anisotropy spectroscopy: a review,” J. Phys. Condens. Matter 16(39), S4259–S4278 (2004).
[CrossRef]

Aubard, J.

N. Félidj, J. Aubard, and G. Levi, “Discrete dipole approximation for ultraviolet–visible extinction spectra simulation of silver and gold colloids,” J. Chem. Phys. 111(3), 1195–1208 (1999).
[CrossRef]

Bachelier, G.

G. Bachelier, I. Russier-Antoine, E. Benichou, C. Jonin, and P.-F. Brevet, “Multipolar second-harmonic generation in noble metal nanoparticles,” J. Opt. Soc. Am. B 25(6), 955–960 (2008).
[CrossRef]

I. Russier-Antoine, E. Benichou, G. Bachelier, C. Jonin, and P. F. Brevet, “Multipolar Contributions of the Second Harmonic Generation from Silver and Gold Nanoparticles,” J. Phys. Chem. C 111(26), 9044–9048 (2007).
[CrossRef]

Benichou, E.

G. Bachelier, I. Russier-Antoine, E. Benichou, C. Jonin, and P.-F. Brevet, “Multipolar second-harmonic generation in noble metal nanoparticles,” J. Opt. Soc. Am. B 25(6), 955–960 (2008).
[CrossRef]

I. Russier-Antoine, E. Benichou, G. Bachelier, C. Jonin, and P. F. Brevet, “Multipolar Contributions of the Second Harmonic Generation from Silver and Gold Nanoparticles,” J. Phys. Chem. C 111(26), 9044–9048 (2007).
[CrossRef]

J. Nappa, G. Revillod, I. Russier-Antoine, E. Benichou, C. Jonin, and P. F. Brevet, “Electric dipole origin of the second harmonic generation of small metallic particles,” Phys. Rev. B 71(16), 165407 (2005).
[CrossRef]

Bennemann, K. H.

D. Östling, P. Stampfli, and K. H. Bennemann, “Theory of nonlinear optical properties of small metallic spheres,” Z. Phys. D At. Mol. Clust. 28, 169–175 (1993).
[CrossRef]

Ben-Yakar, A.

N. J. Durr, T. Larson, D. K. Smith, B. A. Korgel, K. Sokolov, and A. Ben-Yakar, “Two-photon luminescence imaging of cancer cells using molecularly targeted gold nanorods,” Nano Lett. 7(4), 941–945 (2007).
[CrossRef] [PubMed]

Blanchard, N. P.

N. P. Blanchard, C. Smith, D. S. Martin, D. J. Hayton, T. E. Jenkins, and P. Weightman, “High-resolution measurements of the bulk dielectric constants of single crystal gold with application to reflection anisotropy spectroscopy,” Phys. Status Solidi 0(8c), 2931–2937 (2003).
[CrossRef]

Bordas, F.

F. Bordas, N. Louvion, S. Callard, P. C. Chaumet, and A. Rahmani, “Coupled dipole method for radiation dynamics in finite photonic crystal structures,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 73(5), 056601 (2006).
[CrossRef] [PubMed]

Botet, R.

E. Y. Poliakov, V. A. Markel, V. M. Shalaev, and R. Botet, “Nonlinear optical phenomena on rough surfaces of metal thin films,” Phys. Rev. B 57(23), 14901–14913 (1998).
[CrossRef]

Brevet, P. F.

I. Russier-Antoine, E. Benichou, G. Bachelier, C. Jonin, and P. F. Brevet, “Multipolar Contributions of the Second Harmonic Generation from Silver and Gold Nanoparticles,” J. Phys. Chem. C 111(26), 9044–9048 (2007).
[CrossRef]

J. Nappa, G. Revillod, I. Russier-Antoine, E. Benichou, C. Jonin, and P. F. Brevet, “Electric dipole origin of the second harmonic generation of small metallic particles,” Phys. Rev. B 71(16), 165407 (2005).
[CrossRef]

Brevet, P.-F.

Brudny, V. L.

W. L. Mochán, J. A. Maytorena, B. S. Mendoza, and V. L. Brudny, “Second-harmonic generation in arrays of spherical particles,” Phys. Rev. B 68(8), 085318 (2003).
[CrossRef]

V. L. Brudny, B. S. Mendoza, and W. Luis Mochán, “Second-harmonic generation from spherical particles,” Phys. Rev. B 62(16), 11152–11162 (2000).
[CrossRef]

Bryant, G. W.

P. C. Chaumet, A. Rahmani, A. Sentenac, and G. W. Bryant, “Efficient computation of optical forces with the coupled dipole method,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 72(4), 046708 (2005).
[CrossRef] [PubMed]

Callard, S.

F. Bordas, N. Louvion, S. Callard, P. C. Chaumet, and A. Rahmani, “Coupled dipole method for radiation dynamics in finite photonic crystal structures,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 73(5), 056601 (2006).
[CrossRef] [PubMed]

Chaumet, P. C.

F. Bordas, N. Louvion, S. Callard, P. C. Chaumet, and A. Rahmani, “Coupled dipole method for radiation dynamics in finite photonic crystal structures,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 73(5), 056601 (2006).
[CrossRef] [PubMed]

P. C. Chaumet, A. Rahmani, A. Sentenac, and G. W. Bryant, “Efficient computation of optical forces with the coupled dipole method,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 72(4), 046708 (2005).
[CrossRef] [PubMed]

Chen, H.

Y. Jung, H. Chen, L. Tong, and J.-X. Cheng, “Imaging Gold Nanorods by Plasmon-Resonance-Enhanced Four Wave Mixing,” J. Phys. Chem. C 113(7), 2657–2663 (2009).
[CrossRef]

Cheng, J.-X.

Y. Jung, H. Chen, L. Tong, and J.-X. Cheng, “Imaging Gold Nanorods by Plasmon-Resonance-Enhanced Four Wave Mixing,” J. Phys. Chem. C 113(7), 2657–2663 (2009).
[CrossRef]

J.-X. Cheng and X. S. Xie, “Green's function formulation for third-harmonic generation microscopy,” J. Opt. Soc. Am. B 19(7), 1604–1610 (2002).
[CrossRef]

Chernyshev, A. V.

Corbalán, R.

J. Martorell, R. Vilaseca, and R. Corbalán, “Scattering of second-harmonic light from small spherical particles ordered in a crystalline lattice,” Phys. Rev. A 55(6), 4520–4525 (1997).
[CrossRef]

Coronado, E.

K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, “The Optical Properties of Metal Nanoparticles: The Influence of Size, Shape, and Dielectric Environment,” J. Phys. Chem. B 107(3), 668–677 (2003).
[CrossRef]

Dadap, J. I.

J. I. Dadap, J. Shan, and T. F. Heinz, “Theory of optical second-harmonic generation from a sphere of centrosymmetric material: small-particle limit,” J. Opt. Soc. Am. B 21(7), 1328–1347 (2004).
[CrossRef]

J. I. Dadap, J. Shan, K. B. Eisenthal, and T. F. Heinz, “Second-Harmonic Rayleigh Scattering from a Sphere of Centrosymmetric Material,” Phys. Rev. Lett. 83(20), 4045–4048 (1999).
[CrossRef]

Draine, B. T.

Durr, N. J.

N. J. Durr, T. Larson, D. K. Smith, B. A. Korgel, K. Sokolov, and A. Ben-Yakar, “Two-photon luminescence imaging of cancer cells using molecularly targeted gold nanorods,” Nano Lett. 7(4), 941–945 (2007).
[CrossRef] [PubMed]

Eisenthal, K. B.

J. I. Dadap, J. Shan, K. B. Eisenthal, and T. F. Heinz, “Second-Harmonic Rayleigh Scattering from a Sphere of Centrosymmetric Material,” Phys. Rev. Lett. 83(20), 4045–4048 (1999).
[CrossRef]

El-Sayed, I. H.

P. K. Jain, K. S. Lee, I. H. El-Sayed, and M. A. El-Sayed, “Calculated absorption and scattering properties of gold nanoparticles of different size, shape, and composition: applications in biological imaging and biomedicine,” J. Phys. Chem. B 110(14), 7238–7248 (2006).
[CrossRef] [PubMed]

El-Sayed, M. A.

P. K. Jain, K. S. Lee, I. H. El-Sayed, and M. A. El-Sayed, “Calculated absorption and scattering properties of gold nanoparticles of different size, shape, and composition: applications in biological imaging and biomedicine,” J. Phys. Chem. B 110(14), 7238–7248 (2006).
[CrossRef] [PubMed]

Elyutin, P. V.

O. A. Aktsipetrov, P. V. Elyutin, A. A. Nikulin, and E. A. Ostrovskaya, “Size effects in optical second-harmonic generation by metallic nanocrystals and semiconductor quantum dots: The role of quantum chaotic dynamics,” Phys. Rev. B 51(24), 17591–17599 (1995).
[CrossRef]

Félidj, N.

N. Félidj, J. Aubard, and G. Levi, “Discrete dipole approximation for ultraviolet–visible extinction spectra simulation of silver and gold colloids,” J. Chem. Phys. 111(3), 1195–1208 (1999).
[CrossRef]

Flatau, P.

Flatau, P. J.

Gersten, J. I.

X. M. Hua and J. I. Gersten, “Theory of second-harmonic generation by small metal spheres,” Phys. Rev. B 33(6), 3756–3764 (1986).
[CrossRef]

Goodman, J. J.

Grimminck, M. D.

A. G. Hoekstra, M. D. Grimminck, and P. M. A. Sloot, “Large Scale Simulations of Elastic Light Scattering by a Fast Discrete Dipole Approximation,” Int. J. Mod. Phys. C 9(1), 87–102 (1998).
[CrossRef]

Guerrero, A.

Hafner, J. H.

C. L. Nehl and J. H. Hafner, “Shape-dependent plasmon resonances of gold nanoparticles,” J. Mater. Chem. 18(21), 2415–2419 (2008).
[CrossRef]

Hamad-Schifferli, K.

A. Wijaya, S. B. Schaffer, I. G. Pallares, and K. Hamad-Schifferli, “Selective release of multiple DNA oligonucleotides from gold nanorods,” ACS Nano 3(1), 80–86 (2009).
[CrossRef] [PubMed]

Hayton, D. J.

N. P. Blanchard, C. Smith, D. S. Martin, D. J. Hayton, T. E. Jenkins, and P. Weightman, “High-resolution measurements of the bulk dielectric constants of single crystal gold with application to reflection anisotropy spectroscopy,” Phys. Status Solidi 0(8c), 2931–2937 (2003).
[CrossRef]

Heinz, T. F.

J. I. Dadap, J. Shan, and T. F. Heinz, “Theory of optical second-harmonic generation from a sphere of centrosymmetric material: small-particle limit,” J. Opt. Soc. Am. B 21(7), 1328–1347 (2004).
[CrossRef]

J. I. Dadap, J. Shan, K. B. Eisenthal, and T. F. Heinz, “Second-Harmonic Rayleigh Scattering from a Sphere of Centrosymmetric Material,” Phys. Rev. Lett. 83(20), 4045–4048 (1999).
[CrossRef]

Hoekstra, A. G.

M. A. Yurkin, K. A. Semyanov, P. A. Tarasov, A. V. Chernyshev, A. G. Hoekstra, and V. P. Maltsev, “Experimental and theoretical study of light scattering by individual mature red blood cells by use of scanning flow cytometry and a discrete dipole approximation,” Appl. Opt. 44(25), 5249–5256 (2005).
[CrossRef] [PubMed]

A. G. Hoekstra, M. D. Grimminck, and P. M. A. Sloot, “Large Scale Simulations of Elastic Light Scattering by a Fast Discrete Dipole Approximation,” Int. J. Mod. Phys. C 9(1), 87–102 (1998).
[CrossRef]

A. G. Hoekstra and P. M. A. Sloot, “Coupled dipole simulations of elastic light scattering on parallel systems,” Int. J. Mod. Phys. C 6(5), 663–679 (1995).
[CrossRef]

Hollering, R. W. J.

C. M. J. Wijers, T. Rasing, and R. W. J. Hollering, “Second harmonic generation from thin slabs in the discrete dipole approach,” Solid State Commun. 85(3), 233–237 (1993).
[CrossRef]

Hua, X. M.

X. M. Hua and J. I. Gersten, “Theory of second-harmonic generation by small metal spheres,” Phys. Rev. B 33(6), 3756–3764 (1986).
[CrossRef]

Jain, P. K.

P. K. Jain, K. S. Lee, I. H. El-Sayed, and M. A. El-Sayed, “Calculated absorption and scattering properties of gold nanoparticles of different size, shape, and composition: applications in biological imaging and biomedicine,” J. Phys. Chem. B 110(14), 7238–7248 (2006).
[CrossRef] [PubMed]

Jenkins, T. E.

N. P. Blanchard, C. Smith, D. S. Martin, D. J. Hayton, T. E. Jenkins, and P. Weightman, “High-resolution measurements of the bulk dielectric constants of single crystal gold with application to reflection anisotropy spectroscopy,” Phys. Status Solidi 0(8c), 2931–2937 (2003).
[CrossRef]

Jha, S. S.

G. S. Agarwal and S. S. Jha, “Theory of second harmonic generation at a metal surface with surface plasmon excitation,” Solid State Commun. 41(6), 499–501 (1982).
[CrossRef]

Jonin, C.

G. Bachelier, I. Russier-Antoine, E. Benichou, C. Jonin, and P.-F. Brevet, “Multipolar second-harmonic generation in noble metal nanoparticles,” J. Opt. Soc. Am. B 25(6), 955–960 (2008).
[CrossRef]

I. Russier-Antoine, E. Benichou, G. Bachelier, C. Jonin, and P. F. Brevet, “Multipolar Contributions of the Second Harmonic Generation from Silver and Gold Nanoparticles,” J. Phys. Chem. C 111(26), 9044–9048 (2007).
[CrossRef]

J. Nappa, G. Revillod, I. Russier-Antoine, E. Benichou, C. Jonin, and P. F. Brevet, “Electric dipole origin of the second harmonic generation of small metallic particles,” Phys. Rev. B 71(16), 165407 (2005).
[CrossRef]

Jung, Y.

Y. Jung, H. Chen, L. Tong, and J.-X. Cheng, “Imaging Gold Nanorods by Plasmon-Resonance-Enhanced Four Wave Mixing,” J. Phys. Chem. C 113(7), 2657–2663 (2009).
[CrossRef]

Kattawar, G. W.

Kelly, K. L.

K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, “The Optical Properties of Metal Nanoparticles: The Influence of Size, Shape, and Dielectric Environment,” J. Phys. Chem. B 107(3), 668–677 (2003).
[CrossRef]

Korgel, B. A.

N. J. Durr, T. Larson, D. K. Smith, B. A. Korgel, K. Sokolov, and A. Ben-Yakar, “Two-photon luminescence imaging of cancer cells using molecularly targeted gold nanorods,” Nano Lett. 7(4), 941–945 (2007).
[CrossRef] [PubMed]

Lakhtakia, A.

A. Lakhtakia, “General theory of the Purcell-Pennypacker scattering approach and its extension to bianisotropic scatterers,” Astrophys. J. 394, 494–499 (1992).
[CrossRef]

Larson, T.

N. J. Durr, T. Larson, D. K. Smith, B. A. Korgel, K. Sokolov, and A. Ben-Yakar, “Two-photon luminescence imaging of cancer cells using molecularly targeted gold nanorods,” Nano Lett. 7(4), 941–945 (2007).
[CrossRef] [PubMed]

Lee, K. S.

P. K. Jain, K. S. Lee, I. H. El-Sayed, and M. A. El-Sayed, “Calculated absorption and scattering properties of gold nanoparticles of different size, shape, and composition: applications in biological imaging and biomedicine,” J. Phys. Chem. B 110(14), 7238–7248 (2006).
[CrossRef] [PubMed]

Levi, G.

N. Félidj, J. Aubard, and G. Levi, “Discrete dipole approximation for ultraviolet–visible extinction spectra simulation of silver and gold colloids,” J. Chem. Phys. 111(3), 1195–1208 (1999).
[CrossRef]

Louvion, N.

F. Bordas, N. Louvion, S. Callard, P. C. Chaumet, and A. Rahmani, “Coupled dipole method for radiation dynamics in finite photonic crystal structures,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 73(5), 056601 (2006).
[CrossRef] [PubMed]

Luis Mochán, W.

V. L. Brudny, B. S. Mendoza, and W. Luis Mochán, “Second-harmonic generation from spherical particles,” Phys. Rev. B 62(16), 11152–11162 (2000).
[CrossRef]

Maltsev, V. P.

Markel, V. A.

E. Y. Poliakov, V. A. Markel, V. M. Shalaev, and R. Botet, “Nonlinear optical phenomena on rough surfaces of metal thin films,” Phys. Rev. B 57(23), 14901–14913 (1998).
[CrossRef]

Martin, D. S.

N. P. Blanchard, C. Smith, D. S. Martin, D. J. Hayton, T. E. Jenkins, and P. Weightman, “High-resolution measurements of the bulk dielectric constants of single crystal gold with application to reflection anisotropy spectroscopy,” Phys. Status Solidi 0(8c), 2931–2937 (2003).
[CrossRef]

Martorell, J.

J. Martorell, R. Vilaseca, and R. Corbalán, “Scattering of second-harmonic light from small spherical particles ordered in a crystalline lattice,” Phys. Rev. A 55(6), 4520–4525 (1997).
[CrossRef]

Maytorena, J. A.

W. L. Mochán, J. A. Maytorena, B. S. Mendoza, and V. L. Brudny, “Second-harmonic generation in arrays of spherical particles,” Phys. Rev. B 68(8), 085318 (2003).
[CrossRef]

Mendoza, B. S.

N. Arzate, B. S. Mendoza, and R. A. Vázquez-Nava, “Polarizable dipole models for reflectance anisotropy spectroscopy: a review,” J. Phys. Condens. Matter 16(39), S4259–S4278 (2004).
[CrossRef]

W. L. Mochán, J. A. Maytorena, B. S. Mendoza, and V. L. Brudny, “Second-harmonic generation in arrays of spherical particles,” Phys. Rev. B 68(8), 085318 (2003).
[CrossRef]

V. L. Brudny, B. S. Mendoza, and W. Luis Mochán, “Second-harmonic generation from spherical particles,” Phys. Rev. B 62(16), 11152–11162 (2000).
[CrossRef]

A. Guerrero and B. S. Mendoza, “Model for great enhancement of second-harmonic generation in quantum dots,” J. Opt. Soc. Am. B 12(4), 559–569 (1995).
[CrossRef]

Mertz, J.

Mochán, W. L.

W. L. Mochán, J. A. Maytorena, B. S. Mendoza, and V. L. Brudny, “Second-harmonic generation in arrays of spherical particles,” Phys. Rev. B 68(8), 085318 (2003).
[CrossRef]

Moreaux, L.

Mulvaney, P.

S. W. Prescott and P. Mulvaney, “Gold nanorod extinction spectra,” J. Appl. Phys. 99(12), 123504–123507 (2006).
[CrossRef]

Nappa, J.

J. Nappa, G. Revillod, I. Russier-Antoine, E. Benichou, C. Jonin, and P. F. Brevet, “Electric dipole origin of the second harmonic generation of small metallic particles,” Phys. Rev. B 71(16), 165407 (2005).
[CrossRef]

Nehl, C. L.

C. L. Nehl and J. H. Hafner, “Shape-dependent plasmon resonances of gold nanoparticles,” J. Mater. Chem. 18(21), 2415–2419 (2008).
[CrossRef]

Nikulin, A. A.

O. A. Aktsipetrov, P. V. Elyutin, A. A. Nikulin, and E. A. Ostrovskaya, “Size effects in optical second-harmonic generation by metallic nanocrystals and semiconductor quantum dots: The role of quantum chaotic dynamics,” Phys. Rev. B 51(24), 17591–17599 (1995).
[CrossRef]

Östling, D.

D. Östling, P. Stampfli, and K. H. Bennemann, “Theory of nonlinear optical properties of small metallic spheres,” Z. Phys. D At. Mol. Clust. 28, 169–175 (1993).
[CrossRef]

Ostrovskaya, E. A.

O. A. Aktsipetrov, P. V. Elyutin, A. A. Nikulin, and E. A. Ostrovskaya, “Size effects in optical second-harmonic generation by metallic nanocrystals and semiconductor quantum dots: The role of quantum chaotic dynamics,” Phys. Rev. B 51(24), 17591–17599 (1995).
[CrossRef]

Pallares, I. G.

A. Wijaya, S. B. Schaffer, I. G. Pallares, and K. Hamad-Schifferli, “Selective release of multiple DNA oligonucleotides from gold nanorods,” ACS Nano 3(1), 80–86 (2009).
[CrossRef] [PubMed]

Pennypacker, C. R.

E. M. Purcell and C. R. Pennypacker, “Scattering and Absorption of Light by Nonspherical Dielectric Grains,” Astrophys. J. 186, 705–714 (1973).
[CrossRef]

Poliakov, E. Y.

E. Y. Poliakov, V. A. Markel, V. M. Shalaev, and R. Botet, “Nonlinear optical phenomena on rough surfaces of metal thin films,” Phys. Rev. B 57(23), 14901–14913 (1998).
[CrossRef]

Prescott, S. W.

S. W. Prescott and P. Mulvaney, “Gold nanorod extinction spectra,” J. Appl. Phys. 99(12), 123504–123507 (2006).
[CrossRef]

Purcell, E. M.

E. M. Purcell and C. R. Pennypacker, “Scattering and Absorption of Light by Nonspherical Dielectric Grains,” Astrophys. J. 186, 705–714 (1973).
[CrossRef]

Rahmani, A.

F. Bordas, N. Louvion, S. Callard, P. C. Chaumet, and A. Rahmani, “Coupled dipole method for radiation dynamics in finite photonic crystal structures,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 73(5), 056601 (2006).
[CrossRef] [PubMed]

P. C. Chaumet, A. Rahmani, A. Sentenac, and G. W. Bryant, “Efficient computation of optical forces with the coupled dipole method,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 72(4), 046708 (2005).
[CrossRef] [PubMed]

Rasing, T.

C. M. J. Wijers, T. Rasing, and R. W. J. Hollering, “Second harmonic generation from thin slabs in the discrete dipole approach,” Solid State Commun. 85(3), 233–237 (1993).
[CrossRef]

Revillod, G.

J. Nappa, G. Revillod, I. Russier-Antoine, E. Benichou, C. Jonin, and P. F. Brevet, “Electric dipole origin of the second harmonic generation of small metallic particles,” Phys. Rev. B 71(16), 165407 (2005).
[CrossRef]

Russier-Antoine, I.

G. Bachelier, I. Russier-Antoine, E. Benichou, C. Jonin, and P.-F. Brevet, “Multipolar second-harmonic generation in noble metal nanoparticles,” J. Opt. Soc. Am. B 25(6), 955–960 (2008).
[CrossRef]

I. Russier-Antoine, E. Benichou, G. Bachelier, C. Jonin, and P. F. Brevet, “Multipolar Contributions of the Second Harmonic Generation from Silver and Gold Nanoparticles,” J. Phys. Chem. C 111(26), 9044–9048 (2007).
[CrossRef]

J. Nappa, G. Revillod, I. Russier-Antoine, E. Benichou, C. Jonin, and P. F. Brevet, “Electric dipole origin of the second harmonic generation of small metallic particles,” Phys. Rev. B 71(16), 165407 (2005).
[CrossRef]

Sandre, O.

Schaffer, S. B.

A. Wijaya, S. B. Schaffer, I. G. Pallares, and K. Hamad-Schifferli, “Selective release of multiple DNA oligonucleotides from gold nanorods,” ACS Nano 3(1), 80–86 (2009).
[CrossRef] [PubMed]

Schatz, G. C.

K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, “The Optical Properties of Metal Nanoparticles: The Influence of Size, Shape, and Dielectric Environment,” J. Phys. Chem. B 107(3), 668–677 (2003).
[CrossRef]

W.-H. Yang, G. C. Schatz, and R. P. Van Duyne, “Discrete dipole approximation for calculating extinction and Raman intensities for small particles with arbitrary shapes,” J. Chem. Phys. 103(3), 869–875 (1995).
[CrossRef]

Semyanov, K. A.

Sentenac, A.

P. C. Chaumet, A. Rahmani, A. Sentenac, and G. W. Bryant, “Efficient computation of optical forces with the coupled dipole method,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 72(4), 046708 (2005).
[CrossRef] [PubMed]

Shalaev, V. M.

E. Y. Poliakov, V. A. Markel, V. M. Shalaev, and R. Botet, “Nonlinear optical phenomena on rough surfaces of metal thin films,” Phys. Rev. B 57(23), 14901–14913 (1998).
[CrossRef]

Shan, J.

J. I. Dadap, J. Shan, and T. F. Heinz, “Theory of optical second-harmonic generation from a sphere of centrosymmetric material: small-particle limit,” J. Opt. Soc. Am. B 21(7), 1328–1347 (2004).
[CrossRef]

J. I. Dadap, J. Shan, K. B. Eisenthal, and T. F. Heinz, “Second-Harmonic Rayleigh Scattering from a Sphere of Centrosymmetric Material,” Phys. Rev. Lett. 83(20), 4045–4048 (1999).
[CrossRef]

Sloot, P. M. A.

A. G. Hoekstra, M. D. Grimminck, and P. M. A. Sloot, “Large Scale Simulations of Elastic Light Scattering by a Fast Discrete Dipole Approximation,” Int. J. Mod. Phys. C 9(1), 87–102 (1998).
[CrossRef]

A. G. Hoekstra and P. M. A. Sloot, “Coupled dipole simulations of elastic light scattering on parallel systems,” Int. J. Mod. Phys. C 6(5), 663–679 (1995).
[CrossRef]

Smith, C.

N. P. Blanchard, C. Smith, D. S. Martin, D. J. Hayton, T. E. Jenkins, and P. Weightman, “High-resolution measurements of the bulk dielectric constants of single crystal gold with application to reflection anisotropy spectroscopy,” Phys. Status Solidi 0(8c), 2931–2937 (2003).
[CrossRef]

Smith, D. A.

Smith, D. K.

N. J. Durr, T. Larson, D. K. Smith, B. A. Korgel, K. Sokolov, and A. Ben-Yakar, “Two-photon luminescence imaging of cancer cells using molecularly targeted gold nanorods,” Nano Lett. 7(4), 941–945 (2007).
[CrossRef] [PubMed]

Sokolov, K.

N. J. Durr, T. Larson, D. K. Smith, B. A. Korgel, K. Sokolov, and A. Ben-Yakar, “Two-photon luminescence imaging of cancer cells using molecularly targeted gold nanorods,” Nano Lett. 7(4), 941–945 (2007).
[CrossRef] [PubMed]

Stampfli, P.

D. Östling, P. Stampfli, and K. H. Bennemann, “Theory of nonlinear optical properties of small metallic spheres,” Z. Phys. D At. Mol. Clust. 28, 169–175 (1993).
[CrossRef]

Stokes, K. L.

Tarasov, P. A.

Tong, L.

Y. Jung, H. Chen, L. Tong, and J.-X. Cheng, “Imaging Gold Nanorods by Plasmon-Resonance-Enhanced Four Wave Mixing,” J. Phys. Chem. C 113(7), 2657–2663 (2009).
[CrossRef]

Van Duyne, R. P.

W.-H. Yang, G. C. Schatz, and R. P. Van Duyne, “Discrete dipole approximation for calculating extinction and Raman intensities for small particles with arbitrary shapes,” J. Chem. Phys. 103(3), 869–875 (1995).
[CrossRef]

Vázquez-Nava, R. A.

N. Arzate, B. S. Mendoza, and R. A. Vázquez-Nava, “Polarizable dipole models for reflectance anisotropy spectroscopy: a review,” J. Phys. Condens. Matter 16(39), S4259–S4278 (2004).
[CrossRef]

Vilaseca, R.

J. Martorell, R. Vilaseca, and R. Corbalán, “Scattering of second-harmonic light from small spherical particles ordered in a crystalline lattice,” Phys. Rev. A 55(6), 4520–4525 (1997).
[CrossRef]

Weightman, P.

N. P. Blanchard, C. Smith, D. S. Martin, D. J. Hayton, T. E. Jenkins, and P. Weightman, “High-resolution measurements of the bulk dielectric constants of single crystal gold with application to reflection anisotropy spectroscopy,” Phys. Status Solidi 0(8c), 2931–2937 (2003).
[CrossRef]

Wijaya, A.

A. Wijaya, S. B. Schaffer, I. G. Pallares, and K. Hamad-Schifferli, “Selective release of multiple DNA oligonucleotides from gold nanorods,” ACS Nano 3(1), 80–86 (2009).
[CrossRef] [PubMed]

Wijers, C. M. J.

C. M. J. Wijers, T. Rasing, and R. W. J. Hollering, “Second harmonic generation from thin slabs in the discrete dipole approach,” Solid State Commun. 85(3), 233–237 (1993).
[CrossRef]

Xie, X. S.

Yang, N.

N. Yang, W. E. Angerer, and A. G. Yodh, “Angle-resolved second-harmonic light scattering from colloidal particles,” Phys. Rev. Lett. 87(10), 103902 (2001).
[CrossRef] [PubMed]

Yang, P.

Yang, W.-H.

W.-H. Yang, G. C. Schatz, and R. P. Van Duyne, “Discrete dipole approximation for calculating extinction and Raman intensities for small particles with arbitrary shapes,” J. Chem. Phys. 103(3), 869–875 (1995).
[CrossRef]

Yodh, A. G.

N. Yang, W. E. Angerer, and A. G. Yodh, “Angle-resolved second-harmonic light scattering from colloidal particles,” Phys. Rev. Lett. 87(10), 103902 (2001).
[CrossRef] [PubMed]

You, Y.

Yurkin, M. A.

Zhao, L. L.

K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, “The Optical Properties of Metal Nanoparticles: The Influence of Size, Shape, and Dielectric Environment,” J. Phys. Chem. B 107(3), 668–677 (2003).
[CrossRef]

ACS Nano

A. Wijaya, S. B. Schaffer, I. G. Pallares, and K. Hamad-Schifferli, “Selective release of multiple DNA oligonucleotides from gold nanorods,” ACS Nano 3(1), 80–86 (2009).
[CrossRef] [PubMed]

Appl. Opt.

Astrophys. J.

E. M. Purcell and C. R. Pennypacker, “Scattering and Absorption of Light by Nonspherical Dielectric Grains,” Astrophys. J. 186, 705–714 (1973).
[CrossRef]

B. T. Draine, “The discrete-dipole approximation and its application to interstellar graphite grains,” Astrophys. J. 333, 848–872 (1988).
[CrossRef]

A. Lakhtakia, “General theory of the Purcell-Pennypacker scattering approach and its extension to bianisotropic scatterers,” Astrophys. J. 394, 494–499 (1992).
[CrossRef]

Int. J. Mod. Phys. C

A. G. Hoekstra and P. M. A. Sloot, “Coupled dipole simulations of elastic light scattering on parallel systems,” Int. J. Mod. Phys. C 6(5), 663–679 (1995).
[CrossRef]

A. G. Hoekstra, M. D. Grimminck, and P. M. A. Sloot, “Large Scale Simulations of Elastic Light Scattering by a Fast Discrete Dipole Approximation,” Int. J. Mod. Phys. C 9(1), 87–102 (1998).
[CrossRef]

J. Appl. Phys.

S. W. Prescott and P. Mulvaney, “Gold nanorod extinction spectra,” J. Appl. Phys. 99(12), 123504–123507 (2006).
[CrossRef]

J. Chem. Phys.

W.-H. Yang, G. C. Schatz, and R. P. Van Duyne, “Discrete dipole approximation for calculating extinction and Raman intensities for small particles with arbitrary shapes,” J. Chem. Phys. 103(3), 869–875 (1995).
[CrossRef]

N. Félidj, J. Aubard, and G. Levi, “Discrete dipole approximation for ultraviolet–visible extinction spectra simulation of silver and gold colloids,” J. Chem. Phys. 111(3), 1195–1208 (1999).
[CrossRef]

J. Mater. Chem.

C. L. Nehl and J. H. Hafner, “Shape-dependent plasmon resonances of gold nanoparticles,” J. Mater. Chem. 18(21), 2415–2419 (2008).
[CrossRef]

J. Opt. Soc. Am. A

J. Opt. Soc. Am. B

J. Phys. Chem. B

K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, “The Optical Properties of Metal Nanoparticles: The Influence of Size, Shape, and Dielectric Environment,” J. Phys. Chem. B 107(3), 668–677 (2003).
[CrossRef]

P. K. Jain, K. S. Lee, I. H. El-Sayed, and M. A. El-Sayed, “Calculated absorption and scattering properties of gold nanoparticles of different size, shape, and composition: applications in biological imaging and biomedicine,” J. Phys. Chem. B 110(14), 7238–7248 (2006).
[CrossRef] [PubMed]

J. Phys. Chem. C

Y. Jung, H. Chen, L. Tong, and J.-X. Cheng, “Imaging Gold Nanorods by Plasmon-Resonance-Enhanced Four Wave Mixing,” J. Phys. Chem. C 113(7), 2657–2663 (2009).
[CrossRef]

I. Russier-Antoine, E. Benichou, G. Bachelier, C. Jonin, and P. F. Brevet, “Multipolar Contributions of the Second Harmonic Generation from Silver and Gold Nanoparticles,” J. Phys. Chem. C 111(26), 9044–9048 (2007).
[CrossRef]

J. Phys. Condens. Matter

N. Arzate, B. S. Mendoza, and R. A. Vázquez-Nava, “Polarizable dipole models for reflectance anisotropy spectroscopy: a review,” J. Phys. Condens. Matter 16(39), S4259–S4278 (2004).
[CrossRef]

Nano Lett.

N. J. Durr, T. Larson, D. K. Smith, B. A. Korgel, K. Sokolov, and A. Ben-Yakar, “Two-photon luminescence imaging of cancer cells using molecularly targeted gold nanorods,” Nano Lett. 7(4), 941–945 (2007).
[CrossRef] [PubMed]

Opt. Express

Opt. Lett.

Phys. Rev.

E. Adler, “Nonlinear Optical Frequency Polarization in a Dielectric,” Phys. Rev. 134(3A), A728–A733 (1964).
[CrossRef]

Phys. Rev. A

J. Martorell, R. Vilaseca, and R. Corbalán, “Scattering of second-harmonic light from small spherical particles ordered in a crystalline lattice,” Phys. Rev. A 55(6), 4520–4525 (1997).
[CrossRef]

Phys. Rev. B

X. M. Hua and J. I. Gersten, “Theory of second-harmonic generation by small metal spheres,” Phys. Rev. B 33(6), 3756–3764 (1986).
[CrossRef]

O. A. Aktsipetrov, P. V. Elyutin, A. A. Nikulin, and E. A. Ostrovskaya, “Size effects in optical second-harmonic generation by metallic nanocrystals and semiconductor quantum dots: The role of quantum chaotic dynamics,” Phys. Rev. B 51(24), 17591–17599 (1995).
[CrossRef]

V. L. Brudny, B. S. Mendoza, and W. Luis Mochán, “Second-harmonic generation from spherical particles,” Phys. Rev. B 62(16), 11152–11162 (2000).
[CrossRef]

W. L. Mochán, J. A. Maytorena, B. S. Mendoza, and V. L. Brudny, “Second-harmonic generation in arrays of spherical particles,” Phys. Rev. B 68(8), 085318 (2003).
[CrossRef]

J. Nappa, G. Revillod, I. Russier-Antoine, E. Benichou, C. Jonin, and P. F. Brevet, “Electric dipole origin of the second harmonic generation of small metallic particles,” Phys. Rev. B 71(16), 165407 (2005).
[CrossRef]

E. Y. Poliakov, V. A. Markel, V. M. Shalaev, and R. Botet, “Nonlinear optical phenomena on rough surfaces of metal thin films,” Phys. Rev. B 57(23), 14901–14913 (1998).
[CrossRef]

Phys. Rev. E Stat. Nonlin. Soft Matter Phys.

P. C. Chaumet, A. Rahmani, A. Sentenac, and G. W. Bryant, “Efficient computation of optical forces with the coupled dipole method,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 72(4), 046708 (2005).
[CrossRef] [PubMed]

F. Bordas, N. Louvion, S. Callard, P. C. Chaumet, and A. Rahmani, “Coupled dipole method for radiation dynamics in finite photonic crystal structures,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 73(5), 056601 (2006).
[CrossRef] [PubMed]

Phys. Rev. Lett.

N. Yang, W. E. Angerer, and A. G. Yodh, “Angle-resolved second-harmonic light scattering from colloidal particles,” Phys. Rev. Lett. 87(10), 103902 (2001).
[CrossRef] [PubMed]

J. I. Dadap, J. Shan, K. B. Eisenthal, and T. F. Heinz, “Second-Harmonic Rayleigh Scattering from a Sphere of Centrosymmetric Material,” Phys. Rev. Lett. 83(20), 4045–4048 (1999).
[CrossRef]

Phys. Status Solidi

N. P. Blanchard, C. Smith, D. S. Martin, D. J. Hayton, T. E. Jenkins, and P. Weightman, “High-resolution measurements of the bulk dielectric constants of single crystal gold with application to reflection anisotropy spectroscopy,” Phys. Status Solidi 0(8c), 2931–2937 (2003).
[CrossRef]

Solid State Commun.

C. M. J. Wijers, T. Rasing, and R. W. J. Hollering, “Second harmonic generation from thin slabs in the discrete dipole approach,” Solid State Commun. 85(3), 233–237 (1993).
[CrossRef]

G. S. Agarwal and S. S. Jha, “Theory of second harmonic generation at a metal surface with surface plasmon excitation,” Solid State Commun. 41(6), 499–501 (1982).
[CrossRef]

Z. Phys. D At. Mol. Clust.

D. Östling, P. Stampfli, and K. H. Bennemann, “Theory of nonlinear optical properties of small metallic spheres,” Z. Phys. D At. Mol. Clust. 28, 169–175 (1993).
[CrossRef]

Other

B. T. Draine and P. J. Flatau, “User Guide for the Discrete Dipole Approximation Code DDSCAT 7.0,” (2008).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Approximation of a sphere as an arrangement of sub-volumes on a cubic lattice. Each sub-volume behaves as an individual dipole.

Fig. 2
Fig. 2

Spatial distribution of scattered second harmonic light from a 14nm gold nanosphere when excited by plane polarized light.

Fig. 3
Fig. 3

Distribution of x-polarized second harmonic scattering from nanosphere and two types of nanorods with different aspect ratios as a function of the incident polarization angle with respect to the x-axis. The scattered second harmonic light intensity was calculated along y-axis and the incident light was propagating along positive z-axis.

Fig. 4
Fig. 4

Distribution of x -polarized second harmonic scattering from Silver nanospheres of diameters 40 nm, 60nm and 80 nm as a function of the incident polarization angle with respect to the x-axis. The scattered second harmonic light intensity was calculated along y-axis and the incident light was propagating along positive z-axis.

Fig. 5
Fig. 5

Angular distribution of p-polarized HRS from polystyrene beads coated with malachite green molecules. Size of the polystyrene beads is 510nm (a), 680nm (b & d) and 986nm (c). The exciting light is p-polarized in (a), (b), (c), and it is s-polarized in (d). The angle (θ) of the detector is zero at positive z-axis (+ k ^ ) and it goes to ±180° at negative z-axis (- k ^ ).

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

A i j P j ( 1 ) = exp ( i k r i j ) r i j 3 [ k 2 r i j × ( r i j × P j ( 1 ) ) + ( 1 i k r i j ) r i j 2 { r i j 2 P j ( 1 ) 3 r i j ( r i j . P j ( 1 ) ) } ] , f o r j i ; A i j = α i , ω 1 , f o r j = i . }
C e x t = 4 π k | E i n c | 2 j = 1 N Im ( E i n c , j ( 1 ) * . P j ( 1 ) )   .
C a b s = 4 π k | E i n c | 2 j = 1 N [ Im { P j ( 1 ) ( α j 1 ) * P j ( 1 ) * } ( 2 / 3 ) k 3 | P j ( 1 ) | 2 ]   .
E l o c , i ( 1 ) = α i 1 P i ( 1 ) = ( E i n c , i j i N A i j P j ( 1 ) ) .
j = 1 N A i j P j ( 2 ) = α i , 2 ω 1 β i E l o c , i ( 1 ) E l o c , i ( 1 )   .

Metrics