Abstract

Using luminescence confocal microscopy under 325 nm laser excitation, we explore the populations of defects existing in or at the vicinity of macroscopic surface flaws in fused silica. We report our luminescence results on two types of surface flaws: laser damage and indentation on fused silica polished surfaces. Luminescence cartographies are made to show the spatial distribution of each kind of defect. Three bands, centered at 1.89 eV, 2.75 eV and 2.25 eV are evidenced on laser damage and indentations. The band centered at 2.25 eV was not previously reported in photo luminescence experiments on indentations and pristine silica, for excitation wavelengths of 325 nm or larger. The luminescent objects, expected to be trapped in sub-surface micro-cracks, are possibly involved in the first step of the laser damage mechanism when fused silica is enlightened at 351 nm laser in nanosecond regime.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. L. André, “Status of the LMJ project”, in Solid state lasers for application to Inertial Confinement Fusion: Second Annual International Conference, M. L. André, ed., Proc. SPIE 3047, 38–42 (1996).
  2. E. M. Campbell, “The National-Ignition-Facility project,” Fusion Technol. 26, 755–766 (1994).
  3. L. D. Merkle, N. Koumvakalis, and M. Bass, “Laser induced bulk damaged in SiO2 at 1.064, 0.532 and 0.355 µm,” J. Appl. Phys. 55(3), 772–775 (1984).
    [CrossRef]
  4. J. Y. Natoli, B. Bertussi, L. Gallais, M. Commandré, and C. Amra, “Multiple pulses laser irradiation study in silica: comparison between 1064 and 355 nm”, in Advances in Optical Thin Films, Claude Amra, Norbert Kaiser, H. Angus Macleod, Eds, Proceedings of SPIE 5250 182–187 (2004)
  5. L. Skuja, “Optically active oxygen-deficiency-related centers in amorphous silicon dioxide,” J. Non-Cryst. Solids 239(1-3), 16–48 (1998).
    [CrossRef]
  6. N. Bloembergen, “Role of cracks, pores, and absorbing inclusions on laser induced damage threshold at surfaces of transparent dielectrics,” Appl. Opt. 12(4), 661–664 (1973).
    [CrossRef] [PubMed]
  7. H. Bercegol, P. Grua, D. Hébert, and J. P. Morreeuw, “Progress in the understanding of fracture related damage of fused silica,” in Proceedings of Laser-Induced Damage in Optical Materials: 2007, Gregory J. Exarhos, Arthur H. Guenther, Keith L. Lewis, Detlev Ristau, M. J. Soileau, Christopher J. Stolz, Eds, Proc. SPIE 6720, 1–12 (2007)
  8. S. G. Demos, M. Staggs, K. Minoshima, and J. Fujimoto, “Characterization of laser induced damage sites in optical components,” Opt. Express 10(25), 1444–1450 (2002).
    [PubMed]
  9. M. R. Kozlowski, C. L. Battersby, and S. G. Demos, “Luminescence investigation of SiO2 surfaces damaged by 0.35 mm laser illumination”, in Proceedings of Laser-Induced Damage in Optical Materials: 1999, Gregory J. Exarhos, Arthur H. Guenther, M. R. Kozlowski, Keith L. Lewis, M. J. Soileau, Eds, Proc. SPIE 3902, 138–144 (2000)
  10. T. A. Laurence, J. D. Bude, N. Shen, T. Feldman, P. E. Miller, W. A. Steele, and T. Suratwala, “Metallic-like photoluminescence and absorption in fused silica surface flaws,” Appl. Phys. Lett. 94(15), 151114 (2009).
    [CrossRef]
  11. M. Kalceff, ““Cathodoluminescence microcharacterization of the defect structure of irradiated hydrated an anhydrous fused silicon dioxide,” Phys. Rev. B 57(10), 5674–5683 (1998).
    [CrossRef]
  12. A. N. Trukhin and K. M. Golant, “Absorption and luminescence in amorphous silica synthesized by low-pressure plasmachemical technology,” J. Non-Cryst, 353(5-7), 530–536 (2007).
    [CrossRef]
  13. J. Néauport, P. Cormont, L. Lamaignère, C. Ambard, F. Pilon, and H. Bercegol, “Concerning the impact of polishing induced contamination of fused silica optics on laser induced damage density at 351 nm,” Opt. Commun. 281(14), 3802–3805 (2008).
    [CrossRef]
  14. A. Anedda, C. M. Carbonaro, F. Clemente, and R. Corpino, “Ultraviolet excitation fine tuning of luminescence bands of oxygen deficient center in silica,” J. Appl. Phys. 92(6), 3034–3038 (2002).
    [CrossRef]
  15. J. Néauport, P. Cormont, P. Legros, C. Ambard, and J. Destribats, “Imaging subsurface damage of grinded fused silica optics by confocal fluorescence microscopy,” Opt. Express 17(5), 3543–3554 (2009).
    [CrossRef] [PubMed]
  16. H. Nishikawa, E. Watanabe, D. Ito, Y. Sakurai, K. Nagasawa, and Y. Ohki, “Visible photoluminescence from Si clusters in γ-irradiated amorphous SiO2,” J. Appl. Phys. 80(6), 3513–3517 (1996).
    [CrossRef]
  17. L. Skuja, “The origin of the intrinsic 1.9 eV luminescence band in glassy SiO2,” J. Non-Cryst. 179, 51–69 (1994).
    [CrossRef]
  18. Y. D. Glinka, S. H. Lin, L. P. Hwang, Y. T. Chen, and N. H. Tolk, “Size effect in self-trapped exciton photoluminescence from SiO2-based nanoscale materials,” Phys. Rev. B 64(8), 085421 (2001).
    [CrossRef]
  19. A. N. Trukhin, M. Goldberg, J. Jansons, H.-J. Fitting, and I. A. Tale, “Silicon dioxide thin film luminescence in comparison with bulk silica,” J. Non-Cryst, 223(1-2), 114–122 (1998).
    [CrossRef]

2009

T. A. Laurence, J. D. Bude, N. Shen, T. Feldman, P. E. Miller, W. A. Steele, and T. Suratwala, “Metallic-like photoluminescence and absorption in fused silica surface flaws,” Appl. Phys. Lett. 94(15), 151114 (2009).
[CrossRef]

J. Néauport, P. Cormont, P. Legros, C. Ambard, and J. Destribats, “Imaging subsurface damage of grinded fused silica optics by confocal fluorescence microscopy,” Opt. Express 17(5), 3543–3554 (2009).
[CrossRef] [PubMed]

2008

J. Néauport, P. Cormont, L. Lamaignère, C. Ambard, F. Pilon, and H. Bercegol, “Concerning the impact of polishing induced contamination of fused silica optics on laser induced damage density at 351 nm,” Opt. Commun. 281(14), 3802–3805 (2008).
[CrossRef]

2007

A. N. Trukhin and K. M. Golant, “Absorption and luminescence in amorphous silica synthesized by low-pressure plasmachemical technology,” J. Non-Cryst, 353(5-7), 530–536 (2007).
[CrossRef]

2002

S. G. Demos, M. Staggs, K. Minoshima, and J. Fujimoto, “Characterization of laser induced damage sites in optical components,” Opt. Express 10(25), 1444–1450 (2002).
[PubMed]

A. Anedda, C. M. Carbonaro, F. Clemente, and R. Corpino, “Ultraviolet excitation fine tuning of luminescence bands of oxygen deficient center in silica,” J. Appl. Phys. 92(6), 3034–3038 (2002).
[CrossRef]

2001

Y. D. Glinka, S. H. Lin, L. P. Hwang, Y. T. Chen, and N. H. Tolk, “Size effect in self-trapped exciton photoluminescence from SiO2-based nanoscale materials,” Phys. Rev. B 64(8), 085421 (2001).
[CrossRef]

1998

A. N. Trukhin, M. Goldberg, J. Jansons, H.-J. Fitting, and I. A. Tale, “Silicon dioxide thin film luminescence in comparison with bulk silica,” J. Non-Cryst, 223(1-2), 114–122 (1998).
[CrossRef]

L. Skuja, “Optically active oxygen-deficiency-related centers in amorphous silicon dioxide,” J. Non-Cryst. Solids 239(1-3), 16–48 (1998).
[CrossRef]

M. Kalceff, ““Cathodoluminescence microcharacterization of the defect structure of irradiated hydrated an anhydrous fused silicon dioxide,” Phys. Rev. B 57(10), 5674–5683 (1998).
[CrossRef]

1996

H. Nishikawa, E. Watanabe, D. Ito, Y. Sakurai, K. Nagasawa, and Y. Ohki, “Visible photoluminescence from Si clusters in γ-irradiated amorphous SiO2,” J. Appl. Phys. 80(6), 3513–3517 (1996).
[CrossRef]

1994

L. Skuja, “The origin of the intrinsic 1.9 eV luminescence band in glassy SiO2,” J. Non-Cryst. 179, 51–69 (1994).
[CrossRef]

E. M. Campbell, “The National-Ignition-Facility project,” Fusion Technol. 26, 755–766 (1994).

1984

L. D. Merkle, N. Koumvakalis, and M. Bass, “Laser induced bulk damaged in SiO2 at 1.064, 0.532 and 0.355 µm,” J. Appl. Phys. 55(3), 772–775 (1984).
[CrossRef]

1973

Ambard, C.

J. Néauport, P. Cormont, P. Legros, C. Ambard, and J. Destribats, “Imaging subsurface damage of grinded fused silica optics by confocal fluorescence microscopy,” Opt. Express 17(5), 3543–3554 (2009).
[CrossRef] [PubMed]

J. Néauport, P. Cormont, L. Lamaignère, C. Ambard, F. Pilon, and H. Bercegol, “Concerning the impact of polishing induced contamination of fused silica optics on laser induced damage density at 351 nm,” Opt. Commun. 281(14), 3802–3805 (2008).
[CrossRef]

Anedda, A.

A. Anedda, C. M. Carbonaro, F. Clemente, and R. Corpino, “Ultraviolet excitation fine tuning of luminescence bands of oxygen deficient center in silica,” J. Appl. Phys. 92(6), 3034–3038 (2002).
[CrossRef]

Bass, M.

L. D. Merkle, N. Koumvakalis, and M. Bass, “Laser induced bulk damaged in SiO2 at 1.064, 0.532 and 0.355 µm,” J. Appl. Phys. 55(3), 772–775 (1984).
[CrossRef]

Bercegol, H.

J. Néauport, P. Cormont, L. Lamaignère, C. Ambard, F. Pilon, and H. Bercegol, “Concerning the impact of polishing induced contamination of fused silica optics on laser induced damage density at 351 nm,” Opt. Commun. 281(14), 3802–3805 (2008).
[CrossRef]

Bloembergen, N.

Bude, J. D.

T. A. Laurence, J. D. Bude, N. Shen, T. Feldman, P. E. Miller, W. A. Steele, and T. Suratwala, “Metallic-like photoluminescence and absorption in fused silica surface flaws,” Appl. Phys. Lett. 94(15), 151114 (2009).
[CrossRef]

Campbell, E. M.

E. M. Campbell, “The National-Ignition-Facility project,” Fusion Technol. 26, 755–766 (1994).

Carbonaro, C. M.

A. Anedda, C. M. Carbonaro, F. Clemente, and R. Corpino, “Ultraviolet excitation fine tuning of luminescence bands of oxygen deficient center in silica,” J. Appl. Phys. 92(6), 3034–3038 (2002).
[CrossRef]

Chen, Y. T.

Y. D. Glinka, S. H. Lin, L. P. Hwang, Y. T. Chen, and N. H. Tolk, “Size effect in self-trapped exciton photoluminescence from SiO2-based nanoscale materials,” Phys. Rev. B 64(8), 085421 (2001).
[CrossRef]

Clemente, F.

A. Anedda, C. M. Carbonaro, F. Clemente, and R. Corpino, “Ultraviolet excitation fine tuning of luminescence bands of oxygen deficient center in silica,” J. Appl. Phys. 92(6), 3034–3038 (2002).
[CrossRef]

Cormont, P.

J. Néauport, P. Cormont, P. Legros, C. Ambard, and J. Destribats, “Imaging subsurface damage of grinded fused silica optics by confocal fluorescence microscopy,” Opt. Express 17(5), 3543–3554 (2009).
[CrossRef] [PubMed]

J. Néauport, P. Cormont, L. Lamaignère, C. Ambard, F. Pilon, and H. Bercegol, “Concerning the impact of polishing induced contamination of fused silica optics on laser induced damage density at 351 nm,” Opt. Commun. 281(14), 3802–3805 (2008).
[CrossRef]

Corpino, R.

A. Anedda, C. M. Carbonaro, F. Clemente, and R. Corpino, “Ultraviolet excitation fine tuning of luminescence bands of oxygen deficient center in silica,” J. Appl. Phys. 92(6), 3034–3038 (2002).
[CrossRef]

Demos, S. G.

Destribats, J.

Feldman, T.

T. A. Laurence, J. D. Bude, N. Shen, T. Feldman, P. E. Miller, W. A. Steele, and T. Suratwala, “Metallic-like photoluminescence and absorption in fused silica surface flaws,” Appl. Phys. Lett. 94(15), 151114 (2009).
[CrossRef]

Fitting, H.-J.

A. N. Trukhin, M. Goldberg, J. Jansons, H.-J. Fitting, and I. A. Tale, “Silicon dioxide thin film luminescence in comparison with bulk silica,” J. Non-Cryst, 223(1-2), 114–122 (1998).
[CrossRef]

Fujimoto, J.

Glinka, Y. D.

Y. D. Glinka, S. H. Lin, L. P. Hwang, Y. T. Chen, and N. H. Tolk, “Size effect in self-trapped exciton photoluminescence from SiO2-based nanoscale materials,” Phys. Rev. B 64(8), 085421 (2001).
[CrossRef]

Golant, K. M.

A. N. Trukhin and K. M. Golant, “Absorption and luminescence in amorphous silica synthesized by low-pressure plasmachemical technology,” J. Non-Cryst, 353(5-7), 530–536 (2007).
[CrossRef]

Goldberg, M.

A. N. Trukhin, M. Goldberg, J. Jansons, H.-J. Fitting, and I. A. Tale, “Silicon dioxide thin film luminescence in comparison with bulk silica,” J. Non-Cryst, 223(1-2), 114–122 (1998).
[CrossRef]

Hwang, L. P.

Y. D. Glinka, S. H. Lin, L. P. Hwang, Y. T. Chen, and N. H. Tolk, “Size effect in self-trapped exciton photoluminescence from SiO2-based nanoscale materials,” Phys. Rev. B 64(8), 085421 (2001).
[CrossRef]

Ito, D.

H. Nishikawa, E. Watanabe, D. Ito, Y. Sakurai, K. Nagasawa, and Y. Ohki, “Visible photoluminescence from Si clusters in γ-irradiated amorphous SiO2,” J. Appl. Phys. 80(6), 3513–3517 (1996).
[CrossRef]

Jansons, J.

A. N. Trukhin, M. Goldberg, J. Jansons, H.-J. Fitting, and I. A. Tale, “Silicon dioxide thin film luminescence in comparison with bulk silica,” J. Non-Cryst, 223(1-2), 114–122 (1998).
[CrossRef]

Kalceff, M.

M. Kalceff, ““Cathodoluminescence microcharacterization of the defect structure of irradiated hydrated an anhydrous fused silicon dioxide,” Phys. Rev. B 57(10), 5674–5683 (1998).
[CrossRef]

Koumvakalis, N.

L. D. Merkle, N. Koumvakalis, and M. Bass, “Laser induced bulk damaged in SiO2 at 1.064, 0.532 and 0.355 µm,” J. Appl. Phys. 55(3), 772–775 (1984).
[CrossRef]

Lamaignère, L.

J. Néauport, P. Cormont, L. Lamaignère, C. Ambard, F. Pilon, and H. Bercegol, “Concerning the impact of polishing induced contamination of fused silica optics on laser induced damage density at 351 nm,” Opt. Commun. 281(14), 3802–3805 (2008).
[CrossRef]

Laurence, T. A.

T. A. Laurence, J. D. Bude, N. Shen, T. Feldman, P. E. Miller, W. A. Steele, and T. Suratwala, “Metallic-like photoluminescence and absorption in fused silica surface flaws,” Appl. Phys. Lett. 94(15), 151114 (2009).
[CrossRef]

Legros, P.

Lin, S. H.

Y. D. Glinka, S. H. Lin, L. P. Hwang, Y. T. Chen, and N. H. Tolk, “Size effect in self-trapped exciton photoluminescence from SiO2-based nanoscale materials,” Phys. Rev. B 64(8), 085421 (2001).
[CrossRef]

Merkle, L. D.

L. D. Merkle, N. Koumvakalis, and M. Bass, “Laser induced bulk damaged in SiO2 at 1.064, 0.532 and 0.355 µm,” J. Appl. Phys. 55(3), 772–775 (1984).
[CrossRef]

Miller, P. E.

T. A. Laurence, J. D. Bude, N. Shen, T. Feldman, P. E. Miller, W. A. Steele, and T. Suratwala, “Metallic-like photoluminescence and absorption in fused silica surface flaws,” Appl. Phys. Lett. 94(15), 151114 (2009).
[CrossRef]

Minoshima, K.

Nagasawa, K.

H. Nishikawa, E. Watanabe, D. Ito, Y. Sakurai, K. Nagasawa, and Y. Ohki, “Visible photoluminescence from Si clusters in γ-irradiated amorphous SiO2,” J. Appl. Phys. 80(6), 3513–3517 (1996).
[CrossRef]

Néauport, J.

J. Néauport, P. Cormont, P. Legros, C. Ambard, and J. Destribats, “Imaging subsurface damage of grinded fused silica optics by confocal fluorescence microscopy,” Opt. Express 17(5), 3543–3554 (2009).
[CrossRef] [PubMed]

J. Néauport, P. Cormont, L. Lamaignère, C. Ambard, F. Pilon, and H. Bercegol, “Concerning the impact of polishing induced contamination of fused silica optics on laser induced damage density at 351 nm,” Opt. Commun. 281(14), 3802–3805 (2008).
[CrossRef]

Nishikawa, H.

H. Nishikawa, E. Watanabe, D. Ito, Y. Sakurai, K. Nagasawa, and Y. Ohki, “Visible photoluminescence from Si clusters in γ-irradiated amorphous SiO2,” J. Appl. Phys. 80(6), 3513–3517 (1996).
[CrossRef]

Ohki, Y.

H. Nishikawa, E. Watanabe, D. Ito, Y. Sakurai, K. Nagasawa, and Y. Ohki, “Visible photoluminescence from Si clusters in γ-irradiated amorphous SiO2,” J. Appl. Phys. 80(6), 3513–3517 (1996).
[CrossRef]

Pilon, F.

J. Néauport, P. Cormont, L. Lamaignère, C. Ambard, F. Pilon, and H. Bercegol, “Concerning the impact of polishing induced contamination of fused silica optics on laser induced damage density at 351 nm,” Opt. Commun. 281(14), 3802–3805 (2008).
[CrossRef]

Sakurai, Y.

H. Nishikawa, E. Watanabe, D. Ito, Y. Sakurai, K. Nagasawa, and Y. Ohki, “Visible photoluminescence from Si clusters in γ-irradiated amorphous SiO2,” J. Appl. Phys. 80(6), 3513–3517 (1996).
[CrossRef]

Shen, N.

T. A. Laurence, J. D. Bude, N. Shen, T. Feldman, P. E. Miller, W. A. Steele, and T. Suratwala, “Metallic-like photoluminescence and absorption in fused silica surface flaws,” Appl. Phys. Lett. 94(15), 151114 (2009).
[CrossRef]

Skuja, L.

L. Skuja, “Optically active oxygen-deficiency-related centers in amorphous silicon dioxide,” J. Non-Cryst. Solids 239(1-3), 16–48 (1998).
[CrossRef]

L. Skuja, “The origin of the intrinsic 1.9 eV luminescence band in glassy SiO2,” J. Non-Cryst. 179, 51–69 (1994).
[CrossRef]

Staggs, M.

Steele, W. A.

T. A. Laurence, J. D. Bude, N. Shen, T. Feldman, P. E. Miller, W. A. Steele, and T. Suratwala, “Metallic-like photoluminescence and absorption in fused silica surface flaws,” Appl. Phys. Lett. 94(15), 151114 (2009).
[CrossRef]

Suratwala, T.

T. A. Laurence, J. D. Bude, N. Shen, T. Feldman, P. E. Miller, W. A. Steele, and T. Suratwala, “Metallic-like photoluminescence and absorption in fused silica surface flaws,” Appl. Phys. Lett. 94(15), 151114 (2009).
[CrossRef]

Tale, I. A.

A. N. Trukhin, M. Goldberg, J. Jansons, H.-J. Fitting, and I. A. Tale, “Silicon dioxide thin film luminescence in comparison with bulk silica,” J. Non-Cryst, 223(1-2), 114–122 (1998).
[CrossRef]

Tolk, N. H.

Y. D. Glinka, S. H. Lin, L. P. Hwang, Y. T. Chen, and N. H. Tolk, “Size effect in self-trapped exciton photoluminescence from SiO2-based nanoscale materials,” Phys. Rev. B 64(8), 085421 (2001).
[CrossRef]

Trukhin, A. N.

A. N. Trukhin and K. M. Golant, “Absorption and luminescence in amorphous silica synthesized by low-pressure plasmachemical technology,” J. Non-Cryst, 353(5-7), 530–536 (2007).
[CrossRef]

A. N. Trukhin, M. Goldberg, J. Jansons, H.-J. Fitting, and I. A. Tale, “Silicon dioxide thin film luminescence in comparison with bulk silica,” J. Non-Cryst, 223(1-2), 114–122 (1998).
[CrossRef]

Watanabe, E.

H. Nishikawa, E. Watanabe, D. Ito, Y. Sakurai, K. Nagasawa, and Y. Ohki, “Visible photoluminescence from Si clusters in γ-irradiated amorphous SiO2,” J. Appl. Phys. 80(6), 3513–3517 (1996).
[CrossRef]

Appl. Opt.

Appl. Phys. Lett.

T. A. Laurence, J. D. Bude, N. Shen, T. Feldman, P. E. Miller, W. A. Steele, and T. Suratwala, “Metallic-like photoluminescence and absorption in fused silica surface flaws,” Appl. Phys. Lett. 94(15), 151114 (2009).
[CrossRef]

Fusion Technol.

E. M. Campbell, “The National-Ignition-Facility project,” Fusion Technol. 26, 755–766 (1994).

J. Appl. Phys.

L. D. Merkle, N. Koumvakalis, and M. Bass, “Laser induced bulk damaged in SiO2 at 1.064, 0.532 and 0.355 µm,” J. Appl. Phys. 55(3), 772–775 (1984).
[CrossRef]

A. Anedda, C. M. Carbonaro, F. Clemente, and R. Corpino, “Ultraviolet excitation fine tuning of luminescence bands of oxygen deficient center in silica,” J. Appl. Phys. 92(6), 3034–3038 (2002).
[CrossRef]

H. Nishikawa, E. Watanabe, D. Ito, Y. Sakurai, K. Nagasawa, and Y. Ohki, “Visible photoluminescence from Si clusters in γ-irradiated amorphous SiO2,” J. Appl. Phys. 80(6), 3513–3517 (1996).
[CrossRef]

J. Non-Cryst,

A. N. Trukhin, M. Goldberg, J. Jansons, H.-J. Fitting, and I. A. Tale, “Silicon dioxide thin film luminescence in comparison with bulk silica,” J. Non-Cryst, 223(1-2), 114–122 (1998).
[CrossRef]

A. N. Trukhin and K. M. Golant, “Absorption and luminescence in amorphous silica synthesized by low-pressure plasmachemical technology,” J. Non-Cryst, 353(5-7), 530–536 (2007).
[CrossRef]

J. Non-Cryst.

L. Skuja, “The origin of the intrinsic 1.9 eV luminescence band in glassy SiO2,” J. Non-Cryst. 179, 51–69 (1994).
[CrossRef]

J. Non-Cryst. Solids

L. Skuja, “Optically active oxygen-deficiency-related centers in amorphous silicon dioxide,” J. Non-Cryst. Solids 239(1-3), 16–48 (1998).
[CrossRef]

Opt. Commun.

J. Néauport, P. Cormont, L. Lamaignère, C. Ambard, F. Pilon, and H. Bercegol, “Concerning the impact of polishing induced contamination of fused silica optics on laser induced damage density at 351 nm,” Opt. Commun. 281(14), 3802–3805 (2008).
[CrossRef]

Opt. Express

Phys. Rev. B

Y. D. Glinka, S. H. Lin, L. P. Hwang, Y. T. Chen, and N. H. Tolk, “Size effect in self-trapped exciton photoluminescence from SiO2-based nanoscale materials,” Phys. Rev. B 64(8), 085421 (2001).
[CrossRef]

M. Kalceff, ““Cathodoluminescence microcharacterization of the defect structure of irradiated hydrated an anhydrous fused silicon dioxide,” Phys. Rev. B 57(10), 5674–5683 (1998).
[CrossRef]

Other

M. R. Kozlowski, C. L. Battersby, and S. G. Demos, “Luminescence investigation of SiO2 surfaces damaged by 0.35 mm laser illumination”, in Proceedings of Laser-Induced Damage in Optical Materials: 1999, Gregory J. Exarhos, Arthur H. Guenther, M. R. Kozlowski, Keith L. Lewis, M. J. Soileau, Eds, Proc. SPIE 3902, 138–144 (2000)

J. Y. Natoli, B. Bertussi, L. Gallais, M. Commandré, and C. Amra, “Multiple pulses laser irradiation study in silica: comparison between 1064 and 355 nm”, in Advances in Optical Thin Films, Claude Amra, Norbert Kaiser, H. Angus Macleod, Eds, Proceedings of SPIE 5250 182–187 (2004)

H. Bercegol, P. Grua, D. Hébert, and J. P. Morreeuw, “Progress in the understanding of fracture related damage of fused silica,” in Proceedings of Laser-Induced Damage in Optical Materials: 2007, Gregory J. Exarhos, Arthur H. Guenther, Keith L. Lewis, Detlev Ristau, M. J. Soileau, Christopher J. Stolz, Eds, Proc. SPIE 6720, 1–12 (2007)

M. L. André, “Status of the LMJ project”, in Solid state lasers for application to Inertial Confinement Fusion: Second Annual International Conference, M. L. André, ed., Proc. SPIE 3047, 38–42 (1996).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

General scheme of photo-luminescence spectrometer. M1 to M12 a mirrors used to convey the laser beam and luminescence signal. The EDGE filter is used to reject the 325 nm excitation from the luminescence signal. The grating and CCD detector defines the spectrometer resolution.

Fig. 2
Fig. 2

Response of the spectrometer used to correct photo-luminescence spectra.

Fig. 3
Fig. 3

Photo-luminescence spectrum of pristine silica under 3.81 eV excitation. Experimental signal (black), fitted signal (red) Gaussian components of the fitted luminescence signal (blue).

Fig. 4
Fig. 4

Image in transmission microscopy of an indent; the three sites (A, B and C) are the points under investigation.

Fig. 5
Fig. 5

Photo-luminescence spectra for indents, excitation at 3.81 eV (325 nm). (a) Site A. (b) Site B. Experimental signal (black), fitted signal (red) Gaussian components of the fitted luminescence signal (blue)

Fig. 6
Fig. 6

Photo-luminescence cartographies obtained on indentation under 3.81 eV excitation. (a): cartography for 2.75 eV emission. (b): cartography for 2.21 eV emission. (c): cartography for 2.10 eV emission. (d): image in transmission microscopy of laser damage.

Fig. 7
Fig. 7

Image in transmission microscopy of front-surface laser damage. The three points A, B and C are the studied sites.

Fig. 8
Fig. 8

Photo-luminescence spectra for laser damage, excitation at 3.81 eV (325 nm). (a) Site A. (b) Site B. (c) Site C. Experimental signal (black), fitted signal (red) Gaussian components of the fitted luminescence signal (blue).

Fig. 9
Fig. 9

Photo-luminescence cartographies obtained on laser damage, under 3.81 eV excitation. (a): cartography for 2.75 eV emission. (b): cartography for 2.21 eV emission (c): cartography for 1.89 eV emission (d): image in transmission microscopy of laser damage.

Tables (3)

Tables Icon

Table 1 Fit parameters obtained for luminescence spectra of pristine silica: mean emission energies and mean FWHM (Full Width at Half Maximum) of the resolved Gaussian components.

Tables Icon

Table 2 Parameters used for fitting the two obtained spectra on site A and site B of an indent.: mean emission energies and mean FWHM of the resolved Gaussian components.

Tables Icon

Table 3 Parameters used for fitting the three spectra obtained for laser damage: mean emission energies and mean FWHM of the resolved Gaussian components.

Metrics